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Computation of EFIE Matrix Entries
With Singular Basis Functions

Roberto D. Graglia™, Fellow, IEEE, Andrew F. Peterson™, Fellow, IEEE, and Paolo Petrini

Abstract—The use of singular basis functions enhances the
convergence of method-of-moments (MoM) solutions for struc-
tures containing edges. While standard algorithms for computing
the MoM matrix entries treat Green’s function singularities, these
are not well-suited for integrating the singular basis functions:
conventional quadrature routines exhibit slow convergence and
may produce inaccurate results. In this paper, new algorithms
are proposed for handling the combination of edge singularities
and Green’s function singularities on quadrilateral cells.

Index Terms—Basis functions, hierarchical basis functions,
method of moments (MoM), singular basis functions, wedges.

I. INTRODUCTION

HE basic electric-field integral equation (EFIE) matrix
entries for interactions between two curved patches have
the form [1]

1
Zmn :jw,u// // T,(r) - B,r")Gdr' dr + —
obs J Jsre J e
x// Von(r)// V' -B,(r"YGdr'dr (1)
obs src

where
—JjkR
G = P EJkR) @)
4r R
is the free space Green’s function and
R=|r—r| 3)

is the distance between the observation (r) and the source (r')
point. Index m is used to denote a specific vector testing
function (7',,) on the observer patch (or patches) while index
n is used to denote a specific vector basis function (Bj) on
the source patch (or patches). In practice, patches are mapped
from the curved child domain to a reference or parent domain
for evaluation, and in fact testing and basis functions are
conveniently defined in the parent domain [1]. For example,
a curved quadrilateral cell of the child domain, described in
coordinates (x, y, z), is mapped by the planar parent square
patch {0 < ¢ < 1;0 < & < 1} of a parent (&1, &)-frame.
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In the following, for the quadrilateral patch, we also use the
dependent parent coordinates:

H=1-& @)
G=1-5 5)

to number the cell edges from one to four, with the mth edge
lying along the coordinate line &, = 0. The Jacobian J¢(§)
of the transformation from parent-to-child coordinates is a
polynomial of the parent variables whose order grows with
the growth of the order of the transformation (that is, with the
degree of curvature of the child cell), while the coefficients of
Je depend on the position in the child space of the driving
points used to define the transformation [1].

A single matrix entry (Z,,,) may require integrals over as
many as four cells, since each vector basis or testing function
may straddle two cells. For brevity, the following discussion
considers a single (curved) quadrilateral source cell mapped
to a parent square cell with domain {0 < ¢} < 1;0< & < 1}
and an observer fixed at some location r in the child space
that corresponds to a local observer parent coordinate (u,v).
In general, the u and v coordinates of the observation point
are obtained by solving a nonlinear system, which is not a
straightforward problem apart from the very simple case of
bilinear mapping. We also specialize to the following.

1) Source and observer cells that lie in the same child plane.

2) A basis function that exhibits an edge singularity with

the behavior éi’ 1 at edge 1 (&) = 0) of that domain.

3) v in the range 1/2 <v < 1. Extension of the results to

deal with polynomial bases is obtained by setting v = 1.
Although matrix entries for triangular and quadrilateral cells
involving polynomial vector testing (T',,,) and basis (B;) func-
tions are extensively discussed elsewhere (see [1]-[17] and
references therein), the novelty of this paper consists precisely
in being able to treat vector functions that are unbounded along
one side of the cell.

While the following is restricted to quadrilateral cells,
the technique shown here can be easily adapted to triangles.
(In the following, for example, whenever we subdivide the
quadrilateral cell into subtriangles to cancel Green’s function
singularity we remap the basis functions B, in terms of
pseudopolar coordinates. The extension to triangular cells
simply requires the use of a different, appropriate remapping.)

In this connection, we also observe that it may be more
convenient to model edge singularities using quadrilateral
elements instead of triangular ones, because the latter require
the introduction of triangles with only one vertex attached
to the singular edge [18, Sec. III-D], [19]. As discussed
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in [18, Sec. III-D], bases on such cells require additional
information to align them with the edge and may reduce
accuracy if not properly aligned. Preliminary results of this
paper were presented in [20].

