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DGTD Analysis of Electromagnetic Scattering From
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Abstract—To avoid straightforward volumetric discretization, a
discontinuous Galerkin time-domain (DGTD) method integrated
with the impedance boundary condition (IBC) is presented in this
paper to analyze the scattering from objects with finite conduc-
tivity. Two situations are considered. 1) The skin depth is smaller
than the thickness of the conductive volume. 2) The skin depth
is larger than the thickness of a thin conductive sheet. For the
first situation, a surface impedance boundary condition (SIBC) is
employed, wherein the surface impedance usually exhibits a com-
plex relation with the frequency. To incorporate the SIBC into
DGTD, the surface impedance is first approximated by rational
functions in the Laplace domain using the fast relaxation vector-
fitting (FRVF) technique. Via inverse Laplace transform, the time-
domain DGTD matrix equations can be obtained conveniently in
integral form with respect to time t. For the second situation, a
transmission IBC (TIBC) is used to include the transparent effects
of the fields. In the TIBC, the tangential magnetic field jump
is related with the tangential electric field via the surface con-
ductivity. In this work, a specifically designed DGTD algorithm
with TIBC is developed to model the graphene up to the tera-
hertz (THz) band. In order to incorporate the TIBC into DGTD
without involving the time-domain convolution, an auxiliary sur-
face polarization current governed by a first-order differential
equation is introduced over the graphene. For open-region scat-
tering problems, the DGTD algorithm is further hybridized with
the time-domain boundary integral (TDBI) method to rigorously
truncate the computational domain. To demonstrate the accuracy
and applicability of the proposed algorithm, several representative
examples are provided.

Index Terms—Auxiliary differential equation (ADE), discon-
tinuous Galerkin time-domain (DGTD) method, finite integral
technique (FIT), graphene, surface/transmission impedance
boundary condition (SIBC/TIBC), time-domain boundary
integral (TDBI) algorithm, vector-fitting.

I. INTRODUCTION

T O ANALYZE the electromagnetic scattering from pen-
etrable structures, the standard numerical methods such

as finite difference time-domain (FDTD) method [1], finite
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element method (FEM) [2], and discontinuous Galerkin time-
domain (DGTD) method [4] require the discretization of the
interior regions of the scatterers. To guarantee the accuracy, par-
ticularly fine spatial mesh elements are unavoidable, thus result-
ing in a larger number of unknowns and stringent Courant–
Friedrichs–Lewy (CFL) condition for the time-domain solvers
with explicit marching scheme. Usually, the average mesh size
le for a conducting object with skin depth δ is around α · δ/20,
where α is a parameter dependent on the order of basis function,
the solver used, etc.

Based on the fact that the electromagnetic waves are
highly attenuated in good conducting medium, an impedance
boundary condition (IBC) [2], [5] can be applied to replace the
conducting object. Thus, volumetric discretization is no longer
required. For a conductive structure with skin depth smaller
than its thickness, the tangential components of the electric
and magnetic fields over the surface of object are correlated
with each other by a frequency dependent surface impedance
Zs [6], [9], which can be formulated as a surface impedance
boundary condition (SIBC) [10]. The SIBC was first proposed
by Leontovich [11] and later a rigorous model was developed
by Senior [12]. Over the past years, the SIBC has already been
integrated into FDTD [6]–[8], FEM–[14], and integral equation
(IE)-based algorithms [15], [16] to solve the scattering, reflec-
tion, and transmission from imperfectly conductive objects.

