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Optimized Nonuniform FFTs and Their Application
to Array Factor Computation
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Abstract— We deal with developing an optimized approach
for implementing nonuniform fast Fourier transform (NUFFT)
algorithms under a general and new perspective for 1-D trans-
formations. The computations of nonequispaced results, nonequi-
spaced data, and Type-3 nonuniform discrete Fourier transforms
are tackled in a unified way. They exploit ‘“uniformly sam-
pled” exponentials to interpolate the ‘“nonuniformly sampled”
ones involved in the nonuniform discrete Fourier transforms
(NUFDTs), so as to enable the use of standard fast Fourier
transforms, and an optimized window. The computational costs
and the memory requirements are analyzed, and their convenient
performance is assessed also by comparing them with other
approaches in the literature. Numerical results demonstrate
that the method is more accurate and does not introduce any
additional computational or memory burden. The computation of
the window functions amounts to that of a Legendre polynomial
expansion, i.e., a simple polynomial evaluation. This is convenient
in terms of computational burden and of the proper arrangement
of the calculations. A case study of electromagnetic interest has
been carried out by applying the developed NUFFTs to the
radiation of linear regular or irregular arrays onto a set of regu-
lar or irregular spectral points. Guidelines for multidimensional
extension of the proposed approach are also presented.

Index Terms— Array factor computation, computational
electromagnetics, nonuniform fast Fourier transform (NUFFT),
optimized window.

I. INTRODUCTION

HE nonuniform Fourier transform is of interest in diverse

domains of applied electromagnetics, such as medical
imaging [1], radio astronomy [2], numerical solution of partial
differential equations [3], [4], antenna analysis and synthe-
sis [5]-[7], antenna near-field/far-field transformations [8],
microwave imaging [9], and synthetic aperture radar [10]. Typ-
ically, in those applications, part of the computation amounts
to evaluating the “spectral” values corresponding to a given
set of N “spatial” sample data.

When the sampling is uniform in both spatial and spectral
domains, the spectral and spatial samples are related by a
standard discrete Fourier transform (DFT) relation. The fast
Fourier transform (FFT) enables the calculation of standard
DFTs in O(NlogN) operations rather than O(N?), thanks to
the multilevel algorithm based on the “divide et impera” con-
cept [11]. On the contrary, when the sampling is nonuniform
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in at least one domain, the spectral and spatial samples will be
related by a nonuniform DFT (NUDFT) relation, and hence
the standard FFT algorithm does not apply anymore.

Several algorithms have been developed over the years
to overcome this limitation [12]-[25]. They are referred to
as nonuniform FFTs (NUFFTs), which rely on interpolation
schemes designed purposely for “nonuniformly” sampled
exponentials involved in the NUDFT. Such an interpolation
serves to enable the “nonuniformly” sampled exponentials
to be represented by uniformly sampled ones, so that the
standard FFT can be used conveniently on an oversampled
grid. In this way, the O(NlogN) complexity of a standard
FFT can be restored.

The abovementioned approaches differ mainly in their
choice of the window function, which governs the tradeoff
between accuracy and computational complexity.

The NUFFTs of interest are of three kinds, depending on
the type of the underlying NUDFT computational problem.

1) Nonequispaced results (NER) NUFFT, or Type-1
NUFFT, if the spatial samples are located regularly, and
the spectral samples irregularly.

2) Nonequispaced data (NED) NUFFT, or Type-2 NUFFT,
if the spatial samples are located irregularly, and the
spectral samples regularly.

3) Type-3 NUFFT, if both the spatial and spectral samples
are located irregularly.

For the first two cases, a unified and general approach
has been given in [18]. To limit the computational burden,
the approach uses window functions having the property of
being compactly supported with essentially compactly sup-
ported Fourier transforms. However, practical applications
of the approach have been provided by using a Kaiser—
Bessel window [12]-[18] that is regarded as an approxima-
tion to the zeroth order prolate spheroidal wave function
(PSWF) [26]-[28], which is in fact compactly supported
and has a Fourier transform essentially compactly supported.
A few more schemes, for cases 1 and 2, have been pro-
posed, involving least-squares window optimization [15], [22],
min—max window optimization [17], least mean square error
window optimization [23], [25], and different choices of the
window functions that approximately fit the general formula-
tion in [18] (see [13], [14], [16], [21], [24]).

The third case has been dealt with, throughout the literature,
from a slightly different perspective. It has been viewed as
a gridding problem, involving the use of Gaussian windows
as interpolation functions [13], [19], [20]. Greengard and
Lee [19] and Lee and Greengard [20] indicate the choice of
the algorithm parameters that guarantee Fourier transforms
of the Gaussian window with moderate essential compact
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support. This, in turn, guarantees a limited number of interpo-
lation points, which entail only limited computational burden.
Unfortunately, they offer no analytical justifications for their
choice [19], [20]. Furthermore, the parameter choice is inde-
pendent of target accuracy and, especially for the Type-3 prob-
lem, can lead to unsatisfactory results. Most recently, based
on a thorough performance analysis of the resulting Type-3
NUFFT (referred to as NUFFT-3, henceforth), an approach is
proposed to appropriately select the Gaussian window para-
meters that guarantee a predetermined accuracy [29]. In this
approach, it can be seen that when high accuracy is needed,
an exceedingly large number of interpolation points would be
required for using Gaussian windows.

The literature survey reveals two missing points.

1) Devising a strategy, which helps in choosing window
functions that enable the NER and NED NUFFTs with
“optimized” performance, as compared to the perfor-
mance of the Kaiser—Bessel window.

2) Extending the NUFFT-3 to more general, and possibly
“optimized,” windows, which would be capable of cir-
cumventing the above cited inefficiency of the Gaussian
windows.

Indeed, with any fixed window function, some parameters,
such as the oversampling factor or the interpolation window
length, can be used to improve the accuracy or computational
lightness, and thus for getting better results than the existing
ones.

The aim of this paper is to tackle these two points, specif-
ically for 1-D transformations. As regards the first point, the
involved window must have compact support and its Fourier
transform must be essentially compact supported, as stressed in
Section II. Accordingly, the window must belong to the space
spanned by the PSWFs, corresponding to singular values,
significantly different from zero, i.e., to those before the step
[26]-[28]. Indeed, the PSWFs have the same property required
for the window function, i.e., compact support and essential
compact support for the transform. The coefficients of the
PSWF expansion are then so selected that they “optimize”
the representation of the “nonuniformly” sampled exponential
of the NUDFT. As regards the second point, a general,
“optimized” NUFFT-3 algorithm has been developed, using an
approach similar to that in [18], but exploiting the mentioned
“optimized” PSWF representation of the involved window
function.

It should be noted that in this approach, as the PSWFs
will be expressed in terms of the Legendre polynomials,
the computation of the window functions amounts to that of a
Legendre polynomial expansion, namely, a simple polynomial
evaluation. This is convenient from the viewpoint of not only
mere computational burden but also a proper arrangement of
the calculations.

The computational costs and the memory requirements of
the proposed schemes are theoretically analyzed, and the very
convenient performance is evaluated also by comparing the
results with those of the approaches in the literature.

For this paper, the performance is evaluated in terms of
the number of operations required, memory occupancy, and
accuracy, but not in terms of computation time. This is
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an extremely relevant point because the time taken for the
performance of actual implementations may strongly depend
on software/hardware factors, such as memory latencies or
proper exploitation of the cache memories and computation
pipelines, which are beyond the scope of this paper. To what
extent the implementation aspects may significantly influence
the performance, in terms of computation time, is indicated,
for example, by the famous FFT code, known as the fastest
FFT in the West, which has revolutionized the computation of
the FFT [30].

