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Improved Calibration Technique for
Quasi-Monostatic Polarimetric Measurement

System Using a Dihedral as the
Calibration Reference

Pengfei Wu and Xiaojian Xu

Abstract— The alluring polarimetric characteristics of a
dihedral corner reflector make it specially useful as a polarimetric
calibration reference. However, for a radar cross section (RCS)
range with quasi-monostatic geometry where there exists a small
bistatic angle, the polarimetric calibration error rapidly increases
as the bistatic angle increases when a dihedral is used as the
polarimetric calibration reference. In this work, an improved
calibration technique for quasi-monostatic polarimetric mea-
surement system is proposed. The scattering mechanism of
a rectangular dihedral corner reflector in a quasi-monostatic
radar system is analyzed, where the bistatic angle constrains
to be within a few degrees. The polarimetric characteristic of
the dihedral is evaluated by means of physical optics (POs)
approximation. Combining the evaluation formulation with a
nonlinear calibration technique, the polarimetric measurement
error model can be adapted for the quasi-monostatic geometry
so that accurate polarimetric calibration may be accomplished.
The experimental results are presented to validate the proposed
technique with essential improvement in the calibrated cross
polarimetric measurements.

Index Terms— Calibration, dihedral corner reflector, polari-
metric calibration, quasi-monostatic, radar cross section (RCS).

I. INTRODUCTION

THE problem of polarimetric calibration for monostatic
measurement geometry has been widely studied. Since

1990s, the standard RST model [1] has been introduced to
describe the errors of polarimetric measurement including
the channel imbalances and antenna crosstalk. Wiesbeck and
Riegger [1], Wiesbeck and Kahny [2], Sarabandi and Ulaby
[3], and Nashashibi et al. [4] proposed different calibration
techniques to obtain the accurate polarimetric scattering matrix
(PSM) of targets for specific radar systems. Among others,
much of the published works used a dihedral corner reflector
as the calibration reference, such as the rectangular-shaped
dihedral was used by Chen et al. [5], Unal et al. [6], and
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Muth [7], [8] and the triangular-shaped dihedral was used by
Gau and Burnside [9] and Welsh et al. [10].

In many radar cross section (RCS) ranges, the measurement
geometry is quasi-monostatic where the transmitting antenna
and receiving antenna are separated with a small distance,
i.e., the measurement geometry is bistatic where the bista-
tic angle constraints to a few degrees. As is well known,
the bistatic RCS approaches to the monostatic RCS when the
bistatic angle is small [11]. However, the difference between
monostatic [12], [13] and bistatic [14]–[17] RCSs of dihedral
will result in additional calibration error. As a consequence, for
accurate polarimetric calibration, quasi-monostatic correction
must be made.

The objective of this study is to develop and recommend a
modified polarimetric calibration procedure that can be used
to correct the bistatic scattering error term of a dihedral
for quasi-monostatic measurement geometries. This work is
an essential extension of our previous conference paper on
ICEAA 2016 [18], where the scattering mechanisms of a
rectangular dihedral reflector with both monostatic and quasi-
monostatic measurement geometries were analyzed and a
correction formulation was proposed by taking the physical
optics (POs) solution of a metal plate as reference. In this
paper, we present a detailed formulation based on analytic
POs (APOs) [19], [20] for quasi-monostatic scattering of a
rectangular dihedral rotating around radar line of sight (LOS).
Using the derived formulation, the polarimetric measurement
error model of dihedral with monostatic geometry is adapted
to quasi-monostatic geometry. The system parameters are then
obtained by means of Fourier analysis [7], [8], with more
accurate polarimetric calibration being accomplished. Finally,
the experimental results are presented to validate the proposed
calibration technique, demonstrating essential improvement in
the cross polarimetric measurements.

The remainder of this paper is organized as follows. The
error model of polarimetric measurement and calibration
technique with monostatic geometry are briefly described
in Section II. In Section III, the scattering mechanisms of
dihedral reflector with quasi-monostatic geometry are analyzed
and the evaluation formulation of the error caused by small
bistatic angle is developed. The measurement error model
of polarimetric calibration with quasi-monostatic geometry is
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Fig. 1. Schematic block diagram of a polarimetric RCS measurement system.

discussed in Section IV, with a modified calibration technique
being proposed for enhanced accuracy. The measurement and
calibration results are presented in Section V with analysis to
validate the proposed technique. We summarize this paper in
Section VI.