For conductors with thickness on the order or far smaller than
the skin depth, the effects of the electromagnetic fields transmit-
ted to the other side of the conductor must be taken into account.
In this case, a transmission IBC (TIBC) is required by relating
the difference between the tangential magnetic field over the
two sides of the thin conductor to the tangential electric field
via an impedance matrix [17]. In [18], the TIBC is success-
fully integrated into an FDTD approach to study the shielding
effectiveness of a thin conductive sheet, where the skin depth is
on the order of the thickness of conductor. As an ideal can-
didate of the thin conductive sheet, the atom-thick graphene
has been thoroughly investigated via the state-of-the-art analyt-
ical and numerical methods. In [19], a Dyadic Green’s function
(DGF) subjected to the TIBC is derived for an infinite long
free-standing graphene ribbon. Based on this DGF, the radiation
from a current source in the presence of graphene ribbons can
be exactly calculated. In [20]–[22], the TIBC is incorporated
into FDTD and IE solvers to analyze the interaction between
the electromagnetic wave and the graphene, where the trans-
mission, reflection, and absorption of electromagnetic waves,
the surface plasmon resonance, and the far-field scattering are
characterized, etc.
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In this work, the SIBC-enhanced DGTD scheme is devel-
oped to study the electromagnetic scattering from conduc-
tive volumes. Simultaneously, a DGTD algorithm combined
with TIBC is specifically designed to analyze the electromag-
netic interaction with graphene from microwave to terahertz
(THz) frequencies. As the combination of finite volume method
(FVM) [23] and FEM [2], DGTD [4], [24]–[27] is capa-
ble of achieving high-order accuracy and involves only local
operations. The resultant mass matrices are block-diagonal,
and the finalized matrix system can be solved efficiently with
explicit marching scheme. Since all boundary conditions are
implemented into DGTD by reformulating the numerical flux
based on the Rankine–Hugoniot jump relations [23], the ana-
lytical expression of numerical flux in the time-domain must
be available in order to facilitate the DGTD analysis. However,
the surface impedance or surface conductivity in the IBCs is
usually a very complex function of the frequency, thus the time-
domain counterpart of the numerical flux is not available via
analytical inverse Fourier transform. To overcome this problem,
the surface impedance Zs involved in SIBC is approximated by
rational functions in the Laplace domain using fast-relaxation
vector-fitting (FRVF) method [28], [29]. Via inverse Laplace
transform, then, the time-domain counterpart can be readily
obtained according to the fact that division of the function by
the state variable (s = jω) in the Laplace domain is an inte-
gral operation in the time-domain [27]. Resorting to the finite
integral technique (FIT), the matrix equations in integral form
are discretized into a fully discrete matrix system. On the other
hand, the surface conductivity of the graphene with only intra-
band contribution is in a Drude-model form (below or in the
THz band, the intraband term usually overwhelms the interband
term); thus, an auxiliary differential equation (ADE) method
[30] is exploited to incorporate the TIBC for the graphene into
DGTD. With this ADE, no recursive convolution is required
and the dispersive effects are equivalently represented by a
time-dependent auxiliary surface polarization current governed
by the ADE. For open-space problems, the hybrid DGTD and
time-domain boundary integral (TDBI) algorithm [3], [4] is
applied to rigorously truncate the computational domain via
evaluating the field values required by incoming flux through
the explicit TDBI scheme based on the equivalence principle.

This paper is organized as follows. In Section II, the theory
and mathematical formulations of the DGTD-IBC algorithm
are detailed. In Section III, numerical results are presented to
validate the accuracy and robustness of the proposed algorithm.
Conclusion is made at the end of this paper.

II. THEORY AND FORMULATION

A. Formulation of DGTD With SIBC

For a conductive object with skin depth much smaller than its
thickness, the tangential components of the electric and mag-
netic fields over the surface of the conductor are approximately
related by the SIBC [11]

n̂× (n̂×E) = Zs · n̂×H (1)

n̂× (n̂×H) = −Ys · n̂×E (2)

where n̂ is a unit normal vector pointing into the conductor,

Zs =
√

jωμ
jωε+σ is the surface impedance, and Ys = 1/Zs is the

corresponding surface admittance.
To derive the numerical flux in the presence of the SIBC [(1)

and (2)], we suppose that the computational domain Ω bound
by ∂Ω is split into nonoverlapping elements Ωi with bound-
ary ∂Ωi. According to the Rankine–Hugoniot jump relations
along the characteristic curves for the Riemann problems, we
can obtain the mathematical expression of the numerical flux
for element i as [23]

n̂i,f×H∗
f = n̂i,f×

⎡⎣
(
ZiHi + Z̃fH̃f

)
+ n̂i,f×

(
Ei − Ẽf

)
Zi + Z̃f

⎤⎦
(3)

n̂i,f ×E∗
f = n̂i,f×

⎡⎣
(
Y iEi + Ỹ f Ẽf

)
+ n̂i,f×

(
H̃f −Hi

)
Y i + Ỹ f

⎤⎦
(4)

where H̃f and Ẽf are the fields from the neighboring element
of element i through face f , n̂i,f is an unit outward normal
vector at face f , Zi and Z̃f are the characteristic impedance
in element i and its adjacent element at face f , respectively; Yi

and Ỹ f are the corresponding characteristic admittance.
Suppose that the face fc (f = fc) of element i coincides with

the SIBC, (1) and (2) can be rewritten as

n̂i
fc × (n̂i

fc × Ẽfc) = Zs · n̂i
fc × H̃fc (5)

n̂i
fc × (n̂i

fc × H̃fc) = −Ys · n̂i
fc × Ẽfc . (6)

Substituting (5) into (3) and (6) into (4), the numerical flux
flowing through the face fc at the SIBC is simplified to

n̂i,f×H∗
f = n̂i,f×

[
ZiHi + n̂i,f×Ei

Zi + Z̃f

]
(7)

n̂i,f ×E∗
f = n̂i,f×

[
Y iEi − n̂i,f×Hi

Y i + Ỹ f

]
(8)

with f = fc, Z̃fc = Zs, and Ỹfc = 1/Zs. When the conduc-
tivity σ → ∞, the above numerical flux is simplified to n̂i

f ×
H∗

f = n̂i,f×
(
Hi + n̂i,f×Ei/Zi

)
and n̂i

f ×E∗
f = 0, which

is for the perfectly electric conductor (PEC) case.
However, due to the complex relation between the surface

impedance Zs and the angular frequency ω, the analytical
Fourier transform is not available; thus, the time-domain coun-
terpart of numerical flux cannot be obtained directly. To attack
this problem, we first approximate the surface impedance Zs

with rational functions by the FRVF technique [28], [29]
in the Laplace domain based on the Laplace transform pair∫ t