As mentioned at the beginning of this section, many areas
of applied electromagnetics can benefit from the use of
such efficient and effective tool. The developed “optimized”
NUFFTs are applied here to a case of electromagnetic interest,
namely, the radiation of linear regular or irregular arrays
onto a set of regular or irregular spectral points. A problem
of this type has indeed been attracting the attention of the
electromagnetics community since long. The possibility of
computing the far-field pattern of (regular) aperture-like anten-
nas onto a regular output grid, by using the FFT algorithm, has
been first recognized in [31]-[33]. Most recently, the NUFFT
algorithm has been exploited, for the first time, to compute
the far-field pattern radiated by irregular arrays onto regular
grids [34], [35]. This approach has been subsequently extended
to the more general case of regular or irregular, also conformal,
arrays onto regular or irregular grids [5].

This paper is organized as follows. Section II recalls
the definitions of NER and NED NUDEFTSs, as also of the
corresponding NUFFT algorithms. Section III addresses Type-
3 NUDFT and NUFFT, extending the latter from a more gen-
eral perspective. Section IV introduces the PSWF expansion
of the relevant window function [36], besides dealing with
the optimization of such a function, in terms of expansion
coefficient. Section V analyzes the computational costs and the
memory requirements of the developed schemes. Section VI
briefly recalls the methods in the literature, against which
the developed approach is compared. Section VII reports and
discusses the results of the numerical analysis and compares
them with other schemes to prove how the calculation of the
array factor for nonuniformly distributed data and/or results
can benefit by using the optimized NUFFT. Section VIII
proposes the guidelines for multidimensional extension of the
proposed approach. Finally, Section IX presents the conclu-
sions and the possible scenario of future developments in this
field.

II. NER AND NED NUDFTSs AND NUFFTS

In this section, the authors recall NER and NED NUFFTSs
from a perspective, different from that in [18]. They propose
to use index [ for the domain where nonuniformity occurs,
and index k for the domain where uniformity occurs.

The NER NUDFT of uniform samples {Zk}g/f ()1;/12), eval-
uated at nonequispaced grid points x; € [—(N/2), (N/2)],
is defined as

J-1

. ik
2= z e AN [ =1,...

N
k=%

M. ey
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On the other side, the NED NUDFT of samples {z;},,
located at nonequispaced points {xl}zﬂi , and evaluated on an
equispaced grid, is defined as

M
. N N
= me TN, k=g -1 @
=1

To guarantee fast and accurate processing, the “nonuni-
formly sampled” exponentials, e~/27%&/N) “appearing in (1)
and (2) require to be properly interpolated. The idea behind
NER and NED NUFFTs is to use “uniformly sampled”
exponentials e/”<. This is considered convenient for three
reasons.

1) Unlike other interpolation schemes, the representation
is exact when the sampling, associated with x;’s, is uni-
form.

2) Thanks to the Poisson summation formula, the represen-
tation is purposely tailored to the family of functions to
be represented, namely, “nonuniformly sampled” expo-
nentials.

3) “Uniformly sampled” exponentials, ¢/”<, as interpola-
tion functions, enable “divide et impera” appro-
aches [11], which lead to the use of standard FFTs.
As is well-known, FFTs dramatically reduce the com-
putational complexity.

As already mentioned, the exponential representation is
made possible by using the Poisson summation formula [37].
Indeed, given the function f € L(R), then >, 7 f(& +2mn)
converges absolutely almost everywhere to the 2z -periodic,
locally integrable function, which can be expressed simply
through a Fourier series as

> rE+amm) ~ @)Y fme™ ()

meZ meZ

where f (m) = F[f;m] is the Fourier transform of f,
calculated at m. The symbol ~ can be replaced by full equality,
if f is of bounded variation and continuous.

Considering a window ¢(¢), having compact support
(=¢m, Emr), which is continuous and of bounded variation [see
Fig. 1(a)], the Poisson formula can then be applied to the
function ¢ (&)e~/*¢, which is again continuous and of bounded
variation, and hence returns

12 2omez Flp(©)e 1<% m]eim
zmeZ o€+ 2m7[)e*1'2m7rx :

To obtain a computationally convenient expression for
e~/<*, the denominator must be expressed as a factorized
function of x and ¢. A straightforward way of achieving this
is to avoid overlapping of the replicas ¢ (& + 2mm )e /2m7x
which are related to the replication period 2z of the Poisson
summation formula (3), and to choose an appropriate support
for ¢(¢). In other words, a natural choice, which corresponds
to the periodicity of the expanding e/” exponentials at the
numerator of (4), is &y = 7 [see Fig. 1(b)], so that

12 Lomez, Flop(©)e /< m]eime

9(©) ’
|é] <@ and Vx € R. (5)

eI = 21)”

“)

e/ = Q2n)”

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 6, JUNE 2019

AO(E)

'%M éM é

(@)
on - ‘ T In >
(b)

2n -« ' o« 7n )g

©
Fig. 1. Illustrating the use of the Poisson summation formula. (a) Window
function. (b) Case &y = 7. (c) Case &y > 7.

However, by this method, divisions by very small numbers
in (5) would take place because of unavoidable decay of
(&) toward the ends of (—=z,x). To avoid this problem,
the support of ¢(¢) can be chosen larger than 7, namely,
¢&u > m [Fig. 1(c)]. With this choice, different replicas over-
lap, and hence the representation of ¢~/¢* must be considered
only in the nonoverlapping interval (—a, a). For the ensuing
discussions, it is assumed that & = (7 /c), with ¢ > 1, and that
¢ will be interpreted in the sequel as an oversampling factor.

According to the above reasoning and after some straight-
forward manipulations, the following final identity is obtained:

e—jxf _ (271.)—1/2

0@ Zgﬁ(x—m)e_jm‘-z, IEl<m/c, Vx e R

meZ

(6)

where ¢ (x) = Flp($); x], i.e., the Fourier transform of ¢ (&).

Equation (6) is amenable to meaningful interpretation
(Fig. 2). Indeed, if x is considered a parameter, then e~/*¢ is
represented in the spectral domain by a Dirac delta function,
located at x. On the other side, e=/™<’s are represented, again
in the spectral domain, by Dirac delta functions located at m.
So, it is not possible to express e /* as a summation of
e~/™M<’s unless x is an integer. To render such representation
possible, it is necessary to smooth ¢ /*¢ by a window func-
tion ¢(¢), and thus spread its spectrum first. Following the
smoothing, ¢(¢)e™/"< becomes an ordinary function, which
can then be expressed as a Fourier series summation provided
by 27)~Y2 ..z $(x —m)e /™. Therefore, the so-called
scaling window ¢ and interpolation window ¢ are necessarily
related, in terms of the Fourier transform relationship. Having
established this, the problem now amounts to simple handling



CAPOZZOLI et al.: OPTIMIZED NUFFTS AND THEIR APPLICATION

Fourier transform of exp(-jm&)

)\(/[3(03) Fourier transform of exp(-jx&)
Fourier transform of
smoothed exp(-jx&)

01... X »

2K+1

Fig. 2. Tllustrating (6).

of the truncation of the summation in (6), as also of the
division by the scaling window in the interval of interest.

It should be noted that (6) holds true for all real values
of x. However, optimization of the scaling window ¢, which
will be addressed in the following, will be performed for
a finite interval of interest (—x,;, xp7), with a “sufficiently
large” xjs. Furthermore, it should be noted that restricting the
representation in (6) to |£| < z/c is by no means a limitation,
because whenever larger intervals are needed, it is enough
to perform a stretching in ¢ and x variables. In other words,
whenever a representation is needed in (—&yy, i), with &y >

(m /c), then it is possible to consider the exponential e~/ *
with & = &y /(x/c) and x' = x(x/c) /En.

Finally, it should be noted that to be of practical interest,
the summation in (6) should be finite.

