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Bayesian Compressive Sensing Approaches for
Direction of Arrival Estimation With

Mutual Coupling Effects
Matthew Hawes, Lyudmila Mihaylova, François Septier, and Simon Godsill

Abstract— The problem of estimating the dynamic direction
of arrival (DOA) of far-field signals impinging on a uniform
linear array, with mutual coupling effects, is addressed. This
paper proposes two novel approaches able to provide accurate
solutions, including at the endfire regions of the array. First,
a Bayesian compressive sensing Kalman filter is developed, which
accounts for the predicted estimated signals rather than using
the traditional sparse prior. The posterior probability density
function of the received source signals and the expression for
the related marginal likelihood function are derived theoretically.
Next, a Gibbs sampling-based approach with indicator variables
in the sparsity prior is developed. This allows sparsity to be
explicitly enforced in different ways, including when an angle
is too far from the previous estimate. The proposed approaches
are validated and evaluated over different test scenarios and
compared to the traditional relevance vector machine (RVM)-
based method. An improved accuracy in terms of average
root-mean-square error values is achieved (up to 73.39% for
the modified RVM-based approach and 86.36% for the Gibbs
sampling-based approach). The proposed approaches prove to
be particularly useful for DOA estimation when the angle of
arrival moves into the endfire region of the array.

Index Terms— Bayesian compressive sensing (BCS), dynamic
direction of arrival (DOA) estimation, Gibbs sampling, Kalman
filter (KF), relevance vector machine (RVM).

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is the process
of determining which direction a signal impinging on an

array has arrived from. Commonly used methods of solving
this problem are: MUSIC [1], [2], ESPRIT [3]–[6], and the
maximum likelihood DOA estimator [7]–[9]. However, these
methods have some disadvantages, in particular they require
knowledge of the number of signals present beforehand and
evaluation of a covariance matrix of the array output (adding
computational complexity).
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Compressive sensing (CS) theory says that when cer-
tain conditions are met it is possible to recover sig-
nals from fewer measurements than used by traditional
methods [10], [11]. Hence, CS can be applied to the problem
of DOA estimation [12]–[15] by splitting the angular region
into N potential DOAs, where only L � N of the DOAs
have an impinging signal (alternatively N − L of the angular
directions have a zero-valued impinging signal present). These
DOAs are then estimated by finding the minimum number of
DOAs with a non-zero valued impinging signal that still give
an acceptable estimate of the array output.

The problem can also be converted into a probabilistic
form and solved via Bayesian CS (BCS) [16], implemented
with a relevance vector machine (RVM) [17]–[19]. Such a
method has been used to solve the problem of static DOA
estimation [20], [21], where a belief of having a sparse
received signal is made and the most likely values found.

The Kalman filter (KF) can be used to track dynamic DOAs,
with the angular range narrowed to focus in more closely on
the DOA estimate from the previous iteration [22]. However,
this prevents directly working with the measured array signals
and introduces an additional stage of having to reevaluate
the steering vector of the array at each iteration of the KF.
Hierarchical KFs have been used to track dynamic sparse
signals [23], [24], where the predicted mean of the signals
at each iteration is taken as the estimate from the previous
iteration and the hyperparameters are estimated using BCS,
hence the term BCSKF.

However, a problem remains when a BCSKF is applied to
dynamic DOA estimation with a uniform linear array (ULA).
The estimation accuracy can be reduced when the DOA
approaches the endfire region of the array, i.e., when the
impinging signal arrives parallel to or almost parallel to the
array. This can be particularly problematic when there is a lot
of noise present.

An additional challenge to address when considering the
DOA estimation problem is that of mutual coupling. One way
of modeling the mutual coupling effects is to use a mutual
coupling matrix [25], [26]. In [25], the mutual coupling matrix
is found using two methods: minimum mean-square matching
and the mutual impedance method. The method in [26] applies
a symmetric Toeplitz matrix, where only antennas within a set
separation of each other can cause mutual coupling effects.
In this paper, the method in [26] is used to ensure mutual
coupling effects are included in the signal model.
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Fig. 1. Linear array structure being considered, consisting of M antennas
with a uniform adjacent antenna separation of �d.

The contributions of this paper are as follows.
1) A BCSKF with a modified RVM, where the traditional

sparsity prior is replaced with a belief that the estimated
signals will instead match predicted signal values, is pro-
posed. The result of this new prior is that a new posterior
distribution and marginal likelihood have been derived.
Initial results for this method using a signal model
without mutual coupling have been reported in [27].

2) A Gibbs sampling approach is proposed. In this
approach zero valued signals can be explicitly enforced
when there is too large a change in DOA in order to
alleviate the estimation accuracy problem for the endfire
region of the array.

3) A comprehensive performance evaluation is provided,
with the proposed methods being compared to a
BCSKF using the traditional RVM approach. Significant
improvements in terms of the average root-mean-square
error (RMSE) values are observed (up to 73.39% for the
BCSKF with modified RVM and up to 86.36% for the
Gibbs sampling approach).

The remainder of this paper is structured in the following
manner. Section II gives details of the proposed estimation
methods, including the array model with mutual coupling
effects (Section II-A), the modified RVM framework for
BCS (Section II-B), the BCSKF (Section II-C), and the
Gibbs sampling implementation (Section II-D). In Section III,
an evaluation of the effectiveness of the proposed approaches
is presented and conclusions are drawn in Section IV.