0
f(τ)dτ ↔ F (s)/s.
The FRVF method approximates the samples

{(ωp, Zs(ωp)), p = 1, . . . , P} over a frequency band by
the rational functions [28], [29]
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Zs(s) =
M∑
m

cm
s− am

+ d+ se

=

M∑
m

cms−1

1− ams−1
+ d+

e

s−1
(9)

where am and cm denote the pole and the residue, respectively;
am and cm can either be real or come in complex conjugate
pairs, d and e are two optional real parameters, M is the total
number of poles. In this work, the coefficient e is set to zero.
After the reduction in fractions to a common denominator and
merger of similar items, we rewrite (9) as

Zs(s) =
u0 + u1s

−1 + u2s
−2 + · · ·+ uMs−M

b0 + b1s−1 + b2s−2 + · · ·+ bMs−M

=

∑M
q=0 uqs

−q∑M
q=0 bqs

−q
. (10)

To solve the fitting problem in (9), the FRVF technique com-
prises two stages: pole identification and residue identification.

Next, the finalized Maxwell’s matrix system will be derived
following the standard DG process. In the Laplace domain,
by applying the DG testing to the two first-order Maxwell’s
equations in the mesh element i, we can obtain∫

Ωi

Φi
k · [εiEi − s−1∇×Hi

]
dr

= s−1
4∑

f=1

∫
∂Ωi,f

Φi
k · [n̂i,f × (H∗

f −Hi)
]
dr (11)∫

Ωi

Ψi
l ·
[
μiH

i + s−1∇×Ei
]
dr

= s−1
4∑

f=1

∫
∂Ωi,f

Ψi
l ·
[
n̂i,f × (Ei −E∗

f )
]
dr (12)

where i denotes the index of present mesh element, Φi
k and

Ψi
l are the two testing functions for the Ampere’s law and

Maxwell–Faraday’s law equations, respectively; Ei and Hi are

the electric and magnetic fields with Ei =
∑ni

e

k=1 e
i
k(t)Φ

i
k(r)

and Hi =
∑ni

h

l=1 h
i
l(t)Ψ

i
l(r), n

i
e and ni

h represent the number
of corresponding basis functions in element i, f is the index
of four tetrahedral faces, εi and μi are the permittivity and
permeability in the element i, respectively.

By substituting (3) and (7) into (11), (4) and (8) into (12), we
can get∫

Ωi

Φi
k · [εiEi − s−1∇×Hi

]
dr

= s−1
4∑

f=1
f �=fc

∫
∂Ωi

f

Φi
k·
[
n̂i
f×

Z̃f (H̃f−Hi)−n̂i
f × (Ẽf−Ei)

Zi+Z̃f

]
dr

+ s−1

∫
∂Ωi

fc

Φi
k ·

[
n̂i
fc ×

n̂i
fc

×Ei − ZsH
i

Zi + Zs

]
dr (13)

∫
Ωi

Ψi
l ·
[
μiH

i + s−1∇×Ei
]
dr

= s−1
4∑

f=1
f �=fc

∫
∂Ωi

f

Ψi
l ·
[
n̂i
f×

Ỹ f (Ei−Ẽf )+n̂i
f × (Hi−H̃f )

Y i + Ỹ f

]
dr

+ s−1

∫
∂Ωi

fc

Ψi
l ·
[
n̂i
fc×

YsE
i+n̂i

fc
×Hi

Y i + Ys

]
dr. (14)

Substituting (10) into (13) and (14), and multiplying (13) by
Zi + Zs and (14) by Y i + Ys, then via inverse Laplace trans-
form, we can get two semidiscretized matrix equations in
integral form with respect to the time t

M̄i
ee ·

[
(b̃0+u0)e

i
0+(b̃1+u1)e

i
1+ · · ·+(b̃M+um)eiM

]
−S̄i

eh ·
[
(b̃0+u0)h

i
1+(b̃1+u1)h

i
2+ · · ·+ (b̃M+uM )hi

M+1

]
=

4∑
f=1
f �=fc

{
F̃i,f

eh ·
[
(b̃0 + u0)h̃

f
1 + · · ·+ (b̃M + uM )h̃f

M+1

]