We consider three cases of interest, based on the relative
location of the observer with the source cell (see Fig. 1).

II. OBSERVER NOT IN THE SOURCE CELL AND NOT
VERY CLOSE TO THE SOURCE CELL

After mapping to the parent domain, the inner integrals over
the source patch in (1) have the form

1 1
I :/() /() éi)_l f(él,éZ) G(é],fz) jf(élaéZ) dél dfz (6)

where G is a Green’s function such as (2), J¢ is the Jacobian
of the transformation from parent to child domain, and the
function f contains the rest of the basis function. The edge
singularity at {1 = 0 can be canceled by a second transforma-
tion in terms of the variable

n=¢. ™)

We observe that
a=q" ®)
déy = 1 Vdg = Lel g, ©)

Thus, the Jacobian of this transformation cancels the factor
& ~1in (6). Furthermore, the limits of integration transform as

1=0=¢=0 (10)
G=l=a=L (11)
Therefore, we obtain
/ / (07.8) 6", &) Te(c)". &) dar déa.
(12)

In the event that the observer (u,v) is sufficiently far from
the source cell so that Green’s function singularity is not an
issue, the integration in (12) can be performed by quadrature
over the square reference cell without further transformation.
Although the basis functions are defined in the &-parent space,
the integral (12) is actually performed in a grandparent space

{1=¢,0=50})

III. SELF- AND NEAR-SELF-SOURCE INTEGRALS

Conversely, in the self- and near-self-regions (see Fig. 1),
we cancel the singularities of the integrands by using a pair of
integral transformations in an order that depends on the sign
of the parent observer coordinate u. For u > 0, we first cancel
the singularity of & ~! (as discussed in Section II) whereas,
for u < 0, we first cancel the singularity of Green’s function.
The sequence of the transformations for positive u#-values must
be different than that used for negative u-values to eliminate
the singularities in the integration interval; the singularities
would not be canceled if the order of the transformations
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near-self region

self region
0<u<1
0<wv<l1

Basis function singularity
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r
1
1
!

u <0

Fig. 1. Depiction of different regions around the source cell. The nearly
singular cases occur when the observer is close to the source cell, typically
in a 20% buffer range from —0.2 <u <0, 1.0 <u < 1.2, 0.2 <v <0,
1.0 < v < 1.2. Because of the transformation in (7), the case u < 0 must be
treated differently from u > 0.

Sl T
iy A<=
9 e - . .
&- parent {-parent (-grandparent

u & (¢,=¢))

children children

\_ bilinear mapping  biquadratic mapping ) \__bilinear mapping  biquadratic mapping )

Fig. 2. Two-quadrilateral children (at bottom), and their parent and grand-
parent square cells (at top) are shown with solid lines. A circle marks the
observation point. Left: four rectilinear triangles of the parent space used to
deal with observation points located in the & < 0 half-space; in this case,
one integrates in the parent space. Right: four rectilinear triangles of the
grandparent space used to deal with observation points located in the {; > 0
half-space; in this case, one integrates in the grandparent space.

was inverted. Likewise, by inverting the order of the transfor-
mations for u < 0, the integration variables and limits become
complex valued.

What happens in the various spaces (child, parent, and
grandparent) with the two different transformation sequences
is graphically represented in Fig. 2, where a circle marks
the observation point [r in the child, (u,v) in the parent,
and (1", v) in the grandparent space]. In Fig. 2, the parent
square-patch maps two different quadrilateral children: the
bottom-left child is obtained with bilinear mapping using
four interpolatory points, while the child at bottom-right is
obtained by biquadratic mapping using nine interpolatory
points. Fig. 2 considers the case of v = 1/2; the u < 0 case
(precisely the case of u = —0.2,» = 0.75) is shown at left,
whereas the right-hand side of Fig. 2 shows the case for u > 0
(namely, u = 0.5 and v = 0.75).