II. POLARIMETRIC CALIBRATION TECHNIQUE FOR

MONOSTATIC GEOMETRIES

Quite a few papers have been published that discuss the
procedures performing full polarimetric calibration from radar
PSM measurement. These procedures generally deal with
systematic and linear errors. Statistical errors may be reduced
by averaging over several measurement cycles. In the case
considered, the orthogonal polarizations are linearly horizontal
and vertical. The typical schematic block diagram used to
describe the polarimetric measurement system is given in Fig.
1 [1], [2].

The measurement equipment has no direct mutual coupling
with the target. The object’s scattering characteristic is repre-

sented using a complex PSM

[
Shh Shv

Svh Svv

]
, which is related to

the measured matrix

[
Mhh Mhv

Mvh Mvv

]
by

[
Mhh Mhv

Mvh Mvv

]
=

[
Rhh Rhv

Rvh Rvv

]
·
[

Shh Shv

Svh Svv

]
·
[

Thh Thv

Tvh Tvv

]

+
[

Ihh Ihv

Ivh Ivv

]
(1)

where

[
Thh Thv

Tvh Tvv

]
and

[
Rhh Rhv

Rvh Rvv

]
are the distortion matrices

for transmitting and receiving, respectively. Matrix

[
Ihh Ihv

Ivh Ivv

]
denotes the isolation errors of direct coupling path. Thus,
the measured matrix is subject to 12 error components. The

determination of the coefficients in

[
Ihh Ihv

Ivh Ivv

]
is simply per-

formed by an isolation measurement (empty room) for which[
Shh Shv

Svh Svv

]
=

[
0 0
0 0

]
by definition. After the vector back-

ground subtraction of isolation errors, the measured matrix can

Fig. 2. Dihedral reflector with monostatic measurement geometry.
(a) 0 rotation angle. (b) θ rotation angle.

be normalized by the copolarization channels and rewritten as[
Mhh Mhv

Mvh Mvv

]
=

[
Rhh 0
0 Rvv

]
·
[

1 εr
h

εr
v 1

]

·
[

Shh Shv

Svh Svv

]
·
[

1 εt
v

εt
h 1

]
·
[

Thh 0
0 Tvv

]
(2)

where εr
h = Rhv/Rhh , εr

v = Rvh/Rvv ,εt
h = Tvh/Thh , and

εt
v = Thv/Tvv are the cross-polarimetric coefficients of

receiving and transmitting channels. The determination of
these unknowns is based on the measurement of calibration
references for which the PSMs are well known. In [1]–[10],
different approaches for the calculation of the system error
coefficients are shown.

The dihedral corner reflector is used as calibration reference
in many calibration techniques. For a monostatic measurement
geometry, the different orientations of a rectangular dihedral
reflector [2] are shown in Fig. 2(a) and (b).

It is noted that in Fig. 2, the y-axis is along the radar LOS.
The x- and z-axes are the two cross-range coordinates. The
two plates form the dihedral intersect at 90◦ and both of them
are rectangles with w in width and h in height. The direction
of the incident electromagnetic wave is perpendicular to the
aperture of the dihedral. When the dihedral is rotated with
an angle of θ about the LOS, as shown in Fig. 2(b), at high
frequencies, the theoretical PSM of the dihedral (neglecting
diffraction) is [8][

Shh Shv

Svh Svv

]
= Sdih

[− cos 2θ sin 2θ
sin 2θ cos 2θ

]
(3)

where Sdih = √
2 wh/λ, which depends on the dimensions

of the dihedral and is assumed to be known, λ is the radar
wavelength.

In most of the polarimetric calibration techniques, the dihe-
dral needs to be measured at two orientations such as with
rotation angles of 0◦ and 45◦ [2], [5], [9], [10]. In other
techniques, more polarimetric calibration data are measured
during the dihedral rotation from 0◦ to 180◦ [6]–[8]. For the
full polarimetric measurements, the measured values can be
written as

Mhh = Rhh Thh Sdih
[(

εr
hε

t
h −1

)
cos 2θ+(

εr
h +εt

h

)
sin 2θ

]
(4)

Mhv = Rhh Tvv Sdih
[(

εr
h −εt

v

)
cos 2θ+(

1+εr
hε

t
v

)
sin 2θ

]
(5)

Mvh = Rvv Thh Sdih
[(

εt
h −εr

v

)
cos 2θ+(

1+εr
vε

t
h

)
sin 2θ

]
(6)

Mvv = Rvv Tvv Sdih
[(

1−εr
vε

t
v

)
cos 2θ+(

εr
v +εt

v

)
sin 2θ

]
. (7)
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Fig. 3. Dihedral with quasi-monostatic measurement geometry.