−F̄i,f
eh ·

[
(b̃0 + u0)h

i
1 + · · ·+ (b̃M + uM )hi

M+1

]
−F̃i,f

ee ·
[
(b̃0 + u0)ẽ

f
1 + · · ·+ (b̃M + uM )ẽfM+1

]
+ F̄i,f

ee ·
[
(b̃0 + u0)e

i
1 + · · ·+ (b̃M+uM )eiM+1

]}
+F̄i,fc

ee ·(b0ei1 + · · ·+ bMeiM+1

)
−F̄i,fc

eh · (u0u
i
1 + · · ·+ uMhi

M+1

)
(15)

M̄i
hh ·

[
(ũ0+b0)h

i
0+(ũ1+b1)h

i
1+ · · ·+(ũM+bm)hi

M

]
+S̄i

he ·
[
(ũ0+b0)e

i
1+(ũ1+b1)e

i
2 + · · ·+ (ũM+bM )eiM+1

]
=

4∑
f=1
f �=fc

{
F̄i,f

he · [(ũ0 + b0)e
i
1 + · · ·+ (ũM + bM )eiM+1

]
−F̃i,f

he ·
[
(ũ0 + b0)ẽ

f
1 + · · ·+ (ũM + bM )ẽfM+1

]
+F̄i,f

hh ·
[
(ũ0 + b0)h

i
1 + · · ·+ (ũM + bM )hi

M+1

]
− F̃i,f

hh ·
[
(ũ0 + b0)h̃

f
1 + · · ·+ (ũM+bM )h̃f

M+1

]}
+F̄i,fc

he ·(b0ei1 + · · ·+ bMeiM+1

)
+ F̄i,fc

hh · (u0h
i
1 + · · ·+ uMhi

M+1

)
(16)

where b̃q = Zibq , ũq = Y iuq , column vectors eiq and hi
q com-

prise coefficients of basis functions Φi(r) for Ei and Ψi(r)
for Hi(r). The kth element of eiq and lth element of hi

q is
defined by

{eiq}k =

∫ t

0

· · ·
∫ t

0︸ ︷︷ ︸
q

eik(τ) dτ · · · dτ︸ ︷︷ ︸
q

(17)

{hi
q}l =

∫ t

0

· · ·
∫ t

0︸ ︷︷ ︸
q

hil(τ) dτ · · · dτ︸ ︷︷ ︸
q

. (18)

The two other column vectors ẽfq and h̃f
q contain the

coefficients of basis functions for the fields in the neighboring
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element through face f , whose elements have similar
definitions as (17) and (18). The matrices M̄i

ee and M̄i
hh are the

mass matrices, S̄i
eh and S̄i

he are stiffness matrices; F̄i
eh, F̄i,f

ee ,
F̄i,f

he , and F̄i,f
hh are flux matrices for outgoing flux through face

f that only requires fields in the local element i; F̃i,f
ee , F̃i,f

eh ,
F̃i,f

he , and F̃i,f
hh are flux matrices for the incoming flux via face

f that only needs fields from the neighbors of element i. Their
mathematical expressions are given as[

M̄i
ee

]
kl

=

∫
Φi

k(r) · εiΦi
l(r)dr[

M̄i
hh

]
kl

=

∫
Ψi

k(r) · μiΨi
l(r)dr[

S̄i
eh

]
kl

=

∫
Φi

k(r) · ∇ ×Ψi
l(r)dr[

S̄i
he

]
kl

=

∫
Ψi

k(r) · ∇ × Φi
l(r)dr[

F̄i,f
eh

]
kl

=
Z̃f

Zi + Z̃f

∫
∂Ωi

f

Φi
k(r) · n̂i

f ×Ψi
l(r)dr

[
F̃i,f

eh

]
kl

=
Z̃f

Zi + Z̃f

∫
∂Ωi

f

Φi
k(r) · n̂i

f × Ψ̃i,f
l (r)dr

[
F̄i,f

ee

]
kl

=
1

Zi + Z̃f

∫
∂Ωi

f

Φi
k(r) · n̂i

f × n̂i
f × Φi

l(r)dr[
F̃i,f

ee

]
kl
=

1

Zi+Z̃f

∫
∂Ωi

f

Φi
k(r)·n̂i

f×n̂i
f×Φ̃i,f

l (r)dr

[
F̄i,fc

ee

]
kl

=

∫
∂Ωi

fc

Φi
k(r) · n̂i

fc × n̂i
fc × Φi

l(r)dr[
F̄i,fc

eh

]
kl

=

∫
∂Ωi

fc

Φi
k(r) · n̂i

fc ×Ψi
l(r)dr

[
F̄i,f

he

]
kl

=
Ỹ f

Y i + Ỹ f

∫
∂Ωi

f

Ψi
k(r) · n̂i

f × Φi
l(r)dr

[
F̃i,f

he

]
kl

=
Ỹ f

Y i + Ỹ f

∫
∂Ωi

f

Ψi
k(r) · n̂i

f × Φ̃i,f
l (r)dr

[
F̄i,f

hh

]
kl

=
1

Y i + Ỹ f

∫
∂Ωi

f

Ψi
k(r) · n̂i

f × n̂i
f ×Ψi

l(r)dr[
F̃i,f

hh

]
kl

=
1

Y i + Ỹ f

∫
∂Ωi

f

Ψi
k(r) · n̂i

f × n̂i
f × Ψ̃i,f

l (r)dr

[
F̄i,fc

he

]
kl

=

∫
∂Ωi

fc

Ψi
k(r) · n̂i

fc × Φi
l(r)dr[

F̄i,fc
hh

]
kl

=

∫
∂Ωi

fc

Ψi
k(r) · n̂i

fc × n̂i
fc ×Ψi

l(r)dr. (19)