II. PROPOSED ESTIMATION METHODS

A. Array Model

A narrowband ULA structure consisting of M omnidirec-
tional antennas, with identical responses is shown in Fig. 1.
Here, a plane-wave signal mode is assumed, i.e., the signal
impinges upon the array from the far-field and the angle of
arrival is limited to 0° ≤ θ ≤ 180°. The distance from the
first antenna to subsequent antennas is denoted as dm for
m = 1, 2, . . . , M , with d1 = 0, i.e., the distance from the
first antenna to itself. Note, these values are multiples of a
uniform adjacent antenna separation of �d .

The steering vector of the array is given by

a(�, θ) = [1, e− jμ2� cos θ , . . . , e− jμM� cos θ ]T (1)

where � = ωTs is the normalized frequency with Ts being the
sampling period, μm = (dm/cTs) for m = 1, 2, . . . , M , c gives
the wave propagation speed and {·}T denotes the transpose
operation.

The array output, yk , at time snapshot k is then given by

yk = Ast xk + nk (2)

where xk = [xk,1, xk,2, . . . , xk,N ]T ∈ CN×1 gives the received
source signals, nk = [nk,1, nk,2, . . . , nk,M ]T ∈ CM×1 is a
noise term, given by a zero mean multivariate Gaussian ran-
dom variable and Ast = [a(�, θ1), a(�, θ2), . . . , a(�, θN )] ∈
C

M×N is the matrix containing the steering vectors for each
angle of interest. Note, N is the number of points in the
grid of potential DOAs the angular region has been split into.
However, only L � N of these angular directions will have
an impinging signal present.

In practice there will also be mutual coupling effects
present, which alter the pattern of an individual antenna as
compared to if it was being used on its own. As a result (2)
has to be altered to account for this fact. A mutual coupling
matrix is used to achieve this [26], by giving the true steering
vector matrix as

A = MMC Ast . (3)

Here MMC ∈ CM×M is the mutual coupling matrix given by

MMC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 m2 . . . m D−1 . . . mM

m2 1 m2 . . .
. . .

...
... m2 1 m2 . . . m D−1

m D−1 . . .
. . .

. . .
. . .

...
...

. . . . . . m2 1 m2
mM . . . m D−1 . . . m2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)

In (4), the mutual coupling coefficients are given by
mi = ρi exp{ jφi} for i = 2, . . . , D − 1, D, . . . , M , where
ρi and φi give the amplitude and phase, respectively. The
variable D places a limit on the separation between antennas
above which there will be no mutual coupling effects. In other
words when i > D, then ρi = 0. This then gives the following:

yk = MMC Ast xk + nk

= Axk + nk . (5)

Equation (5) can then be split into real and imaginary
components (given by R(·) and I(·), respectively) as follows:

ỹk = Ãx̃k + ñk[R(yk)
I(yk)

]
=

[R(A) −I(A)
I(A) R(A)

] [R(xk)
I(xk)

]
+

[R(nk)
I(nk)

]
. (6)

The difference between yk and ỹk is that yk has been split
into its real and imaginary components in ỹk . As a result the
dimensions of ỹk are increased. A similar relationship exists
between A and Ã, xk and x̃k and nk and ñk .
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B. Modified Relevance Vector Machine for DOA Estimation

The aim is to now find a solution for x̃k which gives the
closest possible match to a predicted set of signal values.
To achieve this one can follow a modified RVM frame-
work [27], by evaluating the following:

x̃k,opt = maxP(
x̃k, σ

2
k , pk |ỹk, x̃p

)
(7)

where σ 2
k is the variance of the Gaussian noise nk ,

pk = [pk,1, pk,2, . . . , pk,2N ]T contains the hyperparameters
that are to be estimated and x̃p = [R(xp)

T ,I(xp)
T ]T =

[R(x p,1), . . . ,R(x p,N ),I(x p,1), . . . ,I(x p,N )]T holds the
predicted values of x̃k .

From (6), it is possible to find

P(ỹk |x̃k, σ
2
k ) = (2πσ 2

k )−M exp

{
− 1

2σ 2 ||ỹk − Ãx̃k ||22
}
. (8)

The traditional RVM would now apply a belief that x̃k is
sparse. However, here this is changed to a belief that x̃k will
match the predicted signals x̃p

P(x̃k |pk, x̃p) = (2π)−N |Pk | 1
2

× exp

{
−1

2
(x̃k − x̃p)

T Pk(x̃k − x̃p)

}
. (9)

Note, when x̃p = [0, 0, . . . , 0]T then (9) reverts to the
hierarchical prior used in the traditional RVM [16], [17] and
|Pk | indicates the determinant of Pk , where Pk = diag(pk).

It is also necessary to define the hyperparameters over
pk and σ 2

k . There are various possibilities for the structuring
of the priors on pk , which represent mixing parameters in
a scale mixture of normal representation of the marginal
distribution of xk , which will here be in the Student-t family
(see [28]). One possibility would be to treat the complex
components of xk as complex Student-t distributed, as detailed
in [29] and [30]. However, this paper treats the real and
imaginary components of xk as independent Student-t dis-
tributed random variables, and hence there are independent
Gamma priors for the mixing variables pk,n over all real and
imaginary components of xk

P(pk) =
2N∏
n=1

G(pk,n|β1, β2). (10)

A Gamma prior can also be used for σ 2
k

P(σ 2
k ) = G

(
σ−2

k |β3, β4
)

(11)

where β1, β2, β3, and β4 are scale and shape priors.
It is known that

P(
x̃k, σ

2
k , pk |ỹk, x̃p

)

= P(
x̃k |ỹk, σ

2
k , pk, x̃p

)P(
σ 2

k , pk |ỹk, x̃p
)

(12)

and

P(
x̃k |ỹk, σ

2
k , pk, x̃p

)

= P(
ỹk|x̃k, σ

2
k

)P(
x̃k |pk, x̃p

)

P(
ỹk |σ 2

k , pk, x̃p
)

= (2π)−N |�|−1/2 exp

{
−1

2
(x̃k − μ)T �−1(x̃k − μ)

}
(13)

where the covariance matrix and the mean are given by

� = (
σ−2

k Ã
T

Ã + Pk
)−1 (14)

and
μ = �

(
σ−2

k Ã
T

ỹk + Pk x̃p
)

(15)

respectively. Note, the maximum of (13) is the posterior
mean μ. For a derivation of (13), see Appendix A.