A. Polar Variables, Polar Transformation, and Green’s
Singularity Cancellation

To cancel the Green’s function singularity, we use a polar
transform (other schemes such as Duffy [21], [22], arcsinh, and
tanh-sinh may be used as alternatives and can be substituted



GRAGLIA et al.: COMPUTATION OF EFIE MATRIX ENTRIES WITH SINGULAR BASIS FUNCTIONS

6219

TABLE I
POLAR TO PARENT/GRANDPARENT VARIABLES MAPPING

For u <0
T T3 T> Ty
h; u 1—u v 1—wv
& Au 1—-X1—u) o+ ANu—o) 1—oc+Au—(1-0)
&S | Av—1-a)]+1Q-0) | Mv—0)+0 Av 1-X1-v)
For v > 0
i T T T
hi u? 1—u” v 1—w
(1 AuY 1-XA1—-u") | o+ Au” —0) | 1—0o+ Au” — (1 —0)]
G| Av—=0Q-a)]+1Q-0) | Mv—0)+0 Av 1-X1-v)

relevant weight at the integration point.

The source-integration package integrates in the polar-frame (A, o) and has on input (apart other
parameters) the u, v, and v values. The parent/gandparent coordinates of the integration point are
functions of A, o, evaluated as in the Table. Notice that for u > 0 one has &1 = Cll/v, &2 = (o.
The basis function factor f(€) is a function of the parent-variables computed in terms of the
integration-point parent coordinates £1, €2, §&3 = 1 — &1, and £&4 = 1 — &». Once the £-coordinates
are known, the position of the integration point =’ in the child-space, and the distance R from
integration to observation point are computed by use of the parent-to-child mapping. Finally, the
integration package evaluates the ratio (1 — \)/R and the value of the integrand together with the

for the following with minor differences in the change-of-
variables; the double-exponential scheme [11] may also be
useful for near-singular interactions for the singular-basis
functions). The polar transform is used for illustration and,
while it has worked well in our tests, we have not compared
its performance with the other near field cancellation scheme
and make no claim as to its optimality. We believe that the
proposed algorithm can be adapted to any cancellation scheme,
so that one can introduce singular vector basis functions and
numerically evaluate all the required integrals with accept-
able accuracy. In addition, in our method-of-moments (MoM)
applications using singular basis functions [23], we often use
adaptive quadrature that may help compensate for a “poor”
near-singular algorithm.

With reference to Fig. 2, the observation point defines
four-curved subtriangles (dashed lines) of the child space,
numbered with the number that labels the edge on which they
are based. These triangles are mapped by rectilinear triangles
of the parent space for u < 0 and by rectilinear triangles
of the grandparent space for u > 0. Within each rectilinear
triangle, we introduce new variables (4, o) with ¢ increasing
from O to 1 in the counterclockwise sense around the vertex.
The segment {4 = 0; 0 < ¢ < 1} maps the ith edge of the
cell, and 2 = 1 is the point that maps onto r, eventually.
Fig. 2 reports in gray the 1 =0.25, 0.5, and 0.75 coordinate
lines.

The Jacobian of the transformation from pseudopolar (1, o)
to grandparent (if u > 0) or parent (1 < 0) coordinates is

Ji =hi(1 = 2) (13)
where &; is the height of the ith rectilinear subtriangle mea-
sured with respect to the ith edge (k; can be negative). Table I
reports, for each subtriangle 7; (for i = 1, 4), the expressions
of the parent/grandparent variables in terms of the polar
variables and the value of the height h;. J; has a first order
zero at A = 1 that cancels the singularity of Green’s function
occurring when observation and integration points coincide.

In fact, in the child space, the distance from r to an integration
point of the ith subtriangle vanishes at 4 = 1 in accordance
with

R=|r—r|=(-2)d. (14)

The ratio

a-9H_1 (15)

R d;
remains finite as A — 1, R — 0 and is numerically computed
on-the-fly for all 4 by using the parent-to-child mapping
shown at the bottom of Fig. 2. This removes Green’s function
singularity and permits the evaluation of the integrals by
quadrature. In this connection, we also observe that, normally,
open integration routines are used that do not sample the
integrand at the integration border, that is, at A = 1. (For
A-values close to unity and for children-cells that are not
excessively distorted, the dependence on ¢ of the function d;
does not vary too much with 4 and can, therefore, be easily
extrapolated to obtain the value of d; at 4 = 1, if this is really
needed.)