For further presentation of this paper, the following natural

assumptions are made on ¢ (&).
1) ¢(¢) is real, without any loss of generality.

2) ¢(<&) is even, because of the symmetry of the function
e Jex,

3) The Fourier transform ¢ has support, essentially
bounded to [—K, K], so as to ensure a finite summation
in (6).

4) ¢N is an integer; this can be achieved by ensuring that
¢ € Q and by suitably increasing N, i.e., the length of

the input or output sequence, if necessary.
Equation (6), which leads to a representation of the expo-

nential kernels of (1) and (2), permits efficient evaluation of the
NUDFTs. In particular, such kernels are “uniformly sampled”
in one variable and ‘“nonuniformly sampled” in the other.
Accordingly, it is assumed that { = 2zk/cN) and x = cx,
which lead to obtaining

; 2 b o m
e I2ma ( 7T2)7rk Zgo(cxl m)e*ﬂ”ﬁ
(CN meZ
N N
l=1,...,M; k:_E""’E_l' @)

In (7), the summation over m can be truncated, following
assumption c). In this way, (7) can be rewritten as

1
: 2r)" 2 n . (ug+m)k
6—12”"1%:% E QD(CXZ—(,uz—i-m))e jzﬂ”TL
v (%)
cN ) ml<k
N N
l=1,...,M; k:_j""’j_l (8)

where equality now holds true in an approximate sense.
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Accordingly, for the NER case, the following equation is
obtained:

N
A —1/2 ~ Py Zk _ g Witmk
a = Q@n) 2 0m D e T
Im|<K k= o(2x)
Step 1
Step 2
Step 3
)
where @i = ¢(cx; — (w1 +m)), u; = [exi], and [v] is the

integer, nearest to v. Obviously, larger values of K increase
accuracy at the expense of increased computational burden,
because more terms are needed in the above summation for m.

From an algorithmic point of view, (9) can be regarded
as involving three sequential steps [18]. Step 1 amounts at
a scaling and a zero padding up to a length equal to c¢N,
and Step 2 can be performed by a standard FFT over ¢N
points; Step 3 is an interpolation step. Because ¢cN > N,
the “effective” length of the sequence to be transformed c can
be interpreted as an oversampling factor.

Similarly, for the NED case, the following is obtained:

. @r)7l2 Gtk
k= (27rk) Z Zzzcozme e (10)
PN ) im<k =1

If the domains of definition of z;, u;, and ¢y, are extended
so that z; and y; vanish for/ < 1 and/ > M, and ¢y, vanishes
forl < 1,1 > M, and |m| > K, then (10) becomes

L 4
NI =D grep 1
Step 2
Step 3
where
Ui= > 2ftitemn-—u- (12)
leZ, meZ
If ¢ is small outside some interval, [—K, K], then

PlitemN—yu,is nonzero only for i + emN — y; < K, and
the summation in m can be truncated, whereas that in [ is
automatically truncated by the support of z;. Again, for the
NED case, (11) involves three steps [16]: Step 1, i.e., the
calculation of U;, is an interpolation step; Step 2 can be
performed by a standard FFT over ¢N points, and Step 3 is
scaling.

III. NUDFT-3 AND IMPROVED NUFFT-3

NUDFT-3 of the nonuniform samples {z;}lﬁi | acquired at
{xl}l"i | and evaluated at the nonequispaced grid points {sk},iV:1
is defined as

N
2]( — E Zle—lskxl,
=1

Here, unlike NER and NED NUDFTs, both the indices [
and k address domains where nonuniformity occurs.

k=1,...,N. (13)
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The NUFFT-3 algorithm of [19] and [20] uses Gaussian
window interpolation functions to represent the nonuniformly
sampled exponentials. We now propose to improve the
NUFFT-3 algorithm with more general window functions,
using the same approach, exploited for the NER and NED
NUFFTs of the foregoing section. To this end, also in this case,
(6) leads to a representation of the exponential kernel in (13),
which permits efficient evaluation of NUDFT-3. Particularly,
in (6), if it is assumed that & = (wsx/cS) and x = (c¢Sx;/7),
where § = max{lsk|}£’:1, then |&] < (z/c) and

(27[)—1/2 Z R (chz ) —jmZ Sk
= - (p — —mje c S
¢ (%) meZ T

Using (14) in (13), and after some straightforward manipu-
lations, one gets

. @m)'?
k= o (nsk) Z |:ZZ”0 (

cS ) mel

PaAl

(14)

Step 1

Step 2

Step 3
(15)

In (15), Step 1 is an interpolation step. Step 2 is the
expression of NER-NUDFT of a 2N long sequence, evaluated
at the output points (sx N /cS). Hence, it can be computed via
the same scheme, expounded in the foregoing section. In other
words, Step 2 effectively includes three steps. Finally, Step
3 is scaling. Having noticed that Step 2 is composed of three
internal steps, it can be summed up that NUFFT-3 amounts
to comprising overall five steps, as the schemes in [19], [20],
and [29].

IV. PSWFS REPRESENTATION OF THE WINDOW
FUNCTION AND ITS OPTIMIZATION

For fixed values of xj;, K, and c, the scaling window ¢,
“minimizing” the representation error of e~/<* in (6), remains
to be determined. It is therefore appropriate to introduce here
the proposed optimization process. To maintain the general
purpose of the results, the optimization of the representation
is performed on the individual exponential e~ /¢¥ rather than
on its summations as in the NUFFTs.

For the three foregoing NUFFTS to be effective, the function
¢ must be small, outside some interval [—K, K]. Therefore,
the scaling window ¢ must have compact support containing
[—a, a] and its Fourier transform must be essentially sup-
ported in [—K, K] for all the three NUFFTs. Consequently,
the scaling window ¢ must belong to the space spanned by
the PSWFs corresponding to the singular values of the Fourier
transform operator having amplitude larger than the “knee
value” determined by the step-like behavior of the singular
values [26]—[28]. In other words

p() = (16)

T
Z)’thZt[waf]

t=0
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where W) denotes the kth PSWFs with space-bandwidth
product (SBP) w, T the number of expansion functions, and y;
the unknown expansion coefficients. As can be seen from (15),
owing to the symmetry of ¢, only the PSWFs with even order,
namely, PSFWs with even symmetry, are considered [28].
To enforce the desired properties on ¢, the SBP is chosen as

T
w=yQRr — ;)K 17)
where y is a coefficient, which can be subject to further
optimization. The number of retained expansion PSWFs is
chosen as 2T < [(2Qw/m)|, where |v] is the largest integer
smaller than o [36]. In this way, ¢ has compact support
—xQr — (z/c)), y2xr — (z/c))] and ¢ is essentially
supported in [—K, K].
According to (16), the expansion coefficients y; are deter-
mined to optimize the error functional

1“(1): / /dédx e*iXé_M z ¢
—xpy —Z& [ (éﬂZ) Im|<K

c

x (x = (Lx ] +m);y)e (LlHme

(18)

where y is the vector of y;’s.

Throﬁghout the optimization, the setting of x); = 107z is
shown to be enough for the numerical results in the following.
In (18), the dependence of ¢ and ¢ on y is highlighted
explicitly. N

Note that the optimization of I'(y) depends only on ¢
and K, but not on N, M or on the nonuniform (input and/or
output) sample locations. Therefore, all the NUFFTs, sharing
the same values of ¢ and K, require only a single optimization.
Moreover, the results of optimization of I'(y) can be saved
for future reuse. For example, as will be discussed later in
the sequel, the results of optimization for the cases ¢ = 1.5,
K=3¢c=15K=6;c=2,K=3;andc=2, K =6
are provided in [43]. Those interested in computing NUFFTs
with such values of ¢ and K can utilize those results, rather
than optimizing I'(y) again.