Similar to [17], the probability P(σ 2
k , pk |ỹk, x̃p) can be

represented in the following form:
P(

σ 2
k , pk |ỹk, x̃p

) ≈ P(
ỹk |σ 2, p, x̃p

)P(
σ 2

k

)P(pk)P(x̃p) (16)

where P(x̃p) is constant as fixed values are used and the
second two terms on the right hand side of (16) are con-
stant if β1 = β2 = β3 = β4 = 1 × 10−4 as in [17].
Therefore, maximizing P(σ 2

k , pk |ỹk, x̃p) is roughly equivalent
to maximizing P(ỹk |σ 2

k , pk, x̃p). This can be achieved by a
type 2 maximization of its logarithm, which is given by (see
Appendix B)

L(
σ 2

k , pk

)

= log

{(
2πσ 2

k

)−M |�| 1
2 |Pk | 1

2

× exp

(
−1

2
× (ỹT

k Bỹk + x̃T
p Cx̃p − 2σ 2

k ỹT
k Ã�Pk x̃p)

)}

= −1

2

(
2M log(2π) + 2M log σ 2

k − log |�| − log |Pk |
+ σ−2

k ||ỹk − Ãμ||22 + μT Pkμ + x̃T
p Pk x̃p − x̃T

p Pkμ
)

(17)

where B = (σ 2
k I + ÃP−1

k Ã
T
)−1 and C = Pk − PT

k �Pk .
This is now differentiated with respect to pk,n and σ−2

k to
obtain the update expressions

pnew
k,n = γn

μ2
n + x̃2

p,n − x̃ p,nμn
(18)

where γn = 1 − pk,n�nn , �nn is the nth diagonal element
of � and

σ 2
k,new = ||ỹk − Ãμ||22

2M − ∑
n γn

. (19)

For the derivation of (18) and (19), see Appendix C.
The maximization is then achieved by iteratively finding

� and μ, followed by pnew
k,n for n = 1, . . . , N and σ 2

k,new until a
convergence criterion is met [16], [17]. In other words, the new
estimates for the noise variance and precision hyperparameters
found from (19) and (18) are then used in (14) and (15) to
find new estimates of the covariance matrix and mean of the
distribution in (13). Note that when x̃p = [0, 0, . . . , 0]T the
update expressions match those used by the traditional RVM.

The final estimate of the received signals is then given by

x̃k,opt =
(

Ã
T

Ã

σ 2
k,opt

+ Pk,opt

)−1 (
Ã

T
ỹk

σ 2
k,opt

+ Pk,optx̃p

)
(20)

where σ 2
k,opt and Pk,opt =

diag(pk,opt,1, pk,opt,2, . . . , pk,opt,2N ) are the result of
optimizing the noise variance estimate and hyperparameters,
respectively. Now x̃k,opt can be used to reconstruct the
estimated signals as

xk,opt,n = x̃k,opt,n + j x̃k,opt,N+n (21)

where n = 1, 2, . . . , N .
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The thresholding scheme in [20] can then be applied to keep
the L̃ most significant signals. To do this find the total energy
content of the estimated received signals and then sort them.
A threshold value, η, is then defined as a percentage of the
energy content that is to be retained. Starting with the most
significant estimated signal, the estimated signals are summed
until the threshold is reached and the remaining signals are
then set to be equal to 0. The remaining nonzero valued signals
then give the DOA estimates and L̃ is an estimate of the
number of far-field signals impinging on the array.

C. Bayesian Compressive Sensing Kalman Filter

In order to track the changes in the DOA estimates at
each time snapshot the modified RVM-based DOA estimation
procedure detailed above is combined with a Bayesian KF,
giving a BCSKF for DOA estimation [27]. The signal model
described above is again used along with the prediction

x̃k|k−1 = x̃k−1|k−1 + �x �k|k−1 = �k−1 + P−1
k

ỹk|k−1 = Ãx̃k|k−1 ỹe,k = ỹk − ỹk|k−1 (22)

and update steps

x̃k = x̃k|k−1 + Kk ỹe,k �k|k = (I − KkÃ)�k|k−1

Kk = �k|k−1Ã
T (

σ 2
k I + Ã�k|k−1Ã

T )−1 (23)

of the BCSKF. Here, k|k − 1 indicates prediction at time
instance k given the previous measurements and �x is deter-
mined by the assumed DOA change. Note, �x is fixed by the
predetermined constant motion rather than being a random
noise term. For example, if the angular range is sampled
every 1° and the DOA is assumed to increase by 2° then
�x will be selected to increase the index of the nonzero valued
entries in x̃k−1|k−1 by two to give the index of the nonzero
valued entries in x̃k|k−1.

At each time snapshot it is necessary to estimate the
noise variance and hyperparameters in order to evaluate the
prediction and update steps of the BCSKF. This is done by
considering the log likelihood function given by

L(
σ 2

k , pk

) = −1

2

(
2M log(2π) + 2M log σ 2

k − log |�|
− log |Pk | + σ−2

k ||ỹe,k − Ãμ||22 + μT Pkμ

+ x̃T
k|k−1Pk x̃k|k−1 − x̃T

k|k−1Pμ
)

(24)

which can be optimized by following the procedure described
in Section II-B. In other words, we apply the modified
RVM framework to ỹe,k , using the KF prediction x̃k|k−1 as
the expected estimate values x̃p .