To obtain a fully discrete matrix equation system, the multidi-
mensional integrations involved in (15) and (16) are approx-
imated by the FIT using the trapezoidal integration rule, i.e.,∫ t2
t1

f(τ)dτ = (t2 − t1)[f(t2) + f(t1)]/2. As a result, (17) and
(18) at t = (n+ 1)δt can be rewritten as

{eiq}k|n+1=(δt)q
n∑

nq=0

· · ·
n3∑

n2=0

n2∑
n1=0

([
eik
]
n1+1

+
[
eik
]
n1

2

)
(20)

{hi
q}k|n+1=(δt)q

n∑
nq=0

· · ·
n3∑

n2=0

n2∑
n1=0

([
hik
]
n1+1

+
[
hik
]
n1

2

)
.

(21)

It is noted that the field values Ẽf and H̃f in the neighboring
elements used for the incoming flux evaluation are not available
at t = (n+ 1)δt, which will result in an implicit time-marching
scheme of DGTD if still employing trapezoidal integration rule.
To keep the advantages of explicit DGTD, a rectangular inte-
gration rule is applied to approximate the multidimensional
integration involved in Ẽf

q and H̃f
q , namely

{ẽfq }k|n+1 = (δt)q
n∑

nq=0

· · ·
n3∑

n2=0

n2∑
n1=0

[
ẽfk

]
n1

(22)

{h̃f
q }k|n+1 = (δt)q

n∑
nq=0

· · ·
n3∑

n2=0

n2∑
n1=0

[
h̃fk

]
n1

. (23)

Substituting (20)–(23) into (15) and (16), and through a lengthy
mathematical operation, a matrix equation is reached as(

M̂i
e Ŝi

e

Ŝi
h M̂i

h

)[
ein+1

hi
n+1

]
=

(
F̂i

e

F̂i
h

)
(24)

where

M̂i
e =

[
(b̃0+u0)+

δt

2
(b̃1+u1) +· · ·+ (δt)M

2
(b̃M+uM )

]
M̄i

ee

−
[
δt(b̃0 + u0) + · · ·+ (δt)M+1(b̃M + uM )

] 4∑
f=1, �=fc

Fi,f
ee

2

−
[
δt · b0 + (δt)2b1 + · · ·+ (δt)

M+1
bM

] F̄i,fc
ee

2
(25)

M̂i
h=

[
(ũ0+b0)+

δt

2
(ũ1+b1) +· · ·+ (δt)M

2
(ũM+bM )

]
M̄i

hh

− [
δt(ũ0 + b0) + · · ·+ (δt)M+1(ũM + bM )

] 4∑
f=1, �=fc

Fi,f
hh

2

−
[
δt · u0 + (δt)2u1 + · · ·+ (δt)

M+1
uM

] F̄i,fc
hh

2
(26)

Ŝi
e = −

[
δt(b̃0 + u0) + · · ·+ (δt)M+1(b̃M + uM )

] S̄i
eh

2

+
[
δt(b̃0 + u0) + · · ·+ (δt)M+1(b̃M + uM )

] 4∑
f=1, �=fc

F̄i,f
eh

2

+
[
δt · u0 + (δt)2u1 + · · ·+ (δt)M+1uM

] F̄i,fc
eh

2
(27)

Ŝi
h =

[
δt(ũ0 + b0) + · · ·+ (δt)M+1(ũM + bM )

] S̄i
he

2

− [
δt(ũ0 + b0) + · · ·+ (δt)M+1(ũM + bM )

] 4∑
f=1, �=fc

F̄i,f
he

2

− [
δt · b0 + (δt)2b1 + · · ·+ (δt)M+1bM

] F̄i,fc
he

2
(28)
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F̂e=−Mi
ee ·
[
(b̃1 + u1)ĕ

i
1+ · · ·+(b̃M + uM )ĕiM

]
+ Si

eh ·
[
(b̃0 + u0)h̆

i
1 + · · ·+ (b̃M + uM )h̆i

M+1

]
+

4∑
f=1
f �=fc

{
F̃i,f

eh ·
[
(b̃0 + u0)h̃

f
1 + · · ·+ (b̃M + uM )h̃f

M+1

]