The matrix elements for all the polarization combinations
have the general form

Mpq = cpq cos 2θ + spq sin 2θ (8)

where p and q are either h or v. We applied Fourier analysis
to the data to determine the cross-polarimetric coefficients.
Actually, there are some noises and errors that hardly be
removed more or less in measurement. As a consequence,
the measurement can then be expressed as the Fourier series

M = C0 + c1 cos θ + s1 sin θ + c2 cos 2θ + s2 sin 2θ

+c3 cos 3θ + s3 sin 3θ + · · · . (9)

Mathematically, the signals of dihedral correspond to the
coefficients c2 and s2, respectively. They are used to determine
the cross-polarimetric coefficients, and others such as c1 and s1
are omitted in polarimetric calibration procedure. Because the
background is stationary, the contributions of the background
and noises to the dihedral signals are greatly reduced. The
details of the theoretical expressions have been presented in [7]
and [8]. With the measurement results of another calibration
reference, all polarimetric error coefficients can be solved and
the polarimetric calibration can be accomplished.

III. FORMULATION OF BISTATIC CORRECTION

WITH QUASI-MONOSTATIC GEOMETRY

Many RCS ranges have quasi-monostatic measurement
geometries where two antennas are used for transmitting
and receiving, as shown in Fig. 3. Here, suppose that the
transmitting antenna is set on the right side, while the receiving
antenna is set on the left. It is seen that the incidence angle
(half of the bistatic angle) is α and the scattering angle is
−α, which are related to the locations of the antennas and the
dihedral, while independent of the dihedral rotation and the
polarization of the electromagnetic wave.

The small bistatic angle leads to the differences in scattering
mechanisms between monostatic and quasi-monostatic geome-
tries. Because of the special structure of dihedral reflector,
the double reflection from the plates of the dihedral is the
major scattering component during polarimetric calibration,
which the electromagnetic wave reflect from one plate to
another and then back in the scattering direction. Other
components contributing to the scattered field are weaker
than the double reflection component [12]. The differences in

Fig. 4. Dihedral with rotation angle of 0◦ for monostatic measurement
geometry.

Fig. 5. Dihedral with rotation angle of 0◦ for quasi-monostatic measurement
geometry.

double reflections between monostatic and quasi-monostatic
geometries are analyzed in detail.

A. Dihedral With Rotation Angle of 0◦

Figs. 4 and 5 illustrate the scattering mechanisms of dihedral
reflector with rotation angle of 0◦ for monostatic and quasi-
monostatic measurement geometries, respectively.

For monostatic measurement geometry, the incidence direc-
tion is normal sight, and the incidence angle equals to zero.
The scattering direction of double reflection is parallel to the
incidence direction so that it is right along the observing
direction (LOS to the receiving antenna). For quasi-monostatic
geometry, as shown in Fig. 5, there is a misalignment between
the scattering direction and the observing direction. The mis-
alignment causes loss of energy received by antenna, which
in other words is bistatic magnitude correction term.

The scattering mechanism of a dihedral is similar to metal
plate except that double reflections must be considered [21].
Therefore, the metal plate with the same aperture size as the
dihedral is analyzed to evaluate the bistatic correction term.
Specifically, the metal plate is

√
2 w in width and h in height.

Fig. 6 shows the monostatic measurement geometry which
irradiated in normal sight and incidence angle equals to zero.
The scattering direction is similar to the dihedral with mono-
static geometry. Fig. 7 demonstrates the monostatic geometry
with a small incidence angle. The incidence direction tilts
a minus angle in horizontal, and the misalignment between
scattering and observing directions occurs. It is similar to
the dihedral with quasi-monostatic geometry. So, we use it
to evaluate the bistatic correction term of dihedral.
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Fig. 6. Metal plate in normal sight with monostatic geometry.

Fig. 7. Metal plate with a small incidence angle.