It is worth noting that the continued accuracy of the pro-
posed BCSKF relies on the accuracy of the initial estimate and
the parameter values selected. If the initial estimate (made
using the framework described in Section II-B and x̃p =
[0, 0, . . . , 0]T ) of the received signals is accurate and sparse,
then the priors that are enforced will ensure this continues
to be the case. However, an inaccurate initial DOA esti-
mate or poorly matched expected DOA change can lead to the
introduction of inaccuracies in subsequent estimates. Similarly,
if the initial estimate of the received signals is not sparse then

subsequent estimates are likely to not be sparse. As a result,
care should be taken when choosing the initial parameter
values and determining the likely DOA change.

D. Gibbs Sampling for DOA Estimation

The method described in the previous sections based on a
BCSKF with a modified RVM required the use of prior knowl-
edge of the predicted change in DOA. However, in practice,
this may not always be known, making it important to have
an alternative method that can still give improved accuracy for
the endfire region.

This paper proposes using a sparsity prior which is given
as a combination of a point mass concentrated at zero
(Dirac delta function) and a zero mean Gaussian distribu-
tion [31]–[33], giving

P(x̃k |pk, z̃k) =
2N∏
n=1

(1 − z̃k,n)δ0 + z̃k,nN (x̃k,n |0, pk,n) (25)

where z̃k = [zT
k , zT

k ]T and zk = [zk,1, zk,2, . . . , zk,N ]T .
Note, z̃k,n is the indicator variable for x̃k,n and determines

which of the two components in (25) is selected. When
z̃k,n = 0, the value of x̃k,n is determined solely by the point
mass concentrated at zero. As a result, x̃k,n = 0 and sparsity is
explicitly introduced. Alternatively, when z̃k,n = 1 the value
of x̃k,n is determined by the Gaussian distribution allowing
a nonzero valued estimate. The repetition of zk in z̃k means
that the same indicator variable is used for both the real and
imaginary parts of each entry in xk .

This indicator value can also be used to address the endfire
accuracy problem by selecting the value of zk,n = 0 if
|n − i | > j . Here i is the index of the closet nonzero
valued estimate from the previous time snapshot and j defines
a maximum allowed change in the DOA estimate. Only
n = 1, 2, . . . , N is considered to get the entries for zk , with z̃k

then being found as previously stated.
This leaves the following:

zk,n =
{

z1
k,n if |n − i | ≤ j

z2
k,n if |n − i | > j

(26)

where z1
k,n and z2

n are defined by the following Beta
distributions:

z1
k,n = B

(
z1

k,n |β1
5 , β1

6

)

z2
k,n = B

(
z2

k,n |β2
5 , β2

6

)
. (27)

In order to enforce zero-valued estimates when |n − i | > j ,
it is necessary to select β2

5 and β2
6 to ensure a zero-valued

zk,n is preferred. However, when |n − i | ≤ j it is necessary to
choose β1

5 and β1
6 so that the chances of zk,n = 0 and zk,n = 1

are equal. This can be achieved by

P(
z1

k,n |β5, β6
) = B

(
z1

k,n |β5, β6
)

P(
z2

k,n |β5, β6
) = B

(
z2

k,n |β5 − 1

j
, β6 + 1

j

)
(28)

where β5 = β6 = 1.
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The posterior distribution of x̃k can be written as [33]

P(
x̃k |ỹk, σ

2
k , pk, z̃k

)

∝
{

2N∏
n=1

[(1 − z̃k,n)δ0 + z̃k,n × N (x̃k,n |0, pk,n)]
}

×N (
ỹk |Ãx̃k, σ

−2
k

)
. (29)

Now also define Ãn as being the entries in Ã relating to
the index n and Ã−n are the entries of Ã excluding the
entries relating to index n (and similarly for x̃k). Then as per
Appendix D this gives

P(
x̃k,n |ỹk, x̃k,−n , σ 2

k , pk, z̃k
) = (1 − ẑk,n)δ0 + ẑk,n

×N (x̃k,n |μ̂k,n, p̂k,n) (30)

p̂k,n = pk,n + p0Ã
T
n Ãn (31)

μ̂k,n = p̂−1
k,n p0Ã

T
n ỹk,n (32)

ẑk,n

1 − ẑk,n
= z̃k,n

1 − z̃k,n

× N (0|0, pk,n)

N (0|μ̃k,n, p̂k,n)
(33)

where p0 = 1/σ 2
k and ỹk,n = ỹk − Ã−n x̃k,−n .

There are two further posterior distributions that have to be
considered. That is the distributions for pk,n and p0 which are
given by

P(pk,n|xk−1) = G
(
β1 + ||xk−1,nj ||0, β2 + ||xk−1,nj ||22

)
(34)

and

P(p0|ỹk, x̃k) = G
(
β3 + M, β4 + 1

2
||ỹk − Ãx̃k ||22

)
(35)

respectively. Note, in (34), xk−1,nj gives the entries within
xk−1 that have an index within the distance j of index n.
By using x rather than x̃ to find xk−1,nj it guarantees the
same value of ||xk−1,nj ||22 and ||xk−1,nj ||0 for both the real
and imaginary components.