To reduce the integration burden, it is very convenient to
integrate only on the subregion of the triangular domain that
belongs to the parent/grandparent square patch (see Fig. 3).
This is easily accomplished by reducing the upper limit of
the A-integral to a value Agp smaller than unity. Table II
summarizes the algorithm to evaluate 1 when dealing with
basis factors of the form ¢} ~1£(&). Clearly, in this manner,
one does not need to compute the integral contribution of the
triangle 7; whenever its height h; (as reported in Table I) is
negative. However, this requires one to integrate first on 4
(inner source integral) and then on ¢ (outer source integral)
by using 1-D integration routines. (As said, ad hoc integration
algorithms to directly compute the double integral on the
triangular simplexes could be used whenever 0 < u < 1,
0<v<l)
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Fig. 3.  We integrate only on the subregion of the triangular domains
that belongs to the square parent/grandparent patch. In this manner, for
observation point (u, v) located on the border or outside the patch, only three
(top figure) or two (bottom figure) subtriangles are involved. These subregions
get triangular or trapezoidal shape and are defined by an appropriate value
of Ag. Table II summarizes the algorithm that defines these subregions.
At top, the grandparent observation point is located at (¢”, v) = (0.3, —0.2)
(square marker); at bottom (circular marker), it is placed at (u",v) =
(1.15, —0.05).

TABLE II
Ag FUNCTION

Ag = min(Ay, Av)
Ay (default value = 1) Ay (default value = 1)
fu<0 fu>1 Ifo<0 Ifo>1
0 1 1—0 o
T —
(not exp.) uv 1—0—w o+v—1
1 0 o 1—-o0
T:
3 1—u (not exp.) o—v v—0o
o 1—0o 0 1
T -
2 o—u u’¥ — o (not exp.) v
T 1—0o o 1 0
Yl 1o —u u’ —(1—o0) 1—v (not exp.)

The Table summarizes the algorithm to evaluate the A function under
the assumption that the source inner-integral is on A while the outer one
is on o3 that is, Ag is a function of o and of the (u,v) coordinates of
the observer. For given o, v and u values, we compute Ay, and Ay and
then obtain Ay = min(Ay, Ay). The Table does take into account the
fact that for u > 0 we integrate on sub-triangles of the grandparent space
(this is why w is elevated to the v power for v > 0) while, for u < 0,
we integrate on sub-triangles of the parent space.

IV. INTEGRAL RECIPES

A. Self-Cell and Nearly Singular: Case of u > 0

The results of Section III readily apply to the u > 0O case to
integrate numerically on the grandparent cell. The sequence of
the mappings to be used in this case is summarized in Fig. 4.
On each subtriangle 7;, the integrals in polar coordinates
(X, 0) are used to compute, in sequence, the ¢, &, and child
coordinates of the integration point; the final expressions of
these integrals are

//T1 Gf(&)f}’_ldTl

AE
- f“"f(&)( )dezda (16)
TV
//T Gf(E)élHdTa
Cd—w U 1—2
- 47”/0/0 eIkR £(g) (T)jgd/lda (17)
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1-X\

47”,2/ e ML(€) () hi Tg drdo

I 1 d¢idGe = hi(1—A)

4
1 .

— IR f(£) £ Te dGid
47T2/T 7€) T d1dGy

U 1t v€y ™ dgr dé = dGid(
_— —JjkR dé d
i Ee F&)¢ jg 1 d&,
. U M dz dy = Jed& dSo

v—1
— | eI () S dady
Am Jehild "
Flg 4. Flow diagram assumes a singular basis function of the form

f (&) and should be read bottom up. At bottom, the source integral on the
quadrllateral child is up-transformed into an integral on the parent square cell
of the &-space, that is, the space where the basis functions are conveniently
defined. The singular factor ff ~1 s canceled by setting ¢ = ff (and
2 = &). Four rectilinear subtriangles are obtained by joining the observation
point to the four corner nodes of the ¢-parent cell (see Fig. 2). Finally, each
subintegral on the four subtriangles is performed into a pseudopolar space
(4, 0) to cancel Green’s function singularity.