According to the PO solution, the RCS of metal plate
is [21]

σ(ϕ) = 4π

λ2 a2b2 cos2 ϕ

[
sin(ka sin ϕ)

ka sin ϕ

]2

(10)

where a and b are the width and height of the metal plate,
respectively, ϕ is the incidence angle, and k = 2π /λ is
the wavenumber. Compared with the normal sight situation,
the correction term can be written as

σ(ϕ)

σ(0)
= cos2 ϕ

[
sin(ka sin ϕ)

ka sin ϕ

]2

. (11)

The bistatic scattering of the dihedral corner reflector can
be calculated by APO [19]. As the quasi-monostatic geometry
shown in Fig. 3, the APO solution can be approximated and
simplified in small bistatic angle cases. A detailed derivation
can be found in the Appendix. The correction term is given by
(A10) in the Appendix and is duplicated here for convenience

lPS M (α) =
∣∣∣∣∣cos α

[
sin(k

√
2w sin α)

k
√

2w sin α

]∣∣∣∣∣ . (12)

It can be easily seen that the quasi-monostatic correction
term of dihedral is the same as the correction term of plate,
demonstrating the scattering mechanisms we analyzed. The
bistatic RCS correction term of the dihedral reflector with
rotation angle of 0◦ is

lRC S(α) = cos2 α

[
sin(k

√
2w sin α)

k
√

2w sin α

]2

. (13)

B. Dihedral With Rotation Angle of 90◦

The scattering mechanism of dihedral with rotation angle
of 90◦ is shown in Fig. 8.

Fig. 8. Dihedral with rotation angle of 90◦ for quasi-monostatic measurement
geometry.

Fig. 9. Dihedral with rotation angle of θ for quasi-monostatic measurement
geometry. (a) Front view. (b) Equivalent situation.

The front view shows the double reflection of dihedral with
quasi-monostatic geometry clearly. It can be easily seen that,
in this situation, the scattering direction is the same as the
observing direction. The RCS of dihedral is impacted by the
reduction of effective illumination region. It can be omitted
when the incidence angle approaches 0◦.

C. Other Cases

Finally, we think about the situation of rotation angle that is
neither 0◦ nor 90◦. Fig. 9(a) shows the dihedral with rotation
angle of θ with quasi-monostatic geometry.

Suppose that the dihedral is rotated from θ to 0◦ case.
In order to keep the scattering characteristics unchanged, the
locations of the antennas are rotated simultaneously with the
bistatic angle fixed. It is shown in Fig. 9(b) as the equivalent
situation. The orientation of the dihedral is the same as that in
the work of Jackson [19]; however, the polarization directions
of electromagnetic waves are different. As a consequence, the
scattering characteristics should be recalculated or revised on
the basis of reference. According to (12), after small angle
approximation, the bistatic correction term is not related to
the polarization. Therefore, the bistatic angle can be decom-
posed to azimuth angle in horizontal and elevation angle
in vertical. The bistatic correction term in horizontal is the
same as 0◦ case and the azimuth angle is αcosθ . The bistatic
correction term in vertical is the same as 90◦ case, which
can be ignored. In summary, when the rotation angle of the
dihedral is θ , the bistatic correction term may be approximated
by lPS M (αcosθ ).

IV. MEASUREMENT ERROR MODEL WITH

QUASI-MONOSTATIC GEOMETRY

In this section, by taking a specific example, we discuss
the measurement error model with quasi-monostatic geometry.
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Fig. 10. VV polarization of the dihedral with monostatic geometry, quasi-
monostatic geometry with bistatic angle of 4◦, and the Fourier analysis result
of quasi-monostatic geometry at 10 GHz. (a) Real part. (b) Imaginary part.

We start from the characteristic of a dihedral rotating around
the LOS, as shown in Figs. 10 and 11. The PSM of dihedral
reflector is calculated using the method of moment (MOM)
code of Feko software. The frequency is 10 GHz. Both plates
of dihedral are 15 cm in width and 21 cm in height. The
angle of incidence is 2◦ and the angle of observing is −2◦ for
quasi-monostatic geometry. It represents such a case that the
space between transmitting and receiving antennas is 50 cm
and the target (dihedral) range is 7 m. The dihedral rotates
from 0◦ to 175◦, step by 5◦. The real and imaginary parts of
the vv polarization component are shown in Fig. 10(a) and
(b), respectively.

From the numerical result, it can be seen that the bistatic
correction term varies with the rotation angle. It is the same
as the analysis of scattering mechanisms and the calculation
results in Section III. Specifically, when the rotation angle
approaches to 0◦ or 180◦, the effect of bistatic angle is strong
and the difference between monostatic and quasi-monostatic
is obvious. When the rotation angle approaches to 90◦, there
is little effect of bistatic angle and the difference between
monostatic and quasi-monostatic is small.