As a result the Gibbs sampling steps are detailed as follows.
1) Sample x̃k,n from P(x̃k,n |ỹk, x̃k,−n, σ 2

k , pk, z̃k).
2) Sample pk,n from P(pk,n|xk−1).
3) if n ≤ N then Sample z1

k,n from P(z1
k,n |β5, β6),

else z1
k,n = z1

k,n−N .
4) if n ≤ N then Sample z2

k,n from P(z2
k,n |β5, β6),

else z2
k,n = z2

k,n−N .
5) Sample p0 from P(p0|ỹk, x̃k).
These steps are done for each of the T iterations of the

Gibbs sampler, where the first TB I iterations are the burn-
in iterations. The final estimate of the received array signals
is then given by the mean values of the final T − TB I

iterations [32]. The DOA estimate can then be found using
the previously described thresholding scheme (see II-B), with
the remaining non-zero valued estimates corresponding to the
DOA estimates.

Note, the performance of this method will again heavily
depend on the accuracy of the first estimate. As a result,
it is possible to use the traditional BCS DOA estimation
method (Section II-B with x̃p = [0, 0, . . . , 0]T ) to ensure an as
accurate as possible initial estimate at the first time snapshot.

The proposed Gibbs sampling-based method can then be used
at the subsequent time snapshots to get the next DOA estimate.

III. PERFORMANCE EVALUATION

In this section, a comparison in performance of the proposed
methods and the traditional RVM-based BCSKF method will
be made over five example scenarios, under the same test
conditions. First, an example is considered where the initial
DOA starts outside of the endfire region and then moves into it.
Second, an example is given where the DOA remains out of the
endfire region. In the third scenario, the initial DOAs and the
signal values are randomly generated. Then the evaluation will
also consider the scenario where there is a mismatch between
the actual and assumed change in DOA. Finally, the evaluation
will consider a random change in DOA at each time snapshot.
This means that �x, which is selected for the modified
RVM-based BCSKF, will not be a true reflection of how the
DOA actually changes for the last two examples.

Note, the term traditional RVM-based BCSKF method
means the entries of Pk in the prediction step of the BCSKF
are found using the RVM optimization method as detailed
in [16] and [17]. In other words, this is the method detailed in
Section II-B with x̃p = 0. All of the examples are implemented
in MATLAB on a computer with an Intel Xeon CPU E3-1271
(3.60 GHz) and 16 GB of RAM.

The performance of each method will be measured using the
root mean square error (RMSE) in the DOA estimate. This is
given by

RMSE =

√√√√
∑Q

q=1

∑L̃
l=1 |θl − θ̂l |2
QL̃

(36)

where θl is the actual DOA, θ̂l is the estimated DOA, and
Q is the number of Monte Carlo simulations carried out, with
Q = 100 being used in each case. This gives a measure of the
estimation accuracy and the computation time will be used as
a measure of the complexity of each method.

For the Gibbs sampling method a burn-in period
of 250 iterations is used and then 50 further iterations used to
find the final estimate of the received array signals. When a
distance of j = 5° is exceeded a zero-valued estimate of the
received signals is enforced in order to alleviate the endfire
accuracy problem.

For all the design examples considered the selection of
σ 2

k = 0.4 as the noise variance is used, with an initial estimate
of the noise variance given by σ 2

k,0 = 0.1. The array geometry
being used is that of a ULA with M = 20 antennas and an
adjacent antenna separation of λ/2, where λ is the wavelength
of the signal of interest. This gives an array aperture of 9.5λ.
For the mutual coupling matrix a value of D = 3 is selected,
meaning that a separation of 1.5λ or greater gives negligible
mutual coupling effects. The values ρ1 = 0.65, ρ2 = 0.25,
φ1 = π/7, and φ2 = π/10 are then also used. Finally, in each
example a single narrowband signal impinging on the array is
considered, meaning L = 1.

A. Endfire Region

For this example, the initial DOA of the signal is θ = 20°,
which then decreases by 1° at each time snapshot. The signal



1362 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 3, MARCH 2017

TABLE I

PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE

Fig. 2. RMSE values for the endfire region example.

value at each snapshot is set to be 1. Table I summarizes the
performance of the three methods for this example, with the
RMSE values at each time snapshot being shown in Fig. 2.

Here, it can be seen that there has been a significant
decrease in the average RMSE values for both the modified
RVM method (67.51% improvement) and the Gibbs sampling-
based method (80.78% improvement). Overall this suggests
that a more accurate estimate of the DOA is possible. It is
worth noting that there has still been an increase in the
RMSE for the modified RVM-based approach in the endfire
region of the angular range. However, this has come much later
on the than for the traditional RVM-based approach (indicating
a degradation in performance for a smaller angular range) and
the maximum RMSE value reached is lower (indicating the
degradation is less severe).

These improvements have come at the cost of an increased
computation time in both instances. For the modified
RVM method this increase is insignificant as the average
computation time is still less than one second. The increase
for the Gibbs sampling-based method is larger, illustrating an
increase in computational complexity. However, it is worth
remembering that this increase has resulted in a more accurate
DOA estimate being achieved without prior knowledge about
what the change in DOA will be.

In this instance, the results suggest that one of the
two proposed methods should be used when the estimated
DOA approaches the endfire region of the array. If the change
in DOA is known in advance and computational complexity
is a primary concern then the modified RVM-based method is
the most suitable (a more accurate estimate can be achieved
without a large increase in computation time). However, when
this information is not available, or computational complexity
is not a concern, it is possible to get a significant improvement

TABLE II

PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE
WITH REDUCED ADJACENT ANTENNA SEPARATIONS

Fig. 3. RMSE values for the endfire region example with reduced antenna
separation.

in accuracy (at the cost of computation time) using the Gibbs
sampling-based method.

In the previous simulation, an adjacent antenna separation of
λ/2 is used as it is known that this is the largest separation that
can be used while still avoiding a degraded performance due to
the introduction of grating globes [34]. However, an example
of what the relative performance of the methods is when a
smaller adjacent antenna separation will now be considered.