V. COMPUTATIONAL COMPLEXITY AND
MEMORY REQUIREMENTS

The theoretical performance of the three (NER, NED, and
Type-3) proposed NUFFT schemes is analyzed now, in terms
of asymptotic complexity and memory requirements. For
analysis, it is assumed that N ~ M.

The analysis will not account for the optimization of I'(y),
which, as mentioned, can be performed offline una tantum.
Moreover, the cost analysis of the windows ¢ and ¢ in
Sections V-A and V-B is peculiar to our approach, while
the computational/memory analysis in Sections V-C-V-E is
common to all the approaches and is based on the formulation
n [18] (see [13], [14], [16], [19], [20]), which is reported
here for convenience. According to these analyses, and as
can be inferred from Section VI, where the computational
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and memory requirements for other schemes are summarized,
the proposed approach gains in accuracy without introducing
criticalities, in terms of computations and memory storage,
as compared to other NUFFT schemes.

A. Computation of ¢

Before proceeding with computation, we point out that
the evaluation of the window function ¢, according to (16),
requires accurate calculation of the PSWFs, which is a sen-
sitive problem. For this paper, the PSWFs are calculated
accurately by an established computational scheme, based on
a Legendre polynomial representation as in [38], some details
of which are provided in the Appendix.

According to (A.5), the calculation of ¢ amounts to the
computation of a Legendre polynomial expansion [39], i.e.,
@ can be computed as a simple polynomial evaluation. This
is convenient from the viewpoint of not only computational
burden but also proper arrangement of the calculations.

If C is the maximum cost for computing one sample of an
individual polynomial,! then for S output points, expansion
(A.5) costs at the most CS(0.5(Kjeg — 1) + 1) operations. For
NER and NED NUFFTs, S = N, and for NUFFT-3, S = N +
M. In the computational scheme of [38], Kje; grows linearly
with SBP. Consequently, C and Kj., being independent on
both Nand M (the optimized windows depend only on ¢ and
2K + 1), the calculation of ¢ costs O((2K + 1)N) operations.

B. Computation of ¢

To avoid the possibility of introducing numerical errors, ¢
is not computed by Fourier transforming ¢ numerically but
by using the analytical expression of the Fourier transform
of the Legendre polynomials [40, Formula 18.17.19]. Again,
some details of the numerical evaluation of ¢ are provided
in the Appendix. According to (A.6), the calculation of ¢
amounts to computing a Bessel function expansion, where the
computation of each Bessel function can be performed as a
power series [39]. If Dis the maximum cost (in the same sense
as above) for computing each sample of /(27 /x) Ji4(1/2)(x),
then the cost for 7' output points, ¢, would be DS(0.5(Kjeq —
1) + 1) operations. Again, D and K., being independent
on T, ¢ costs, at the most, DT (0.5(Kjeg — 1) 4+ 1) operations.
Concerning the number of points at which ¢ is to be computed,
it is observed that for NER and NED NUFFTs, the samples of
interest are ¢y, ’s in (9). Accordingly, they are T = 2K +1)M
for these two cases. For NUFFT-3, an interpolation, using the
interpolation window ¢, is first used, and then NER NUFFT
is applied, so that they are T = 2(2K + 1)M. Consequently,
and taking into account that Kje, grows linearly with the SBP,
the computation of ¢ costs O((2K + 1)>N) operations.

C. “Precomputed Mode” Versus “Reduced Memory Mode”

For all the three NUFFTSs, the values of the windows,
¢ and ¢, can be either precomputed or computed “on-the-fly.”
Following the terminology in vogue (see [17], [21]), the former
case is addressed as “precomputed mode” and the latter as
“reduced memory mode.”

IThe cost for computing the values of Py;(¢) depends on k. C is the
maximum cost over k.
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TABLE I

COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS
OF THE PROPOSED NER NUFFT (N ~ M)

Computational cost
Step Precomputed Reduced memory
mode mode
Step #1 N O((2K + 1)N)
Step #2 O(cNlogN) O(cNlogN)
Step #3 O0((2K + 1)N) O((2K + 1)2N)
Memory
Step #1 (c+ 1N cN
Step #2 / /
Step #3 (2K + DN /

The precomputed mode applies to cases when the NUFFT
must be calculated several times and consists in storing
the values of the involved window functions, for example,
the ¢y,’s and/or of the ¢p(2wk/cN)’s for NER and NED
NUFFTs, provided x;’s and/or N remains constant during the
processing. A typical case when precomputed mode is possible
is represented by iterative image reconstruction [17]. Different
kinds of precomputed modalities are possible, depending on
how many parameters remain constant during processing. For
example, in the NUFFT-3 case, during the iterations in the
synthesis of aperiodic arrays, s;’s may remain fixed, while x;’s
may vary [5], [34], [35]. The advantage of the precomputed
mode is that the windows’ cost can be traded off for additional
memory occupancy and amortized during the whole iterative
process.

The reduced memory mode applies when storage of the
window values has to be avoided. In this case, no additional
memory storage is required and the computational costs of
Sections V-A and V-B become relevant.

D. NER NUFFT

1) Step #1 (scaling and zero padding) involves the scaling
of N complex numbers z; by ¢(2zk/cN) and zero
padding to a sequence of cN elements. Besides, calcu-
lation/storage of ¢ (2w k/cN)’s requires N divisions and
memory space for ¢N complex elements.

2) Step #2 (FFT) involves calculation of standard FFT of
length ¢N, which costs O(cNlogN); such an in-place
calculation does not cost extra memory space.

3) Step #3 (interpolation) requires, for each value of /, and
besides the calculation/storage of ¢p;’s: 1) performing
2K + 1 complex multiplications between the nonzero
elements of @, and the corresponding 2K + 1 outputs
of the foregoing FFT and 2) a final summation of 2K +1
complex numbers, which costs O((2K + 1)N).

Table I summarizes the computational and memory require-
ments of the NER NUFFT scheme.

E. NED NUFFT
The discussion of the foregoing section applies to NED

NUFFT also, subject to changes in steps #1 and #3.
F. NUFFT-3

The foregoing arguments apply even to the analysis of the
computational cost and memory requirements of NUFFT-3.
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In more detail, step #1 is a convolution analogous to step #3
of the NER NUFFT, step #2 is calculated by the NER NUFFT
algorithm, and step #3 involves scaling, analogous to step #1 of
the NER NUFFT.

G. Computational Complexity and Accuracy

From above, it appears that for NER, NED, or NUFFT-3,
FFT is the most demanding step, computationally. Further-
more, and generally speaking, the accuracy of NUFFT scheme
improves by increasing either the oversampling factor ¢ or the
support 2K + 1 of the interpolation window. Therefore, devis-
ing an efficient NUFFT scheme, which is both accurate and
computationally convenient, requires an interpolation window,
having maximum possible energy in (—K, K), so as to reduce
¢ for a fixed prescribed accuracy.

VI. OTHER APPROACHES IN LITERATURE

This section recalls briefly some NUFFT approaches in
the literature, which will be used in the next section as a
benchmark for evaluating the performance of the proposed
scheme. These approaches differ essentially in the way they
represent the exponential e~/*¢ or its discrete counterpart
e—/27x(k/N) The compared approaches will be then presented
in this section under this perspective.