Fig. 11. HV polarization of the dihedral with monostatic geometry, quasi-
monostatic geometry with bistatic angle of 4◦, and the Fourier analysis result
of quasi-monostatic geometry at 10 GHz. (a) Real part. (b) Imaginary part.

The formulations in Section III can be applied here to
eliminate the bistatic error of quasi-monostatic result, and the
Fourier analysis is used to reduce the noise. On the other hand,
the Fourier analysis can be applied to the quasi-monostatic
result directly and the signal of dihedral can be acquired.
It is shown as dot and dashed line in Fig. 10. Because of
the bistatic error of dihedral in most of the rotation positions,
it can be easily seen that the Fourier component is attenuated
when compared with the monostatic result. The attenuation
of Fourier analysis result should be estimated and corrected
to ensure the accurate polarimetric calibration and it will be
discussed in detail.

As the evaluation formulations we get in Section III,
the bistatic correction terms of dihedral reflector with rotation
angles of 0◦, 45◦, and 90◦ are lPS M (α),lPS M (αcos45◦),
and 1, respectively. For the copolarization, the attenuation of
Fourier component is related to the bistatic errors of dihedral
with rotation angles of 0◦ and 90◦. Take vv polarization as
an example, shown in the Appendix (A25), it will be written
as

Svv,bis = lPS M(α) + 1

2
Sdih cos 2θ. (14)
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The real and imaginary parts of the hv polarization compo-
nent are shown in Fig. 11(a) and (b), respectively.

For the cross-polarization, the response of the dihedral with
rotation angle of 45◦ is almost stable during the Fourier
analysis. It is used to represent the attenuation of Fourier
component. Take hv polarization as an example, shown in the
Appendix (A26), it will be written as

Shv,bis = lPS M

(
α cos

π

4

)
Sdih sin 2θ. (15)

The PSM of dihedral rotating around the LOS can be
expressed as

Sθ
dih,bis = Sdih

·
⎡
⎢⎣ − lPS M(α) + 1

2
cos 2θ lPS M

(
α cos

π

4

)
sin 2θ

lPS M

(
α cos

π

4

)
sin 2θ

lPS M(α)+1

2
cos 2θ

⎤
⎥⎦.

(16)

According to the polarimetric calibration error model,
the measurement values of dihedral with quasi-monostatic
geometry are

Mhh = Ahh Sdih

[(
εr

hεt
h −1

)lPS M(α) + 1

2
cos 2θ

+ (
εr

h + εt
h

)
lPS M

(
α cos

π

4

)
sin 2θ

]
(17)

Mhv = Ahv Sdih

[(
εr

h −εt
v

) lPS M(α) + 1

2
cos 2θ

+ (
1 + εr

hεt
v

)
lPS M

(
α cos

π

4

)
sin 2θ

]
(18)

Mvh = Avh Sdih

[(
εt

h −εr
v

) lPS M(α) + 1

2
cos 2θ

+ (
εr
vε

t
h + 1

)
lPS M

(
α cos

π

4

)
sin 2θ

]
(19)

Mvv = Avv Sdih

[(
1−εr

vε
t
v

) lPS M (α) + 1

2
cos 2θ

+ (
εr
v + εt

v

)
lPS M

(
α cos

π

4

)
sin 2θ

]
(20)

where Ahh = Rhh Thh , Ahv = Rhh Tvv , Avh = Rvv Thh , and
Avv = Rvv Tvv represent the gains of polarimetric channels.
Therefore, suppose that the dihedral reflector rotates over
180◦ or the multiples of 180◦, the Fourier component can be
calculated easily from the measurements of rotation dihedral.
Take the results of hh channel as examples, the Fourier
coefficients are

chh = Ahh Sdih

[(
1 − εr

hεt
h

) lPS M (α) + 1

2

]
(21)

shh = Ahh Sdih

[(
εr

h + εt
h

)
lPS M

(
α cos

π

4

)]
. (22)

The cosine term can be divided from the sine term to elim-
inate components related to the dihedral and amplification of
antennas. A factor which only contains the cross-polarimetric
coefficients and bistatic errors will be obtained

shh

chh
=

(
εr

h + εt
h

)
lPS M

(
α cos π

4

)
(
1 − εr

hεt
h

) lP SM (α)+1
2

. (23)