In this instance, an adjacent antenna separation of λ/4 is
selected. As the array aperture is kept constant (to allow a fair
comparison between adjacent antenna separation sizes) this
means the number of antennas is given by M = 39. This also
means a value of D = 9 is required to keep the same distance
limits on mutual coupling occurring. The values of ρi and
φi are then selected to be uniformly spread over the range
of 0.65 to 0.25 and π/7 to π/10, respectively. The remaining
parameters are kept constant and the same test scenario as for
the previous example is used.

The performances of each of the methods in this instance are
summarized in Table II and Fig. 3, respectively. Here, it can
be seen that the larger number of antennas used has resulted
in a lower average RMSE values for all three of the methods.
In this instance only the modified RVM method has performed
better that the traditional RVM-based method when comparing
average RMSE values (decrease in average RMSE of 61.09%).
However, by looking at the maximum RMSE values it can
be seen that the largest estimation error possible with the
traditional RVM-based method is larger than that for the Gibbs
sampling-based method (16.42° as compared to 3.71°).

It is worth noting that such an array configuration is unlikely
to be used in practice. This is due to the costs associated with
the number of antennas required. As a result, the remaining
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TABLE III

PERFORMANCE SUMMARY FOR THE NONENDFIRE REGION EXAMPLE

Fig. 4. RMSE values for the nonendfire region example.

examples will stick to the adjacent antenna separation of λ/2
and associated parameters previously defined.

B. Nonendfire Region

For this example the initial DOA is θ = 100° with the
DOA increasing by 1° at each time snapshot, with the signal
value remaining constant at −1. The performance of the three
methods is summarized in Table III, with the RMSE values
illustrated in Fig. 4.

In this instance it can be seen that there has not been as
large an increase in RMSE for the traditional RVM method,
as the DOA does not enter the endfire region. However, both
the modified RVM and Gibbs sampling-based methods have
managed to achieve improvements in average RMSE values
of 36.42% and 50.00%, respectively. For the Gibbs sampling-
based method this comes at the expenses of an increase
in computation time, whereas the time for the modified
RVM-based method is comparable to the traditional
RVM-based method. As with the previous test scenario this
would suggest that the modified RVM-based method should
be used when the expected DOA change information is avail-
able and the Gibbs sampling-based method when this is not
the case, or when computational complexity is not a major
concern.

C. Random Initial DOA

Next consider the case where the initial DOA is randomly
chosen from the entire angular range and increased by 1° at
each time snapshot. The signal value is randomly selected
as ±1 for each simulation and remains constant as the
DOA changes.

Table IV and Fig. 5 summarize the performance of the
various methods in this instance. Again, it can be seen that

TABLE IV

PERFORMANCE SUMMARY FOR THE RANDOM INITIAL DOA EXAMPLE

Fig. 5. RMSE values for the random initial DOA example.

the modified RVM-based method has offered improvements
in terms of RMSE(73.39%), without a significant increase in
computation time. The Gibbs sampling-based method has also
given an estimation accuracy improvement (76.12%) and has
even outperformed the modified RVM-based method, without
prior knowledge of how the DOA was going to change. How-
ever, this has come at the expense of an increased computation
time.

D. Mismatched Actual and Assumed DOA Change

This section compares the performances of the estimation
methods for two situations where the actual change in DOA is
not known. First, consider the case where there is an ini-
tial DOA of θ = 100° which increases by 1° for 9 time
snapshots before decreasing by 1° for the remaining time
snapshots. In this instance, assume a constant signal value
of 1 throughout.

The performance comparison is now made between the tra-
ditional RVM-based method, the modified RVM-based method
with the assumed DOA change set to a constant increase
of 1°, the modified RVM-based method with the assumed
DOA change set to a constant decrease of 1° and the Gibbs
sampling-based method. The performances for each are sum-
marized in Fig. 6 and Table V, respectively.

In this instance, the average RMSE values suggest a com-
parable performance in terms of estimation accuracy between
the traditional RVM-based methods and the two modified
RVM-based examples. This can be explained by the fact that
for both of the modified RVM-based examples, the assumed
DOA change does not match the actual DOA changes for
the entire time range which means the same improvements
as for the previous scenario can no longer be guaranteed.
Fig. 6 highlights this in the results for the two modified
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Fig. 6. RMSE values for the increasing DOA followed by decreasing
DOA example.

TABLE V

PERFORMANCE SUMMARY FOR THE INCREASING DOA
FOLLOWED BY DECREASING DOA EXAMPLE

TABLE VI

PERFORMANCE SUMMARY FOR THE INCREASING DOA WITH
AN ASSUMED DECREASE IN DOA OF 3° EXAMPLE

RVM examples. It demonstrates that with an assumed increas-
ing DOA the modified RVM offers some initial improvements,
while the performance is significantly degraded when the
DOA starts to decrease again. On the other hand, the exam-
ple with an assumed decreasing DOA performs worse than
the traditional RVM-based method initially and then offers
significant improvements when the actual DOA also starts to
decrease.

It can also be seen that for the Gibbs sampling-based method
there has been an improvement in DOA estimation accuracy.
In terms of average RMSE values this is a decrease of 68.60%,
which has been achieved without any knowledge of how the
DOA was going to change. However, there is again an increase
in the computation time.

To illustrate how a larger mismatch between actual and
assumed DOA changes effects the performance of the modified
RVM-based method now consider an example where the actual
DOA is increasing by 1° in each snapshot, while the assumed
change is a decrease of 3°. Here, the initial DOA is 100°,
with a constant signal value of −1. The RMSE values for
the methods are shown in Fig. 7 and summarized in Table VI
along with the computation times.