−F̄i,f
eh ·

[
(b̃0 + u0)h̆

i
1 + · · ·+ (b̃M + uM )h̆i

M+1

]
−F̃i,f

ee ·
[
(b̃0 + u0)ẽ

f
1 + · · ·+ (b̃M + uM )ẽfM+1

]
+ F̄i,f

ee ·
[
(b̃0 + u0)ĕ

i
1 + · · ·+ (b̃M+uM )ĕiM+1

]}
+F̄i,fc

ee ·(b0ĕi1 + · · ·+ bM ĕiM+1

)
−F̄i,fc

eh ·
(
u0h̆

i
1 + · · ·+ uM h̆i

M+1

)
(29)

F̂h=−Mi
hh ·

[
(ũ1 + b1)h̆

i
1+ · · ·+(ũM + bM )h̆i

M

]
− Si

he ·
[
(ũ0 + b0)ĕ

i
1 + · · ·+ (ũM + bM )ĕiM+1

]
+

4∑
f=1
f �=fc

{
F̄i,f

he · [(ũ0 + b0)ĕ
i
1 + · · ·+ (ũM + bM )ĕiM+1

]
−F̃i,f

he ·
[
(ũ0 + b0)ẽ

f
1 + · · ·+ (ũM + bM )ẽfM+1

]
+F̄i,f

hh ·
[
(ũ0 + b0)h̆

i
1 + · · ·+ (ũM + bM )h̆i

M+1

]
− F̃i,f

hh ·
[
(ũ0 + b0)h̃

f
1 + · · ·+ (ũM+bM )h̃f

M+1

]}
+F̄i,fc

he ·(b0ĕi1 + · · ·+ bM ĕiM+1

)
+F̄i,fc

hh ·
(
u0h̆

i
1 + · · ·+ uM h̆i

M+1

)
(30)

with

ĕiq|n+1 = eiq|n+1 − (δt)qein+1/2 (31)

h̆i
q|n+1 = hi

q|n+1 − (δt)qhi
n+1/2 (32)

ĕi0|n+1 = 0 (33)

h̆i
0|n+1 = 0. (34)

In order to efficiently address the multidimensional sum when
evaluating ẽfq (22), h̃f

q (23), ĕiq (31), and h̆i
q (32), four recursive

formulae are introduced

ẽfq |n+1 = ẽfq |n + δt · ẽfq−1|n+1 (35)

h̃f
q |n+1 = h̃f

q |n + δt · h̃f
q−1|n+1 (36)

ĕiq|n+1 = ĕiq|n + δt · ĕiq−1|n+1 + (δt)q · e
i
n

2
(37)

h̆i
q|n+1 = h̆i

q|n + δt · h̆i
q−1|n+1 + (δt)q · h

i
n

2
. (38)

The dimension of the locally coupled matrix equation in (24) is
(ni

e + ni
h)× (ni

e + ni
h). In DGTD analysis, the inversion of the

coupling matrix is precalculated and stored before launching
the time-marching scheme. Thus, the computational cost with
FIT is on the order of (ni

e + ni
h)× (ni

e + ni
h)×O(N ′) with

N ′ denoting the total number of elements over the ∂SIBC. For
elements not touching the ∂SIBC, the fourth-order Runge–Kutta
(RK) method is exploited. The corresponding computational

is on the order of (ni
e × ni

e + ni
h × ni

h)×O(N ′′) with N ′′

representing the total number of elements not over the ∂SIBC.

B. Formulation of DGTD With TIBC for Graphene

The above SIBC-enhanced DGTD solver is only valid for
conducting objects with skin depth much smaller than the
thickness; it fails for thin conductive sheet with much larger
attenuation length for instance a graphene sheet. To handle
this situation, a TIBC-augmented DGTD scheme is detailed
in this part to characterize the electromagnetic properties of
graphene from microwave to THz bands. As 2-D material
with atoms arranged into a honeycomb lattice having thickness
around 0.34 nm, graphene has significant potential applica-
tions in transistors [31], surface plasmon waveguides [33], THz
antennas [32], etc. The intrinsic properties of graphene can be
dynamically manipulated by tunning its surface conductivity
σg(ω, μc,Γ, T ) which is the function of angular frequency ω,
chemical potential μc, scattering rate Γ, and temperature T . For
a nonmagnetized graphene in the THz band, according to the
kubo formula [34], the expression of surface conductivity is
given by

σg =− jσ0

(ω − j2Γ)
(39)

with

σ0 =
q2kBT

π�2

[
μc

kBT
+2ln

(
e−μc/kBT+1

)]
. (40)

To model the graphene, instead of straightforwardly volumetric
meshing, a TIBC given by [19], [20]

n̂× (H+ −H−) = σgEt (41)

can be used to replace the graphene, where the superscripts +
and − denote the upper and lower faces of graphene, respec-
tively; n̂ is a unit normal vector pointing from lower to upper
face.