A. Approach of Liu and Nguyen

The approach in [15] and [41] exploits the following approx-
imation of e—/27%&/N) which will be used for NED NUFFT:

—jornk - —jog Ltk
e Jznsz:W E @(cx; — (u +m))e 27 er
cN ) |m|<K
N N
[=0,.... M—1, k=——,...,——1
2 2
(19)

where ¢ is an integer, larger or equal to 2. The approach
does not exploit the Poisson summation formula and is thus at
variance with (8). Consequently, the window functions ¢ (&)
and ¢ (x) will no longer be in a Fourier transform relationship.
In more detail, ¢ (&) is chosen as

(&) = cos (g)

while ¢(x) is determined by matching, in the least-squares
sense, the left- and right-hand sides of (19). The matching
gives

(20)

¢(x)) = F'a(x)) (1)
where the elements of matrix F are given by
N, P=9q
Fpg = 1 w®DN/2 _ )la=p)N/2 (22)
S s PFY
—w

and the vector by

at)=j Y

y=—1,1

sin [;—C(2k —y — 2K—2(cx1—[cx1]))]
1— ej%[Z(cxl—[cxz])+2K—2k+y]

(23)
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TABLE II

COMPUTATIONAL COMPLEXITY OF THE APPROACHES BY
L1u AND NGUYEN AND BY KUO AND LEE (N ~ M)

Computation
Calculation of the a; (x;)
Calculation of the products in eq. (21)
assuming to having precalculated F ~1)

0((2K + DN)
0((2K + 1)2N)

Calculation of ¢ (%)

Calculation of the coefficients

o(N)
0((2K + DN)

oMk
Pex, — (u + m))e_ﬂﬂﬁ

FFT

O(cNlogN)

Memory

Storage of F ~* ‘ (2K + 1)?

Matrix F~!' is precomputed and stored, so as to amortize
its computational cost. Table II shows the computational
complexity of different steps involved [41].

B. Approach of Kuo and Lee

The approach in [22] is similar to that in [15], the only
difference being that
(&) = cos” (g), n> 1. (24)
Following this choice, the expression of a; (x) differs from
that in (23) and is not reported here for the sake of brevity. The
exponent n is used as a further degree of freedom to possibly
improve the accuracy.

For integer n, the computational complexity and the memory
storage requirements are the same as those in [15] and [41].

C. Approach of Fessler and Sutton

For NER NUFFT, Fessler and Sutton [17] use the same
approximation in (19). The window functions, ¢ (&) and ¢ (x),
are of course different from those in [15] and [22], but
as in [15] and [22], they are not in the Fourier transform
relationship.

Concerning the choice of ¢(&), the authors propose a
truncated Fourier series expansion retaining 2L + 1 terms,
namely,

L
P& =D ael.

t=—L

(25)

In this way, ¢(¢&) is parametrically represented by 2L + 1
expansion coefficient a,, as well as by pf. Equation (25)
generalizes other literature choices. For example, the case
L=1,00=0,0-1 =01 =0.5, and f = 0.5 corresponds
to (20).

Regarding the choice of ¢(x), it is analytically found by
using a min—-max criterion under the parametric representa-
tion (25). Of course, at this stage, the expression of ¢ (x) will
also be parameterized to a;’s and to S.

Finally, o;’s and f are selected as those minimizing the
residual error, after optimization of ¢(x). The authors have
found that best results can be achieved by choosing ¢ (&) as a
Kaiser—Bessel window with optimized parameters.
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TABLE III

COMPUTATIONAL COMPLEXITY OF THE APPROACHES
BY FESSLER AND SUTTON (N ~ M)

Computation
Precomputation of (ﬁ(cxl —(y+ m))

0((2K + D(L

precomputed mode) +1+4 2K +1))
Computation of(ﬁ(cxl = (w +m) O0(2K + 1)(L
reduced memory mode) +1+2K
+ 1N)

Interpolation using the (f)(cxl - O(N(2K + 1))
\ul+m’s
Calculation of ¢ (%) O(N)
FFT O(cNlogN)

Memory
Storage of @(cx, — (4, + m)) (2K + 1)N
precomputed mode)
Storage requirements (reduced memory (2K + 1)?

imode))

They propose different strategies to tradeoff between com-
putational complexity and memory storage. Table III summa-
rizes the most popular precomputed modes and the reduced
memory modes.

D. Approach of Yang and Jacob

The scheme in [23] and [25] is similar to that of Fessler and
Sutton [17], but for one difference: for the fixed scaling win-
dow, 2 the interpolation window ¢ (x) is searched for according
to a mean square error criterion instead of a min—max one.

To prevent the evaluation of the interpolator from dominat-
ing the computational complexity [23] and to precompute the
interpolators on a uniform grid, Yang and Jacob [25] suggest
that the interpolation window ¢ (x) be given in the following
representation:

OK-1

2

k=—OK+1

p(x) = qkBS(Ox — k) (26)
where BS(y) is a B-spline function and O an “oversampling”
factor. Ideally, gx’s should coincide with ¢ ((k/O)). The 20K
— lgys are subject to the optimization process.

As regards ¢(&), its expression is selected to be
Flol©)
9() =

> IFIG)E + 2km))*
keZ

As no satisfactory results could be achieved by this method
(see Section VII-B), discussion on computational/memory
requirements is skipped.

27)

E. Approach of Dutt and Rokhlin (Gaussian Windows)

The following NUFFT schemes employ (8) with different
choices of windows, ¢ and ¢. For them, the following common
parameter J is defined thus:

e (e-t)

2Note that Jacob [23] and Yang and Jacob [25] denote the scaling window
by ¢ and the interpolation window by ¢, which is at variance from the
viewpoint of the authors.

(28)
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In particular, the scheme of Dutt and Rokhlin [13] uses the
following windows:

_b(é)z
pE)=e \2 ,_ 3 K

X_2 C2c—17°
9O =\ge b

Actually, a criterion to select the parameters of the Gaussian
window for a fixed accuracy has been derived in [29]. How-
ever, such a criterion leads to numerous interpolation points,
which prevent comparison with other windows for fixed values
of K. Therefore, the authors have preferred the choice in [13]
for this paper.

The discussion on computational/memory requirements for
this method, as also for those in the following sections, follows
the same lines as those in Section V for the proposed scheme,
apart from the computation of the window functions.

(29)

F. Approach by Beylkin (B-Splines)

The approach in [14] (see also [16]) uses the following
windows:

p(&) = () O3sinc?¥ (i)
2r

¢(¢) = Bag—1(x)
where sinc(x) = (sin(zx))/(zx) and B,(x) is the B-spline of
order n, recursively defined as

(30)

1, x| <05

31
0, otherwise (1)

Bo(x) = [

for n =0, and

B,(x) = % [(n —2i-1 +x) B, (x + %)
+ (";Ll —x)Bn_l( —%)} 32)

G. Approach by Potts (Dilated Sinc Functions)

The scheme in [42] (see [24]) uses the following couple of
windows:

K
9(&) = )" By i (E(chl))

. 2c—=1 . ¢ 2c—1)x
€)= 2K ¢ ( 2cK '

(33)

H. Approach by Jackson et al. and by Fourmont
(Kaiser—Bessel Windows)

Finally, the approach in [12] (see also [18]) exploits the
Kaiser—Bessel windows, having the following expressions:

Ih(Kva*—¢?), [l <a
0, ISl > a

where I is the modified Bessel function of the zeroth order
and

9@ = [ (34)

500 = \/gsinh(a«/ K? — xz). 35)

K2 —x2
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TABLE IV

COMPARISON OF THE OPTIMIZED ERROR FUNCTIONAL WITH THAT OF
THE KAISER-BESSEL WINDOW, EMPLOYED IN [18]

c K Xopt Copt I' Kaiser-
Bessel
1.5 3 1.5 1.284 6.46
2 3 1.2 0.0942 0.671
1.5 6 1.1 1.18e-05 7.11e-05
2 6 1.1 1.00e-07 8.15¢-07

VII. NUMERICAL PERFORMANCE OF THE APPROACH AND
NUFFT-BASED EVALUATION OF THE FAR FIELD
RADIATED BY PERIODIC AND APERIODIC ARRAYS

In this section, the numerical performance of the optimized
NUFFT approach is analyzed and compared with the perfor-
mance of the schemes recalled in the previous section.