Fig. 7. RMSE values for the increasing DOA with an assumed decrease
in DOA of 3° example.

TABLE VII

PERFORMANCE SUMMARY FOR THE RANDOM CHANGES IN DOA WITH

AN ASSUMED INCREASE IN DOA OF 3° EXAMPLE

Here, it can be seen that the Gibbs sampling-based
method has offered an 86.36% improvement in average
RMSE compared to the traditional RVM-based method. There
has again been a significant increase in the computational
complexity.

For the modified RVM-based method the average RMSE
values suggests that there has been an improvement in esti-
mation accuracy. However, this is smaller than when the actual
and assumed DOA changes match. It is also unlikely that this
improvement would be obtained in every scenario the method
could be applied to. From looking at Fig. 7, we can see that
the traditional and modified RVM-based methods are showing
comparable performance for the just over half of the time
frame considered. This is the relative performance that would
be expected in the majority of cases.

E. Random Changes in Direction of Arrival

Finally, consider the example where the initial signal value
is assumed to be equal to 1 and the initial DOA is chosen
to be 100°. The actual DOA is then allowed to randomly
change by up to ±3° for each time snapshot. For the modified
RVM method assume that the actual DOA change is
an increase of 3°. This gives the results as summarized
in Table VII and Fig. 8.

It can be seen that the Gibbs sampling-based method has
again outperformed the modified RVM-based method in terms
of estimation accuracy, due to the fact that no prior knowledge
of how the DOA will change is required. As compared to the
traditional RVM-based method there has been an improvement
in RMSE of 78.81%. However, as is expected this is at the
cost of computation time.
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Fig. 8. RMSE values for the random DOA change example.

It is also worth noting that the average RMSE values suggest
that the modified RVM and traditional RVM have offered
a comparable performance. This is due to the fact that the
assumption of how the DOA will change is not valid, mean-
ing the modified RVM no longer offers any improvements.
Therefore, in this situation, the Gibbs sampling-based method
would be the best to use, assuming computational complexity
is not the main motivating factor.

IV. CONCLUSION

This paper has proposed two novel approaches for the
estimation of a dynamic DOA using ULAs with mutual
coupling. The first approach is a Bayesian compressed KF with
a modified RVM, where the traditional sparsity assumption
is replaced by an assumption that the estimated signals will
instead match predicted signal values. This results in the
derivation of a new posterior probability density function
of the received signals and the expression for the related
marginal likelihood function. The second proposed approach
is a Gibbs sampling approach, where sparsity is explicitly
enforced if there is a large difference between the previous
DOA estimate and the angle currently being considered. The
proposed approaches will be particularly useful when applied
to the problem of dynamic DOA estimation in the endfire
region of antenna arrays. Such problems can arise in numerous
application areas such as in communications and surveillance.

An extensive performance evaluation is provided and shows
that both of the proposed approaches outperform the traditional
RVM-based BCS KF in terms of mean RMSE values, by up
to 73.39% for the modified RVM-based method and 86.36%
for the Gibbs sampling-based method.

APPENDIX

A. Derivation of Posterior Distribution

Bayes’ rule gives

P(
x̃k |ỹk, σ

2
k , pk, x̃p

)P(
ỹk |σ 2

k , pk, x̃p
)

= P(
ỹk |x̃k, σ

2
k

)P(x̃k |pk, x̃p) (37)

where P(ỹk |x̃k, σ
2
k ) and P(x̃k |pk, x̃p) are known from (8)

and (9), respectively.

Now following the method suggested in [17] carry out the
multiplication on the right-hand side of (37), collect terms
in x̃k in the exponential and complete the square

−1

2

[
σ−2

k (ỹk − Ãx̃k)
T (ỹk − Ãx̃k) + (x̃k − x̃p)

T Pk(x̃k − x̃p)
]

= −1

2

[
σ−2ỹT

k ỹk − σ−2
k ỹT

k Ãx̃k − σ−2x̃T
k Ã

T
ỹk

+ σ−2
k x̃T

k Ã
T

Ãx̃k + x̃T
k Pk x̃k − x̃T

k Pk x̃p

− x̃T
p Pk x̃k + x̃T

p Pk x̃p
]

= −1

2

[
(x̃k − μ)T �−1(x̃k − μ) − μT �−1μ

+ σ−2ỹT
k ỹk + x̃T

p Pk x̃p
]

(38)

where � and μ are given by (14) and (15), respectively. This
then gives the posterior distribution as (13), with the remaining
exponential terms

−1

2

[
σ−2

k ỹT
k ỹk + x̃T

p Pk x̃p − μT �−1μ
]
. (39)

B. Derivation of Marginal Likelihood

From (37), the following is known:

P(
ỹk |σ 2

k , pk, x̃p
) = P(

ỹk |x̃k, σ
2
k

)
,P(x̃k |pk, x̃p)

P(
x̃k |ỹk, σ

2
k , pk, x̃p

) (40)

meaning the term in the exponential will be (39) where

μT �−1μ = (
σ−2

k Ã
T

ỹk + Pk x̃p
)T

�T �−1

×�
(
σ−2

k Ã
T

ỹk + Pk x̃p
)

= (
σ−2

k Ã
T

ỹk + Pk x̃p
)T (

σ−2
k �Ã

T
ỹk + �Pk x̃p

)

= σ−4
k ỹT

k Ã�Ã
T

ỹk + σ−2ỹT
k Ã�Pk x̃p

+σ−2
k x̃T

p PT
k Ã

T
ỹk + x̃T

p PT
k �Pk x̃p. (41)