//T2 G f(§) &~

SpLE / / ""Rf(é)(
//nt@)zrldn

S [ e (Y

where the value of 1g depends on the subtriangle considered,
as given in Table II, and can be equal to zero for some o
values. As said, the integral on 73 is not computed for u > 1;
similarly, the integral on 7> and 74 are not computed for v < 0
and » > 1, respectively. In such occurrences, the computer
code must assign to these subintegrals a default zero value.

Integration routines that are adaptive or of an appropriate
(high) order should be used to evaluate the previous integrals,
since the polar transformation distorts the basis functions
and/or increases the order of the function f(&). [To clarify this,
just notice from Table I that the factor o f(§)(1 — 1) in (18),
and (v — 1) f(&)(1 — 4) in (19) simplify into (v — &) f (&) if
u = 0; these factors vanish at A =1, & =0.]

) Jedide  (18)

) Jedide  (19)

B. Nearly Singular: Case of u < 0

Conversely, for u < 0, we integrate numerically on the
parent cell and always set to zero the value of the subintegral
on the first triangle 77. The singular &} ~! factor is canceled
from the integrand by using, on each of the remaining three
triangles 7; (for i = 2, 3, 4), a new transformation from the
¢ to A coordinate

=" =ai+pi (20)

1
A== =B Q1)

o
S = 22)

Vo
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TABLE III
@ TO 0 AND ({, ¢) TO A MAPPINGS USED FOR u < 0

G =¢""=Xai+Bi

a; Bi A I
1/v _ 1
T3 u—1 1 ¢ ©
u—1
1/v _ 1
Ts u—o o Cia u—+ —
u—o ©
/v _ (1=
Ty |u—(1—-0) | 1-0 ¢r=Q0=-9) 1—<u+l)
u—(1-0) %)
TABLE IV
EXPRESSIONS OF THE E-PARENT VARIABLES USED FOR u < 0
&1 &2
7 | /v A-&)v+ (&1 —uo
1—u
Ty | ¢V (e -&)v v (€ —u)p
c—u
1—0— —
Ty | ¢ (i-o 16_1);):'_:51 u) v+ (l—v)(61—u)e

&1 depends only on the ¢ integration variable of the inner integral
while ¢ (or o) are fixed by the outer integral, to yield the unique
value of &2 reported in the Table as function of ¢ (or o). Recall
that {3 = 1 — &1, and €4 = 1 — &>. The reported expressions are
obtained from Table I and III.

to obtain

//T G f(&) & "aTs

1 I 1 J—ikR & —
—mol_u}/mm J ( )ms)f(s)dc]

(23)
/ /T G r@E

RN / IR (5 )J &) £ dcbdo
- 4z v 0 (O-_u)z miny g ¢
(24)
// Gfe&¢e™ lary
Ty
B 1—1)/ 1
4y Jy (1—0 —u)?
(1-0)¥ .
x [ [T e (5‘ )Jf(s) £® dc} (25)
ming
with a;, f; as in Table III, 1¢ as in Table II, and
ming = [1 - 2g(1 — )]’ (26)
miny = [0 + Ap(u —0)]" (27)
ming = {l —o + Agu — (1 —0)]}" (28)

Once again, observe that the ratio (¢ — u)/R remains finite
as &1 > u, R — 0.

It should be clear why this sequence of transformations
cannot be used to deal with u > 0 because of the presence of
a pole in ¢ for the 75> and 74 integrands. The pole is at 0 = u
and at 0 = 1 — u for the 75 and T4 integrand, respectively.

6221

In case the pole gives numerical problems, that is for |u| very
close to zero, one should resort to another transformation from
o to ¢ coordinate to get [see Table III for the expressions of
o (p) and recall that u < 0]

/ / G f&) &,

T

. D) —LL{ . max
B dz v ﬁ B {/min

o—IkR (5 )Jf(s) £6) dc]

(29)
J[ o reatar,
1 — max
B 47t:/1+ {/min eI (f )jg(&)f(’;‘) d(]
(30

where, obviously, Ag should now be computed as in Table II
for the o value given in Table III, with

1-2\"
min:(u+ E)
@
1 v
max = (u+—) .
@

Thus, although we use the polar (4,0) coordinates to
cancel Green’s function singularity, the numerical integrals
are worked out in the (7,0) or (&, ¢) frame to compute,
in sequence, the & coordinates (see Table IV) and the child
coordinates of the integration point. For 0 < » < 1, it is easily
verified from Table II that the lower limit of the integral on
¢ is zero for all the integrals (23)—(25), (29), and (30). The
upper and lower limits of the (-integrals could be equal; in
this case, obviously, the ¢-integrals vanish.