First, it needs to be stressed that FFTs lead to exact evalua-
tions of standard DFTs, whereas NUFFTSs are approximations
of the NUDFTs. However, by properly setting the shape of
the window, the oversampling parameter ¢, and the support
K of ¢, the NUFFT results can be drawn numerically closer
and closer to the NUDFT. Second, the optimized NUFFT
will be applied to a case of electromagnetic interest, namely,
the radiation of linear regular or irregular arrays onto a set
of regular or irregular spectral points. As already mentioned,
because of widespread use of the Fourier transform and its dis-
crete counterpart in electromagnetic applications, the present
tool can be of unprecedented utility.

Optimization of the error functional in (18) has been per-
formed by exploiting the fminsearch MATLAB function and
by the progressive enlargement of the number of unknowns.
For all the test cases in the following, the optimization has
been initialized with T = 1, yo = 1,and y; = 0. Such a choice
corresponds to a scaling window ¢, coinciding with the PSWF
of zeroth order, namely, to a window function very close to
the Kaiser—Bessel window used in [18]. Actually, it has been
found that by using a global optimization algorithm, the results
have not appreciably improved. The optimization against y has
been performed by exhaustive search against that parameter.

Four test cases, with typical values of ¢ and K, have been
considered, leading to increased levels of accuracy.

1) Case a): c =1.5 and K = 3.

2) Case b): c =2 and K = 3.

3) Case c): c=1.5and K = 6.

4) Case d): c =2 and K = 6.

The optimization results are reported in Table IV, along with
the corresponding y, leading to the least error.

Table IV shows that in all the cases, the obtained functional
values are lower than those obtained for the Kaiser—Bessel
window. Fig. 3 illustrates the comparison between the opti-
mized window and the Kaiser—Bessel window for ¢ = 2 and
K =3.

The expansion coefficient obtained for the optimized
window functions, in terms of the Legendre polynomials,
is reported in [43, Tables I-1V], for cases a)-d), respectively.
It should be noted that the expansion coefficients in the men-
tioned Tables I-IV represent the only algorithm parameters
needed to implement the NUFFTs at hand, once ¢ and K have
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Fig. 3. Comparison between optimized window (blue solid line) and
Kaiser—Bessel window (red dashed line).

been fixed. Indeed, they are independent of the sample loca-
tions. In other words, the optimization that leads to the coeffi-
cients in Tables I-IV can be performed only once and offline.
The variations in the number of Legendre coefficients involved
in cases a)—d) are due to the differences in the values of c.

After optimization, the scaling window ¢, corresponding to
Table 1V, is considered to compare the proposed approach with
those in Section VI and to examine the mentioned three test
cases of electromagnetic interest.

1) Evaluation of the field, radiated by a periodic array onto
a set of irregularly spaced spectral sampling points; in
this case, the relevant NUFFT is the NER.

2) Evaluation of the field, radiated by an aperiodic array
onto a set of regularly distributed spectral sampling
points; in this case, the relevant NUFFT is the NED [5].

3) Evaluation of the field, radiated by an aperiodic array
onto a set of irregularly spaced spectral sampling points;
in this case, the relevant NUFFT is Type-3 [29].

It should be mentioned here that for all the comparisons in
this paper, the accuracies are compared keeping the width of
the interpolation window fixed. This is because the width of ¢
is a measure of both computational complexity and memory
requirements of the approach (see Sections V and VI), and the
comparison between different approaches has to be made for
a fixed tradeoff between these requirements.

A. Comparison With the Approaches of Liu and
Nguyen and of Kuo and Lee

The comparison is performed for different values of Kand
for ¢ = 2, as integer ¢ is a requirement of the method. For
the proposed approach, the error is evaluated by a normalized,
discrete version of the metrics in (18), namely,

N_ 1 xym
2 —1/2
: E dx |e=/2maw @m)” "~ '
2wk
2xy N _— ® (;;TV )

x D Gl — (Lx] 4 m))e S LxlHme

Im|=K

(36)

and for those in [13] and [20], by using (36) and substituting
¢ for ¢.

The results are shown in Fig. 4 when n = 1, 3, and 5. The
results show that the proposed approach outperforms those
in [15] and [22]. Although what is shown in Fig. 4 relates to
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Fig. 4. Proposed approach against those in [15] and [22] for ¢ = 2. Blue
plus line: optimized approach. Red circle line: approach in [15]. Black cross
line: approach in [22] with n = 3. Green square line: approach in [22] with
n=>5.
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Fig. 5. Proposed approach against that in [17]. Blue plus line: optimized
approach. Red circle line: approach in [17]. ¢ = 1.5 (top). ¢ = 2 (bottom).

the particular case of N = 1024 and xj; = 707, the outperfor-
mance continues even for other choices of these parameters.
It is relevant to point out here that increasing n does not
significantly improve the accuracy; so, Kuo and Lee [22] do
not significantly improve [15]. Finally, quoting [41], Liu and
Nguyen [15] claim that “the cosine scaling factors ... are by
no means the ‘best’ ones, and the problem of finding better
scaling factors should be followed up.” The results of the
authors are consistent with this contention.

B. Comparison With the Approach of Fessler and Sutton

The comparison is performed for different values of Kof
the interpolation window support and for ¢ = 1.5 and ¢ =2
(Fig. 5). The ranges of K, typically employed to reach single-
or double-precision accuracy, are also indicated in the two
panels of Fig. 5. The error is evaluated on the same lines as
those of the foregoing section. Again, and without the loss
of generality, the case N = 1024 and x); = 707 has been
considered.

For this, the NUFFT routines of the authors, available
at https://web.eecs.umich.edu/~fessler/code/index.html, have
been exploited. More elaborately, the default routine, using
a min—-max interpolator with Kaiser—Bessel scaling factor, has
been used.? Fessler and Sutton [17] have optimized the para-
meters of Kaiser—Bessel scaling factor only for the case ¢ = 2.

From the results shown in Fig. 5, it can be seen that
the proposed approach outperforms the approach in [17] for

3nufft_init routine with minmax:kb option.

3933

%10
5
5 45
o
2
c
S
‘_§_ 6><10'3 x
8
£ 4
2
0 )
-5 5
X
Fig. 6. Particulars of the interpolation window for the approach in [23]

and [25] for K =2, N =64, O = 101, R = 6, and ¢ = 68/64 (top) and
K =10, N =64, O =101, R = 6, and ¢ = 2 (bottom).

¢ = 1.5. On the other hand, for ¢ = 2, the performance
is very close to K = 4. It should be, however, noted that
oversampling of ¢ = 2 has been used to achieve double
precision accuracy; so, it is typically employed for connection
to “large” (e.g., 6) values of K. Actually, beyond that value,
the proposed algorithm outperforms again the compared one.

C. Comparison With the Approach of Yang and Jacob

Unfortunately, even by using the authors’ own code, avail-
able at https://research.engineering.uiowa.edu/cbig/content/
accurate-nufft-using-optimized-interpolator-and-scale-factors,
no meaningful results could be obtained.

Fig. 6 (top) shows the details of the interpolation window
displayed in [25, Fig. 2(a)], namely, for K = 2, N = 64,
O = 101, R = 6, and ¢ = 68/64. From Fig. 6 (top), it can be
seen that the interpolation window shows oscillating behavior,
which is perhaps due to the ill-conditioning of the window
optimization process. On the other hand, Fig. 6 (bottom)
depicts the interpolation window obtained for the case when
K =10, N = 64, O = 101, R = 6, and ¢ = 2.
From Fig. 6 (bottom), it can be seen that the window is
asymmetrical, with a null in the center. This is perhaps due to
the lack of convergence of the optimization algorithm. Here,
the comments of Yang and Jacob [25] are worth recalling:
“We currently do not have guarantees for the convergence of
this algorithm to the global minimum of the cost function.”
It should be noted that even with “high-order” B-Splines
(say, 5 or 6), optimizing for 20 + 1 parameters is not an
easy task [44].