Therefore the exponential term is given by

−1

2

[
σ−2

k ỹT
k ỹk + x̃T

p Pk x̃p − σ−4
k ỹT

k Ã�Ã
T

ỹk

− σ−2
k ỹT
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k x̃T

p PT
k Ã

T
ỹk − x̃T

p PT
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]
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[
ỹT

k

[
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T ]
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p

[
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x̃p

− σ−2
k ỹT

k Ã�Pk x̃p − σ−2
k x̃T

p PT
k Ã

T
ỹk

]
. (42)

The term outside of the exponential is given by

(
2πσ 2

k

)−M
(2π)−N |Pk |1/2

(2π)−N |�|− 1
2

= (
2πσ 2

k

)−M |�| 1
2 |Pk | 1

2 . (43)

This gives the marginal likelihood as

P(
ỹk |σ 2

k , pk, x̃p
)

= (
2πσ 2

k

)−M |�| 1
2 |Pk | 1

2

× exp

{
−1
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ỹT
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p Cx̃p − 2σ 2

k ỹT
k Ã�Pk x̃p

]}
(44)
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where B and C are defined as in Section II-B. The log
likelihood is then given by

L(
σ 2

k , pk

)

= log

{(
2πσ 2

k

)−M |�| 1
2 |Pk | 1

2

× exp

{
−1

2

[
ỹT

k Bỹk + x̃T
p Cx̃p − 2σ 2

k ỹT
k Ã�Pk x̃p

]}}

= −M log(2π) − M log σ 2
k + 1

2
log |�|1

2
log |Pk |

+ − 1

2

[
ỹT

k Bỹk + x̃T
p Cx̃p − 2σ 2

k ỹT
k Ã�Pk x̃p

]
. (45)

Using the Woodbury matrix inversion identity gives

B = σ−2
k I − σ−2

k Ã
(
Pk + σ−2

k Ã
T

Ã
)−1Ã

T
σ−2

k (46)

which means
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k ỹk − ỹT
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T
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T
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)
ỹk

= ỹT
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k ỹk − ỹT
k σ−2

k Ã�Ã
T
σ−2

k ỹk

= σ−2
k ỹT

k (ỹk − Ãμ) + σ−2
k ỹT

k Ã�Pk x̃p

= σ−2
k

∥∥ỹT
k − Ãμ

∥∥2
2 + μT Pkμ + σ−2ỹT

k Ã�Pk x̃p.

(47)

Also, we know that PT
k = Pk as Pk is a real-valued diagonal

matrix. This means

x̃T
p Cx̃p = x̃T

p [Pk − Pk�Pk]x̃p

= x̃T
p Pk x̃p − x̃T

p Pk�Pk x̃p

= x̃T
p Pk x̃p − x̃T

p Pkμ + σ−2
k ỹT

k Ã�Pk x̃p (48)

which then gives the log likelihood function in (17).

C. Derivation of Update Expressions for Modified RVM

First, differentiating (17) with respect to pk,n gives

−1

2

[
�nn − 1

pk,n
+ μ2

n + x̃2
e,n − x̃e,nμn

]
(49)

and equating to zero gives

�nn − 1

pk,n
+ μ2

n + x̃2
e,n − x̃e,nμn = 0

1 − pk,n�nn − pk,nμ2
n − pk,n x̃2

e,n + pk,n x̃e,nμn = 0

γn − pk,n[μ2
n + x̃2

e,n − x̃e,nμn] = 0 (50)

which leads to (18).
Now collect the terms with σ 2

k in to give

−1

2

[
2M log σ 2

k − log |�| + σ−2
k ||ỹk − Ãμ||22

]
(51)

and then define τ = σ−2
k giving

−1

2

[
2M log τ−1 − log |�| + τ ||ỹk − Ãμ||22

]

= −1

2

[ − 2M log τ − log |�| + τ ||ỹk − Ãμ||22
]
. (52)

Now differentiate (52) with respect to τ and equate to zero to
give

−2M

τ
+ tr(�Ã

T
Ã) + ||ỹk − Ãμ||22 = 0 (53)

where tr(·) indicates the trace. As tr(�Ã
T

Ã) can be written
as τ−1 ∑

n γn giving

τ−1

(
2M −

∑
n

γn

)
= ||ỹk − Ãμ||22 (54)

which in turn gives (19).

D. Derivation of (30)–(33)

From (29), it is known that

P(
x̃k,n|ỹk,n, σ 2

k , pk,n, z̃k,n
) ∝ (1 − z̃k,n)δ0

×N (ỹk,n |Ãn x̃k,n, σ 2
k )

+ z̃k,nN (x̃k,n |0, pk,n)N (ỹk,n |Ãn x̃k,n, σ
2
k ). (55)

If we then combine the exponential terms in the second term
in (55) we get

−1

2

[
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n ỹk,n + x̃ T

k,nÃ
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k,nÃn x̃k,n − p0x̃ T
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Completing the square gives

−1

2

[
(x̃k,n − μ̂n)T p̂k,n(x̃k,n − μ̂n) − μ̂n p̂k,nμ̂n + p0ỹT

k,n ỹk,n

]

(57)

where p̂k,n and μ̂k,n are given by (31) and (32),
respectively.

In order to complete the expression given in (30), it is now
necessary to get a new indicator variable, ẑk,n for the new
posterior distribution for x̃k,n . To do this, assume that

z̃k,n

1 − z̃k,n
N (0|0, pk,n) = ẑk,n

1 − ẑk,n
N (0|μ̂n, p̂k,n). (58)

Thus giving us (33), allowing us to write the posterior distri-
bution for xk,n in the form given in (30).
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