In passing, we observe that to integrate on 7> and 74 in the
special case of u = 0, instead of using (18) and (19) in the
grandparent space, it is better to work in the &-parent space
and use the transformations (see Table I)

€1V

(32)

1 =>0-2)" for T and Ty
Hn=0", (1—-0)" forTh, Ty, respectively  (33)
that yield
_ 1
& ldido = ) d¢1dg on T,
_ 1
& ldide = +-3d01de on Ti. (34)

These transformations are not considered here since open inte-
gration routines do not sample the integrand at the integration
border. However, one should keep in mind that the integrals
(18) and (19) on T» and Ty are likely to provide inaccurate
numerical results for u = 0.

V. RESULTS

To test the preceding expressions, we consider a basis
function of the form [18]

B(&,6) =&, (6 — )( & 1—1) (35)
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TABLE V

NONSELF-CELL INTEGRATIONS—ADAPTIVE QUADRATURE

(=, y) (u, ) I Relative Error
(012, 0.12) | (1.2, 1.2) 4.247535998850 5220 x 10~% — j 4.1155066618 2864 x 10~° 9.8 x 10~ 14
(0.13, 0.05 | (13, 0.5) 9.74194559229 52220 x 10~* — j4.7333805104 1173 x 1075 1.5 x 10713
(-0.01 , 0.05) | (-0.1, 0.5) | —2.91357343917 91305 x 10~3 + j 2.687456941 35670 x 10~> 2.1 x 10~12
(-0.001, -0.02) | (-0.01, -0.2) | —1.166635753675 3162 x 10~3 4 5 2.18837064394 815 x 10> 1.2 x 10713
(-0.001, 0.12) | (-0.01, 1.2) | —4.137746279325 8655 x 10~* + j 2.14808542239 466 x 10~° 1.9 x 10713
The reference I value obtained with Mathematica [24] has digits in black that agree with the adaptive quadrature of (12), and
additional digits in blue. Use of nearly singular integration formulas further reduces the relative error (see Table VI).

TABLE VI

NEARLY SINGULAR INTEGRATIONS—ADAPTIVE QUADRATURE

(z,y) (u, v) I Relative Error
(0.101 , 0.05) | (1.01 ,0.5) 2.2842151009327 825 x 1073 — 5 3.264790213897 90 x 105 3.2 x 10715
(0.1001, 0.05) (1.001, 0.5) 2.42954360607 89998 x 1073 — 73.2180244697331 7 x 10-5 4.3 x 10715
(0.05, -0.001) | (0.5, -0.01) 1.43148045068169 60 x 10~3 — j 5.417642094414 21 x 10~ 4.2 x 10715
(0.05, -0.0001) | (0.5, -0.001) 1.58914392101678 78 x 103 — 7 5.418946243847 34 x 10-6 5.1 x 10~15
The reference I value obtained with Mathematica [24] has digits in black that agree with the adaptive quadrature, and additional
digits in blue.