D. Comparison With Other Windows

The results of the comparison between the proposed scheme
and those in Sections VI-E-VI-H are depicted in Fig. 7 for the
cases ¢ = 1.5 (top) and ¢ = 2 (bottom), respectively. From
these figures, it can be seen, once again, that the proposed
method outperforms the compared ones.

E. Radiation of a Periodic Array Onto a Set of Irregularly
Spaced Spectral Sampling Points

Let a periodic array comprising N elements spaced at a
distance of d be assumed. The array factor can be written as

N-1

f) =" crel™

k=0

(37)
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Fig. 7. Proposed approach against those employing the window functions
described in Sections VI-E-VI-H. Case ¢ = 1.5 (top). Case ¢ = 2
(bottom).
where u = pfdcosy, f is the wavenumber of the embed-

ding medium, {ck},i\’:_o1 are the complex element excitation
coefficients, and y is the angle between the array axis and
the observation direction. If the array factor is computed at
{ul}lﬂi 61 , then the samples of f can be computed by an NER
NUFFT, evaluated at the points {27 / N)ul}lﬁi 61.

A comparison of the performance of the optimized window
of the Kaiser—Bessel window, proposed in [18], with that
of the Gaussian window, proposed in [13] and [19], for the
implementation of an NER NUFFT is now relevant. Although
from the previous sections, the approach of Fessler and Sut-
ton [17] has been found to be by far the best one, it should
be noted that it is available only for the NER NUFFT case.
Therefore, Kaiser—Bessel, Gaussian, and optimized windows
will be compared here, thanks to the possibility of easily
setting up all the three kinds of NUFFT.

To perform the comparisons, 100 realizations of arrays and
spectral sampling points, with randomly chosen excitations,
have been addressed. The array elements are located onto
a segment 404 sized, with a spacing of 1/2, i.e., N = 80,
and an equal number of spectral points have been considered.
For different realizations, the complex element excitations
have been randomly selected with Gaussian distributions for
real and imaginary parts, and the spectral points accord-
ing to a uniform distribution in (—pod, fod), d being the
interelement distance. Table V reports the average rms and
maximum errors for Kaiser—Bessel, Gaussian, and optimized
windows, for the four considered cases a)-d). It can be
seen that by controlling ¢ and K, it is possible to pro-
gressively increase the accuracy of all the NUFFT algo-
rithms, and that the algorithm, relating to the optimized
window, shows the least error. Furthermore, the accuracy of
the optimized NUFFT can be driven very close to machine
precision.
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TABLE V

RADIATION BY A PERIODIC ARRAY ONTO AN IRREGULAR
SET OF SPECTRAL POINTS: AVERAGE
RMS AND MAXIMUM ERRORS

Case K-B Gaussian Optimized
RMSa 2.23e-3 2.10e-1 4.65¢-4
RMSb 2.85¢e-4 5.13e-2 4.29e-5
RMSc 3.42¢-8 1.39¢-3 6.07¢-9
RMSd 3.99¢-10 6.63e-5 6.39%-11
Maxa 9,27e-4 8.18e-2 2.47e-4
Maxb 1.21e-4 1.80e-2 3.24e-5
Maxc 1.30e-8 4.82e-4 3.47e-9
Maxd 1.49¢-10 2.47e-5 2.56e-11

TABLE VI

RADIATION BY AN APERIODIC ARRAY ONTO A REGULAR
SET OF SPECTRAL POINTS: AVERAGE
RMS AND MAXIMUM ERRORS

Case K-B Gaussian Optimized
RMSa 2.18e-3 2.10e-1 4.38¢-4
RMSb 2.85e-4 5.25¢e-2 4.34e-5
RMSc 3.36e-8 1.28e-3 6.13e-9
RMSd 4.00e-10 8.23¢-4 6.19¢-11
Maxa 3.14e-3 2.34e-1 7.11e-4
Maxb 3.84e-4 5.52e-2 6.97e-5
Maxc 4.40e-8 2.18¢e-3 1.12¢-8
Maxd 4.47¢-10 6.72e-4 1.05e-10

F. Radiation of an Aperiodic Array Onto a Set of
Regularly Spaced Spectral Sampling Points

Let an aperiodic array comprising N elements located at
the points {xk},iv:_ol be considered now. The array factor can
be written as

N-1
fla) =" cpel ™" (38)

k=0
where u = fcosy. If the array factor is computed at a regular
set of M points in u variable, then the samples of f can be
computed by NED-NUFFT [5]. Furthermore, 100 realizations
of aperiodic arrays have been considered. The array elements
are randomly located, according to a uniform distribution, onto
a segment measuring 40Awith N = 80, and an equal number
of spectral sampling points have been dealt with for different
realizations, the complex element excitation coefficients have
been randomly selected with Gaussian distributions for real
and imaginary parts. Table VI reports the average rms errors
and the maximum errors for the three windows. It can be seen
that, once again, the accuracy of the optimized NUFFT runs
toward the machine precision.

For the case of aperiodic arrays, the effect of the approx-
imations involved in the NUFFT algorithm on the radiated
pattern has also been examined. In particular, for the sake of
illustration, an aperiodic array of 34 elements, synthesized by
the algorithm in [34] and [35] for a choice of ¢ = 1.5 and
K =1, has been considered. Fig. 8 illustrates the comparison
between the exact radiated field and that evaluated by the
NUFFT algorithm, based on the Gaussian (top), Kaiser—Bessel
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Fig. 9. Differences among the exact evaluations of the field radiated by

the 34-element aperiodic array and those evaluated by the three compared
NUFFTs.

(middle), and optimized (bottom) windows, respectively. The
differences between the exact pattern and the evaluated pat-
terns are shown in Fig. 9. It can be seen that even with
significantly low values for ¢ and K, the accuracy of the
optimized NUFFT appears to be very satisfactory, which is
at variance with the other NUFFT implementations. Having
low values of ¢ and K, of course, reduces the computational
complexity of the approach.

G. Radiation of an Aperiodic Array Onto a Set of Irregularly
Spaced Spectral Sampling Points

Finally, let an aperiodic array comprising N elements be
assumed to have been located at points {xk},]{\:ol, so that the
array factor can be written again as in (23). If the array
factor is computed at an irregular set of M sampling points
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TABLE VII

RADIATION BY AN APERIODIC ARRAY ONTO AN IRREGULAR
SET OF SPECTRAL POINTS: AVERAGE
RMS AND MAXIMUM ERRORS

Case K-B Gaussian Optimized
RMSa 2.43e-3 2.19e-1 5.10e-4
RMSb 3.81e-4 5.56e-2 5.65e-5
RMSc 3.42e-8 1.56e-3 6.54¢-9
RMSd 4.42¢-10 7.75e-5 7.28e-11
Maxa 3.81e-3 2.19¢e-1 8.16e-4
Maxb 3.61le-4 4.47e-2 6.57e-5
Maxc 5.21e-8 2.31e-3 1.41e-8
Maxd 4.90e-10 9.46¢-5 1.39¢-10

in u variable, namely, {ﬁl}lﬁi 61, then the samples of f can be
calculated by Type-3 NUFFT [5].

To appreciate the performance of the optimized win-
dow for the implementation of Type-3 NUFFT, the use
of the Kaiser—Bessel window has been extended to this
case also, following the same approach as the one in
Section III.