One way to incorporate this TIBC into DGTD is using
the same method as above based on the fact that the surface
conductivity in the Laplace domain can be written as

σg =
σ0

s+ 2Γ
=

s−1σ0

1 + 2Γs−1
(42)

which can be regarded as a rational function with only one
pole a1 = −2Γ and residue c1 = σ0. Via the inverse Laplace
transform, the time-domain matrix equations will be obtained.

Instead of using the FIT method, an ADE method is applied
by introducing an auxiliary surface polarization current J

J(ω) = σgEt(ω). (43)

Based on the ADE method, the multidimensional integral oper-
ation in the temporal space is avoided and the dispersive effect
is replaced by a time-dependent auxiliary surface current. The
time-domain counterpart of (43) can be written as

∂J

∂t
+ 2Γ · J = σ0Et. (44)
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Based upon the Rankine–Hugoniot jump relations, the numeri-
cal flux subject to the TIBC in (41) is revised as

n̂i,f×H∗
f =n̂i,f×

⎡⎣
(
ZiHi + Z̃fH̃f

)
+ n̂i,f×

(
Ei − Ẽf

)
Zi + Z̃f

+αg

Z̃fJi
fg(

Zi + Z̃f
)
⎤⎦ (45)

n̂i,f ×E∗
f =n̂i,f×

⎡⎣
(
Y iEi + Ỹ f Ẽf

)
+ n̂i,f×

(
H̃f −Hi

)
Y i + Ỹ f

−αg

Ji
fg

2
(
Y i + Ỹ f

)
⎤⎦ (46)

where fg denote the face index of element i overlapping the
TIBC, αg = 1 if f = fg otherwise αg = 0.

To construct the DGTD matrix system, the auxiliary surface
current J is approximated by ϕi(r) = n̂i,fg × Φi(r)× n̂i,fg

Ji =

ni
g∑

p=1

cip(t)ϕ
i
p(r) (47)

with cip denoting time-dependent expansion coefficient, ni
g rep-

resenting the number of basis functions. In this work, ni
g = 6

since six edge basis functions not over the face fg have no tan-
gential components according to the properties of edge vector
basis functions [2].

To facilitate DGTD operation, the DG testing is applied to the
two first-order time-derivative Maxwell’s curl equations and the
ADE in (44); the time-domain matrix equations can be obtained
as

M̄i
ee

∂ei

∂t
= S̄i

ehh
i+

4∑
f=1

(
F̄i,f

ee e
i+F̃i,f

ee ẽf + F̄i,f
eh h

i + F̃i,f
eh h̃

f
)

+ αgF̄egc
i (48)

M̄i
hh

∂hi

∂t
=− S̄i

hee
i+

4∑
f=1

(
F̄i,f

hhh
i+F̃i,f

hh h̃
f+F̄if

hee
i+F̃i,f

he ẽ
f
)

+ αgF̄hgc
i (49)

J̄i ∂c
i

∂t
= −2ΓJ̄ici + σ0M̄

i
ce

i (50)

where[
J̄i
]
kl

=

∫
∂Ωi

fg

ϕi
k(r) ·ϕi

l(r)dr (51)

[
M̄c

]
kl

=

∫
∂Ωi

fg

ϕi
k(r) · Φi

l(r)dr (52)

[
F̄ii,fg

ec

]
kl

=
Z̃i
f

Zi + Z̃f

∫
∂Ωi

fg

Φi(r) ·ϕi
l(r)dr (53)

[
F̄

ii,fg
he

]
kl

=
1

Y i + Ỹ f

∫
∂Ωi

fg

Ψi
k(r) · (n̂i,fg ×ϕi

l(r))dr. (54)

The semidiscrete matrix equations (48)–(50) will be solved by
the standard RK method.

Since (24) and (48)–(50) have been solved with an explicit
time-marching scheme the CFL-like condition must be satis-
fied to ensure stability. In this work, the time step size δt is
determined in terms of the following condition [4], [30]:

c0δt ≤ min{lmin
√
εrμr/4(p+ 1)2} (55)

where c0 is the free-space light speed, p is the order of basis
function, and lmin is the minimum edge length.

C. Hybrid DGTD and TDBI Scheme [4]

For differential equation solvers, the computational domain
of DGTD has to be exactly and efficiently truncated for open-
region problems. At the truncation boundary ∂Ω, the field
values Ẽf and H̃f used for the incoming flux (the total numeri-
cal flux can be split into two parts: outgoing and incoming flux.
The outgoing flux only requires the field values in present ele-
ment, while the incoming flux needs the field values from its
neighbors) calculation in (3), (7), (45), and (46) are evaluated
by the time-domain boundary integral (TDBI) algorithm on the
basis of Huygens’ principle [35], [36] with equivalent electric
and magnetic currents explicitly calculated from the DGTD
scheme [4]. This method is mathematically exact and only
involves forward matrix–vector product operation. The trunca-
tion boundary can be conformal to the surface of the scattering
object, and more importantly locally truncated boundary can
be applied to the disconnected scatterers. Thereby, the resulting
computational domain can be as small as possible.