TABLE VII
SELF-CELL INTEGRATIONS—ADAPTIVE QUADRATURE
(@,y) (u,v) I Relative Error
(0, 0) 0, 0) —6.96773 767263747186 x 10~3 4 5 2.1503682452515 395 x 10~° | 1.4 x 1097
0, 1) 0, 1) —9.217324695 68769916 x 10~* 4 5 2.122097404086 5942 x 1075 | 8.7 x 1012
(1, 0) (1, 0) 2.20795487021447 225 x 10~3 — j 3.2022552050505 820 x 10~ | 1.2 x 10~15
(1, 1) 1,1 7.4962050527395 1003 x 104 — 5§ 3.1600676567618 362 x 105 | 1.2 x 10—15
0.01 ,0.01 ) | (0.1 ,0.1) | —5.5037306362656 800 x 10~3 4 5 1.62064581636571 x 10~> 1.9 x 10~
0.02 ,0.02 ) | (02 ,02 ) | —2.6006411062500 860 x 10~3 + 5 1.083832059075 93 x 10> 1.7 x 1015
0.05 , 0.05 ) 05 ,05) 1.79640528116042 01 x 10~3 — 5 5.436897148887 63 x 10~° 1.0 x 10716
(0.05 , 0.001) | (0.5 ,0.01) 1.8032041006143 864 x 10~3 — 5 5.42049342318 233 x 10~6 1.9 x 10~
(0.001, 0.001) | (0.01,0.01) | —8.06202030167824 26 x 10~3 4 j2.097786631310 18 x 10~° 2.2 x 10~16
0.001,0.05) | (0.01,0.5) | —6.92424412589334 68 x 10~3 4 52.104149019731 56 x 10> 1.0 x 10715
(0.001, 0.099) | (0.01,0.99) | —1.00062477777717 00 x 10~3 4 §2.0707604581502 5 x 10~°> 2.4 x 10717
The reported reference I-value are obtained with Mathematica [24] if the observer is located at one of the four cell-corners
(top-part of the Table). At inner points Mathematica cannot directly integrate (12) and the reported reference results are
computed by subdividing each line integrals into sixteen sub-integrals on which we use a Kronrod-Patterson integration
rule starting with a formula with 127 nodes (this requires a number of samples of the order of 2,000 per line integral; that
is ~4M sampling points on each subtriangle).
The reference I value has digits in black that agree with adaptive quadrature and additional digits in blue. To compute
the black digits of I for an observation point on the w = v = 0 corner we use a (more expensive) Kronrod-Patterson rule
starting with a formula with 127 nodes. (The “ad-hoc” quadrature scheme to deal with the w = O case alluded to at the
end of Section IV has not been used here.)

which exhibits a knife-edge singularity along the 1 = 0 edge
when v = 0.5. (This is actually a half-basis function that
represents the singular behavior of the current density on
one part of a two-cell pair and exhibits a normal discon-
tinuity along edge 2 at & = 0.) The testing function
will be

T(&,&) = §,0¢ —u, & —v). (36)
The function f appearing in (6) is, therefore,
1
f(§1,§2)=(52—1)(§—§1')) (37)

and Tables from V to VIII report reference results for the
integral:

ot 1 G(R) (
’—/0/0(52“)(75—1‘1)W"51d@

0 10 1
— 10y —= ) —— —1) G(R) dxdy (38
Y " P

obtained by considering the v = 1/2 case and a source cell,
0.1 wavelength per side, located in the range 0 < x < 0.1,
0 <y < 0.1 of the child (x, y)-space, mapped by the parent-
cell {0 <& < 1,0 <& < 1}. The observer location (x, y)
in the child space and (u,v) in the &-parent space is given
in Tables from V to VIII. The results for I reported in the
Tables (V to VIII) with “black” digits are evaluated by an
adaptive quadrature rule that attempts to reduce the error in the
result below 10~!!. These are evaluated as in (12) whenever
the observer location falls into the nonself-cell case, (16)—(19)
are employed for the self-cell case, and (16)—(19)
and (23)-(25) are used for the nearly singular case.
The remaining “blue” digits of the reference result are beyond
the digits obtained from adaptive quadrature using double
precision. The last column of Tables V to VIII shows the error
of adaptive quadrature with respect to the reference result.
The reference values are obtained by numerically integrating
(12) with the Mathematica code [24] (without using the
polar coordinate transformations discussed earlier) with the
exception of the self-case results of Table VII that are relative
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TABLE VIII
SELF-CELL INTEGRAL AT THE FOUR CORNERS
(z,y) | (u,v) I Relative Error
0,0) | (0,0) | —6.967737 67263747186 x 102 + 5 2.1503682452515 395 x 10~% | 9.7 x 1008
©,1) | (0,1) | —9.2173246956876991 6 x 10~* 4 j 2.12209740408659 42 x 10~% | 4.4 x 10~17
(1,0) | (1,0) 2.207954870214472 25 x 10~3 — 5 3.20225520505058 20 x 105 | 1.3 x 10—17
(I, D | (1,1 7.49620505273951 003 x 10~4 — 5§ 3.1600676567618 362 x 105 | 3.5 x 10— 16

digits in blue.