Similarly, for other polarimetric channels, the factors relate
to cross-polarimetric coefficients are

chv

shv
=

(
εt
v − εr

h

) lP SM (α)+1
2(

1 + εr
hεt

v

)
lPS M

(
α cos π

4

) (24)

cvh

svh
=

(
εr
v − εt

h

) lP SM (α)+1
2(

εr
vε

t
h + 1

)
lPS M

(
α cos π

4

) (25)

svv

cvv
=

(
εr
v + εt

v

)
lPS M

(
α cos π

4

)
(
εr
vε

t
v − 1

) lP SM (α)+1
2

. (26)

In the four equations above, there are four cross-polarimetric
coefficients as unknown components. However, the four
equations are not independent of each other, so the cross-
polarimetric coefficients cannot be determined. The measure-
ment of other type polarimetric calibration reference is needed,
such as the metal plate. The measurement value of a plate can
be organized to

Mhv plate Mvh plate

Mhh plate Mvv plate
=

(
εr

h + εt
v

)(
εr
v + εt

h

)
(
1 + εr

hεt
h

)(
1 + εr

vε
t
v

) . (27)

We can choose three equations from the results of dihedral
and combine with the equation of plate to obtain an equation
group, such that the cross-polarimetric coefficients can be
solved. According to |ε| < 1 and other limits which are the
real situations for most of the RCS system, the true solution
can be picked out from the fault solutions.

Then, the gain of each polarimetric channel can be calcu-
lated. Take the result of hh polarization as an example, the gain
Ahh can be expressed as

Ahh = chh

Sdih
(
1 − εr

hεt
h

) · 2

lPS M (α) + 1
. (28)

Till now, the four cross-factors and four channel amplifications
of the RCS system are solved out. Finally, the polarimetric
calibration of target can be accomplished by

Star
hh = 1

1 − εt
hεt

v − εr
hεr

v + εr
hεr

vε
t
hεt

v

×
(

Mtar
hh

Ahh
− εt

h
Mtar

hv

Ahv
− εr

h
Mtar

vh

Avh
+ εr

hεt
h

Mtar
vv

Avv

)
(29)

Star
hv = 1

1 − εt
hεt

v − εr
hεr

v + εr
hεr

vε
t
hεt

v

×
(

−εt
v

Mtar
hh

Ahh
+ Mtar

hv

Ahv
+ εr

hεt
v

Mtar
vh

Avh
−εr

h
Mtar

vv

Avv

)
(30)

Star
vh = 1

1 − εt
hεt

v − εr
hεr

v + εr
hεr

vε
t
hεt

v

×
(

−εr
v

Mtar
hh

Ahh
+ εr

vε
t
h

Mtar
hv

Ahv
+ Mtar

vh

Avh
−εt

h
Mtar

vv

Avv

)
(31)

Star
vv = 1

1 − εt
hεt

v − εr
hεr

v + εr
hεr

vε
t
hεt

v

×
(

εr
vε

t
v

Mtar
hh

Ahh
− εr

v

Mtar
hv

Ahv
− εt

v

Mtar
vh

Avh
+ Mtar

vv

Avv

)
. (32)
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Fig. 12. Measurement (quasi-monostatic and α = 1.2◦), Fourier result,
and deviation of the dihedral varying with rotation angle (hv polarization at
10 GHz). (a) Magnitude. (b) Normalized by the maximum of Fourier result.

V. EXPERIMENTAL RESULTS

We use two rectangular dihedrals and two square metal
plates with different size to perform polarimetric calibration
in an indoor RCS measurement range. The big dihedral and
plate are used as calibration references to calculate the system
coefficients. The big dihedral consists of two plates sized
15 cm in width and 21 cm in height, and the square metal
plate is 21.5 cm in width. The small dihedral and plate are
used as targets whose PSMs are need to be calibrated. The
small dihedral consists of two plates sized 7.5 cm in width
and 10.5 cm in height, and the square metal plate is 11 cm in
width. Scattering measurement is performed using a vector
network analyzer (VNA). Time-domain gating technique is
applied to remove the possible target-room coupling during the
measurement. The space between transmitting and receiving
antennas is 19 cm and the target range is 4.5 m that means
the bistatic angle α is more than 1.2◦.

The measurement, Fourier result, and deviation of the ref-
erence dihedral are shown in Fig. 12(a) during the rotation of
dihedral at 10 GHz. Altogether, 400 data points were collected
for each polarization during a full 360◦ rotation. In order to

Fig. 13. Normalized results of measurement (quasi-monostatic and
α = 2.5◦), Fourier result, and deviation of the dihedral varying with rotation
angle (hv polarization at 10 GHz).