Again, 100 realizations of aperiodic arrays have been con-
sidered. The array elements are randomly located, according to
a uniform distribution, onto a segment 401sized, with N = 80.
An equal number of spectral points have been considered.
For different realizations, the complex excitations have been
randomly selected with Gaussian distributions for real and
imaginary parts, and the spectral points according to the
uniform distribution in (—f, f). Table VII shows the average
and maximum rms errors for the three windows. The results
again show that the accuracy has progressively increased by
changing ¢ and K, and that the optimized NUFFT has led
to the most accurate results, which are close to the machine
precision.

VIII. EXTENSION TO HIGHER DIMENSIONS

Finally, we sketch the extension of our approach to higher
dimensions. Multidimensional NUFFTs have already been
proposed in the literature (see [18], [45] for Kaiser—Bessel
case, [17] for the approach of Fessler and Sutton, and [21]
for a general discussion). The extension to higher dimensions
for the proposed approach can be done by following the ideas
in the literature, and for other approaches, following the same
tradeoff (accuracy/computation/memory).

In higher dimensions, particularly, the key function to be
represented is a complex exponential, representing a multi-
variate Fourier kernel that can be factored into complex expo-
nentials, representing single variable Fourier kernels. Thanks
to factorization, the representation at hand amounts to that
of individual complex exponentials. The analysis contained
in this paper, which considers individual complex exponential
function, can then be immediately applied to the multidimen-
sional case also.

To recall higher dimensional extensions of NUFFT
algorithms, the 2-D NED NUFFT case is considered here,
by way of an example, but without the loss of generality.
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The corresponding NUDFT is defined as

M—1
A i k v
Zkp = E e 1NN eTI2TIN  k p=0,...,N — 1.
[=0
(39

In Section II, the problem of accurately estimating the
exponential function e /275 &/N) by using properly defined
window functions, has been examined. The same arguments
can obviously be applied to the representation of the prod-
uct e J27xk/N) g=j22y1(p/N) " This idea corresponds to using
windows ¢2p (&, 1) and @ap(x, y), which are factorized into
the product of those exploited in the 1-D case, namely,
(1) = 9(©e(n) and @op(x,y) = ¢(x)@(y). Accord-
ingly, optimized 1-D window functions are readily made
available to be employed in the multidimensional case.

It is to be noted that for a 2-D problem, the interpolation
involves 2K + 1)2 terms, and, similarly, for a d-dimensional
problem, (2K + 1)? terms. Consequently, for higher dimen-
sional problems, the need to reach accuracy with small values
of (2K +1) becomes more compelling. As before, the problem
concerns the tradeoff between operation count and memory
storage.

In the “precomputed mode,” and concerning the memory
requirements, the factorization of window functions enables
storing of 1-D arrays only. Indeed, each variable kernel
requires (2K + 2)N terms to be stored (see Table I), and
thus for d exponentials, the memory requirement would be
d(2K 4+ 2)N. Accordingly, the memory storage increases lin-
early with increase in the problem dimensions ¢, and not with
the power of d, as stressed in the discussion in [21]. Con-
versely, in the “reduced memory mode” and concerning the
operations count, each kernel requires O((2K + 1)>N) oper-
ations (see Table I), and thus for d exponentials, the resulting
operations count would be O(d(2K + 1)>N). Accordingly, the
computational burden increases again linearly with increase
in the problem dimensions d, and not with the power of d,
as stressed in the discussion in [21].

In both cases, a linear storage strategy is paid in terms of
complex multiplications between the involved 1-D windows.
Indeed, due to the required tensor multiplications between
the window functions, the number of multiplications increases
with the power of d, again as underlined in [21]. Such
tradeoff is common to all the compared approaches, detailed
in Section VI.

Of course, the performance of the multidimensional exten-
sion of our approach is expected to be more accurate than
that of the approaches detailed in Section VI, because our
representation of each exponential factor is more accurate,
as stressed in Section VII. Furthermore, from the above dis-
cussion, it emerges that the multidimensional extension of our
approach does not introduce unusual computational/memory
trends as the extensions of other schemes do.

IX. CONCLUSION

This paper deals with the development of an optimized
approach for the implementation of NUFFT algorithms, based
on a general and new perspective.
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First, the NUFFT approach has been extended to Type-3
NUDFTs by using the Gaussian windows as general windows.
Second, the choice of the window function employed in NER,
NED, and Type-3 NUFFTs has been optimized to obtain more
accurate results than those available in the literature.

The computational costs and the memory requirements
of the proposed schemes have been theoretically analyzed,
and their very convenient performance assessed, theoretically
and numerically, by comparing them with a number of relevant
and popular approaches in the literature. The proposed method
has proved to be more accurate than the compared schemes,
without burdening the computational and memory require-
ments.

Notably, the IEEE 754 double-precision floating-point arith-
metic has a precision of at least 15 significant digits, or, at
the most, 17 significant digits (16 on average) [46], [47].
A maximum error of 107!! (see Table VI) means accuracy,
approaching the best one possible in double-precision arith-
metics. Of course, as the accuracy of the method approaches
that of the IEEE 754 double precision, no further improvement
in accuracy is warranted and, that being so, the task ahead
is how to reduce the operations count and memory storage,
without affecting that accuracy.

Finally, the computation of window functions amounts to
that of a Legendre polynomial expansion, namely, a simple
polynomial evaluation. This is convenient from the viewpoint
of not only computational burden but also proper arrangement
of calculations.

The developed “optimized” NUFFTs have been applied
to a case of electromagnetic interest, i.e., the radiation
of linear regular or irregular arrays onto sets of regu-
lar or irregular spectral points. Obviously, NUFFT algorithms
are important for a host of other electromagnetic applications
too [1]-[10].

From the presented analysis, it emerges that:

1) The performance of the “optimized” NUFFT is superior
to that of the currently available NUFFT approaches;

2) The accuracy of the “optimized” NUFFT reaches
machine precision earlier than that of the other NUFFTs,
with which it has been compared, for increasing the
values of ¢ and K

3) Even for low values of ¢ and K, the “optimized” NUFFT
is capable of yielding satisfactory results; of course,
reducing the values of ¢ and K helps in reducing the
computational complexity of the approach.

The guidelines for multidimensional extension of the proposed
approach have also been discussed.

As future developments, we plan to extend the approach to
the 2-D case and apply it to other cases of electromagnetic
interest [6]-[10], using parallelization on graphics processing
units. Here, no particular expedient has been adopted to reduce
the numerical errors in the operations involved in the NUFFT
calculations. Therefore, for further improvement of numerical
accuracy in the future, it is planned to employ techniques, like
Kahan summation algorithm [47]. Finally, the NUFFT could
be used for calculating the field, radiated by arrays, even in
the case of nonnegligible mutual coupling [48].
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APPENDIX
CALCULATION OF THE PSWFs

The algorithm in [21] expands each PSWF into a number
Ky of the Legendre polynomials, where

Kieg = (2lew]| + 1) +log, (1), N < %]
Kieg = 2lew] + 1) + log, (%) + log, (%) , otherwise
(A.1)

i= e(N+'7)(log(%)—log(N+%)) (A2)

where N is the number of PSWFs to be generated, w is the
SBP, and ¢ is the required accuracy. In other words
(Kieg—1)/2

Wledl= D dyPu(@), 1€ <

k=0

(A3)

where Pj denotes the kth Legendre polynomials, so that
(K/eg_l)/z T o

2 2 Pr(@), K< = (A4

k=0 1=0

In (A.3) and (A.4), Kjee — 1 is rounded off to the closest
larger even integer. According to (A.4), the window function
¢ can be regarded as having been expanded, in terms of the
Legendre polynomials, as

(Kieg—1)/2

> duPu(©)

k=0

(&) =

p(&) = (A.5)
where dj’s are the expansion coefficients.

As regards ¢, it can be calculated by considering that the
Fourier transform of the Legendre polynomials is given by

1

: 2
[ et =T 00

—1

(A.6)

where J,(x) is the Bessel function of pth order.
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