This Table validates the results of Table VII. The reference I value obtained with Mathematica [24] shows
digits in black that agree with results obtained by subdividing each line integral into sixteen sub-integrals on
which we use a Kronrod-Patterson integration rule starting with a formula with 127 nodes, and additional

REAL

IMAG

Fig. 5.

Source cell, 0.1 wavelength square, is located in the range 0 < x < 0.1, 0 < y < 0.1 of the child (x, y)-space and is mapped by the parent cell

{0 <& <1,0 <& < 1}. The real and imaginary parts of the integral (38) are shown at top. For the sake of comparison, the figures at bottom show the
result for the nonsingular integral (39). The figures are in the &-parent space for observation point (u, v) mapped by the child point (x = u/10, y = v/10).

to observation points inside the cell. [Mathematica is in fact
unable to numerically integrate (12) for observation points
inside the cell, unless one incorporates the polar transfor-
mations given in Sections III and IV or some appropriate
scheme within Mathematica.] In the self-case of Table VII,
the reference values are computed by subdividing each line
integral (16)—(19) into sixteen subintegrals on which we use
a Kronrod-Patterson integration rule starting with a formula
with 127 nodes, which requires a number of samples of the
order of 2000 per line integral (about four million sampling
points per subtriangle).

Table V shows results for the integral / when the observer
is located outside the source cell at various positions. For
these results both the nonself-cell equation (12) and the
nearly singular equations were employed (even though these
observers are not very near to the source cell) and gave
the same result to more digits than were requested from the
quadrature routines. An independent evaluation of the integral
in (6) using a special quadrature rule for handling the basis

function singularity also gave agreement with these results.
These results indicate that the technique used in (12) for
handling the basis function singularity is successful. They
also indicate that the combination of (16)—(19) and (23)—(25)
work well even when the observer is relatively far from the
source cell.

Table VI shows various results for nearly singular integrals
where the observer was slightly outside the source cell, using
(16)—(19) and (23)—(25). These results are compared with the
result from (12) and from an independent evaluation of the
integral using a special quadrature rule for handling the basis
function singularity. For these examples, attempts to evaluate
(12) failed in many cases when the quadrature routine could
not reduce the error below the requested tolerance (because of
the proximity of the Green’s function singularity). However,
the evaluation of (16)—(19) and (23)—(25) was possible to a
tolerance of at least 1011,

Table VII shows similar examples for self-cell
integrations, where the observer lies within the source cell.
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Equations (16)-(19) were employed. An independent
evaluation of the integral using a different Green’s function
singularity cancellation scheme and a special quadrature rule
for handling the basis function singularity also gave agreement
with these results. These suggest that the subdivision of the
cell into four triangles and the associated polar transforma-
tions are working properly to cancel Green’s function
singularity.

Table VIII reports the results for the case when the observer
is located exactly on one of the corners of the source cell, using
the “singular” equations (16)—(19). (The “ad hoc” quadrature
scheme to deal with the u = 0 case was not used, because self-
cell integrals are seldom evaluated on the cell border in MoM
applications.) Table VIII validates the results of Table VII
because the reported reference results for the corner nodes are
obtained by numerically integrating (12) with the Mathematica
code [24], while the black figures are computed by subdividing
each line integral (16)—(19) into sixteen subintegrals on which
we use a Kronrod-Patterson integration rule starting with a
formula with 127 nodes, which is the same integration scheme
we used to get the reference results of Table VII for observer
not located on the cell corners.

Finally, Fig. 5 at top shows the real and imaginary part of
the integral (38) compared with the results (reported at bottom)
for the nonsingular integral

1 1
/- /0 /O & — ) G(R) dé dé

1 1
- /'0 /'O(my— 1) G(R) dx dy. (39)
0 0

VI. CONCLUSION

New algorithms were proposed for evaluating the EFIE
matrix entries in the situation, where a basis function edge
singularity or the combination of an edge singularity and
a Green’s function singularity occur in the same quadri-
lateral cell. Standard singularity cancellation transformations
designed for Green’s function singularities are not designed
to handle edge singularities. The approach is described and
validated using reference results from Mathematica [24] and
special quadrature rules.
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