Fig. 14. Full polarimetric measurement results of target metal plate (the
square metal plate is 11 cm in width). (a) Before polarimetric calibration.
(b) After polarimetric calibration.

eliminate the effect of gains of the system, the results are
normalized by the maximum of Fourier result and shown
in Fig. 12(b). For an intensive study of the bistatic error,
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Fig. 15. Full polarimetric measurement results of target dihedral with 0◦
rotation (both rectangular plates of dihedral are 7.5 cm in width and 10.5 cm in
height). (a) Before polarimetric calibration. (b) After polarimetric calibration.

we enlarge the space between transmitting and receiving
antennas to 40 cm that means the bistatic angle α is more
than 2.5◦. The normalized results are presented in Fig. 13.

From Figs. 12(b) and 13, it is found that larger differences
do exist at the larger bistatic angle between the measurement
(quasi-monostatic) and Fourier results. The bistatic error will
cause the attenuation of Fourier component compared with the
monostatic result as discussed in Section IV. The measurement
results also show that the larger bistatic angles change the
shape of curve more obviously.

In Fig. 14(a) and (b), the results of target metal plate before
and after polarimetric calibration are illustrated, respectively.
It can be seen that the polarization isolation of the measure-
ments is about 30 dB, while after polarimetric calibration, it
is as high as about 45 dB.

In Fig. 15(a) and (b), the results of the target dihedral
with 0◦ rotation before and after polarimetric calibration
are presented, respectively. The dihedral with 0◦ rotation is
a dominant copolarization target and the cross-polarization
component is about 50 dB down from the copolarization
component for the calibrated result, 20 dB better than the raw
data.

VI. CONCLUSION

In this work, we proposed an improved polarimetric cali-
bration technique for quasi-monostatic radar system, where the
bistatic angle is constrained to be within a few degrees. The
polarimetric characteristics of a rectangular dihedral corner
reflector rotating around radar LOS in a quasi-monostatic
radar system are studied. Based on the analysis of the scat-
tering mechanisms for dihedral with both monostatic and
quasi-monostatic measurement geometries, the correction term
caused by small bistatic angle is evaluated based on PO
approximation. The polarimetric measurement error model is
modified for the quasi-monostatic geometry so that accurate
polarimetric calibration can be accomplished. By means of
the derived formulation, the bistatic error of dihedral reflector
can be greatly reduced. The experimental results show that the
polarization isolation of calibrated data is well below 45 dB
when the bistatic angle α is up to 1.2◦. It is, thus, con-
cluded that the proposed technique is useful for more accurate
polarimetric calibration with quasi-monostatic measurement
geometries, which are very common in RCS test ranges.

APPENDIX

A. Analytic Physical Optics Solution for Dihedral With
Quasi-Monostatic Geometry

The APO solution for bistatic scattering from a dihedral has
been excellently calculated by Jackson [19]. The APO result
can be simplified according to the quasi-monostatic geometry.
Specifically, the two faces of dihedral are the same with w
in width, and the directions of both incidence and scattering
are in xy plane. Along the LOS, the transmitting antenna is
set at the right hand, while the receiving antenna is set at
left. That means, for double reflection, the illumination area
of dihedral is stable as only a near-boundary stripe at left
cannot be illuminated.

For the full polarimetric measurements, the double reflection
components of dihedral are

Svv (α) = − jkhw√
π

{
sin

(π

4
+ α

) sin[A f (α)]
A

e j Af (α)

+ cos
(π

4
+ α

) sin A

A
e− j A

}
(A1)

Svh(α) = 0 (A2)

Shv (α) = 0 (A3)

Shh(α) = jkhw√
π

{
sin

(π

4
− α

) sin[A f (α)]
A

e j A f (α)

+ cos
(π

4
− α

) sin A

A
e− j A

}
(A4)

where

f (α) = 1 − tan α

1 + tan α
(A5)

A =
√

2

2
kw sin α. (A6)

Considering that the incidence angle α constraints to a
few degrees, the value of f (α) can be approximated to 1.



7048 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 11, NOVEMBER 2019

The exponential components in (A1) and (A4) can be written
as complex number

Svv(α) = −√
2

jkhw√
π

· sin A

A
(cos α cos A+ j sin α sin A) (A7)

Shh(α) = √
2

jkhw√
π

· sin A

A
(cos α cos A− j sin α sin A). (A8)

Similarly, the value of sinαsinA can be approximated to 0
as α is a small angle. The double reflection components of
dihedral can be simplified as

|Svv (α)| = |Shh(α)| =
∣∣∣∣∣cos α

kh
√

2w√
π

· sin 2A

2A

∣∣∣∣∣ . (A9)

Comparing the quasi-monostatic result |S(α)| with the
monostatic result |S(0)|, the correction term is

lPS M(α) = |S(α)|
|S(0)| =

∣∣∣∣∣cos α

[
sin(k

√
2w sin α)

k
√

2w sin α

]∣∣∣∣∣ . (A10)

B. Fourier Analysis for Rotating Dihedral With
Quasi-Monostatic Geometry

When the dihedral rotates about the LOS, the quasi-
monostatic result can be written as

Sbis (α, θ) = lPS M(α cos θ)S. (A11)

Substituting (3) into (A11), the full polarimetric components
can be expressed as

Shh,bis (α, θ) = −lPS M(α cos θ)Sdih cos 2θ (A12)

Shv,bis(α, θ) = lPS M (α cos θ)Sdih sin 2θ (A13)

Svh,bis(α, θ) = lPS M (α cos θ)Sdih sin 2θ (A14)

Svv,bis(α, θ) = lPS M (α cos θ)Sdih cos 2θ (A15)

where

lPS M(α cos θ) =
∣∣∣∣∣cos(α cos θ)

sin[k√
2w sin(α cos θ)]

k
√

2w sin(α cos θ)

∣∣∣∣∣ . (A16)

As α is small in amount, we have cos(α cos θ) ≈ 1,
sin(α cos θ) ≈ α cos θ , and

lPS M(α cos θ) ≈
∣∣∣∣∣ sin(k

√
2wα cos θ)

k
√

2wα cos θ

∣∣∣∣∣ . (A17)

Suppose that k
√

2 wα < π , ignore the variance of θ , there
are

lPS M(α cos θ) ≈ sin(k
√

2wα cos θ)

k
√

2wα cos θ
. (A18)

Considering the Taylor’s expansion of sin x = x −
(1/3!)x3 + · · · , it can be approximated to

lPS M(α cos θ) ≈ 1 − 1

3!(k
√

2wα cos θ)2 (A19)

or

lPS M(α cos θ) ≈ 1 − 2A1 cos2 θ (A20)

where A1 = (1/3!)(kwα)2.

Fig. 16. Terms of Taylor’s expansion varying with the width of dihedral
plate.

The approximation we used depends on the factor k
√

2 wα.
Fig. 16 demonstrates the terms y1 = (1/3!)(k√

2 wα)2 and
y2 = (1/5!)(k√

2 wα)4 varying with the width of dihedral
plate normalized by wavelength kw when the bistatic angle α
is 2◦. It can be seen that y2 is small enough to be ignored.

Substituting (A20) into the full polarimetric components and
taking vv component as an example of copolarization and hv
component as an example of cross-polarization, the results are

Svv,bis(α, θ) = Sdih

[
− A1

2
+ (1 − A1) cos 2θ − A1

2
cos 4θ

]
(A21)

Shv,bis(α, θ) = Sdih

[
(1 − A1) sin 2θ − A1

2
sin 4θ

]
. (A22)

The quasi-monostatic result of vv component is combined
by cos2θ , cos4θ , and constant components and the hv compo-
nent is combined by sin2θ and sin4θ components. The variants
of c2 and s2 can be represented as

Svv,bis(α, 0) − Svv,bis
(
α, π

2

)
Sdih

= 2(1 − A1) = lPS M(α) + 1

(A23)
Shv,bis

(
α, π

4

)
Sdih

= 1 − A1 = lPS M

(
α cos

π

4

)
.

(A24)

The dihedral responses with quasi-monostatic geometry can
be written as

Svv,bis = lPS M(α) + 1

2
Sdih cos 2θ (A25)

Shv,bis = lPS M

(
α cos

π

4

)
Sdih sin 2θ. (A26)

What is more, if the term y2 = (1/5!)(k√
2 wα)4 cannot

be ignored and must be kept in the approximation of (A18),
there will be cos6θ component in vv and sin6θ component in
hv results. The simplified results of dihedral responses with
quasi-monostatic geometry in this situation may be analyzed
similarly.
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