III. NUMERICAL RESULTS

To validate and demonstrate the accuracy of this proposed
algorithm, the scattering from various conductive structures
are investigated. For the excitation, a sinusoidally modulated
Gaussian plane wave defined as Einc(r, t) = p̂E0G(t− k̂ ·
r/c0), where p̂ = x̂ is the polarization, k̂ = ẑ is the direc-
tion of propagation, E0 = 1 V/m is the amplitude, and G(t) =
exp(−[t− t0]

2/τ2m) cos(2πfm[t− t0]) is a Gaussian pulse
with modulation frequency fm, delay t0, and duration τm.

A. Spherical Scattering Cluster

For the first example, a scatterer comprising of three dis-
connected spheres [4] with conductivity σ = 5.8 as shown in
Fig. 1 is studied. The surface impedance Zs is approximated
by rational functions with five poles as listed in Table I. The
fitted value and the original data are shown in Fig. 2, which
shows very good consistency. The parameters of the excitation
are set as: τm = 2/(π × 109) s, t0 = 5τm, and fm = 109 Hz.
As shown in Fig. 1, each sphere is locally truncated by the its
own conformal boundary, thus resulting in smaller number of
unknowns. Based on the Huygens’ principle, the fields required
for incoming flux evaluation at the truncation boundary are cal-
culated by the TDBI according to the equivalent currents over
the Huygens’ surface (dashed yellow curve). In this example,
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Fig. 1. Scattering cluster comprises three imperfectly conducting spheres [4].
All dimensions are in meters.

TABLE I
POLES am AND RESIDUES cm FOR THE SURFACE IMPEDANCE Zs WITH

σ = 5.8 M/S, AND THE OPTIONAL PARAMETER d = 306.3762

the total number of tetrahedrons is 29 647, and the time step
sizes for DGTD and TDBI are 1.39× 10−12 and 2.13× 10−11

s, respectively. In Fig. 3, the calculated RCS at 1.0003 GHz is
provided. For comparison, the reference by the finite-element-
boundary-integral (FE-BI) algorithm is also presented. Very
good agreements are noted.

B. Magnetized Plasma and Dielectric-Coated Sphere

In the second example, a conductive sphere coated by dif-
ferent dielectric layer is investigated. For convenience, it is
supposed that this sphere has same conductivity as the above
spherical cluster but with radius R = 0.3 m. Besides, a same
Gaussian pulse is utilized as the transient excitation. First, We
assume that there is only one dielectric layer with thickness
h1 = 0.015 m and relative permittivity εr = 1.5 covers this
sphere. For this example, 97 067 tetrahedrons are involved, and
the time step sizes for DGTD and TDBI are 1.3899× 10−12

and 2.6875× 10−11 s. In Fig. 4, the RCS calculated by the
SIBC enhanced DGTD-BI algorithm is presented. Also, the ref-
erence obtained by FE-BI method is provided for comparison.
Very good agreements are observed as well.

Next, we assume that this dielectric-coated sphere is cov-
ered by an additional magnetized plasma layer with thickness

Fig. 2. Approximated surface impedance Zs from 100 MHz to 5 GHz using
FRVF method with five poles.

Fig. 3. RCS on (a) xz- and (b) yz-planes computed at 1.002GHz from the
DGTD-SIBC algorithm and IE method.
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Fig. 4. RCS on (a) xz- and (b) yz-planes computed at 1.002GHz from the DGTD-SIBC algorithm and FE-BI approach.

Fig. 5. Computed RCS of the plasma-coated sphere on (a) xz- and (b) yz-planes computed at 1.003GHz.

h2 = 0.015 m apart from the above dielectric layer. For the
magnetized plasma, the permittivity becomes a frequency-
dependent tensor ε [37]. For instance, the permittivity for the
plasma with a z-directed magnetostatic field B0 = B0ẑ is given
by [37]

εz =

⎛⎝ εxx jεxy 0
−jεyx εyy 0

0 0 εzz

⎞⎠z

(56)

with

εzz = ε0

[
1− ω2

p

ω(ω − jυe)

]

εzxx = εzyy = ε0

[
1− (ωp/ω)

2[1− (jυe/ω)]

[1− (jυe/ω)]2 − (ωz
Ce

/ω)2

]

εzxy = εzyx = −ε0
(ωp/ω)

2(ωz
Ce

/ω)

[1− (jυe/ω))]2 − (ωz
Ce

/ω)2

where ωp, υe, and ωz
Ce

denote the plasma frequency (for an
arbitrarily static magnetic bias, ωCe

= ωx
Ce

x̂+ ωy
Ce

ŷ + ωz
Ce

ẑ),
electron collision rate, and cyclotron frequency, respectively. To
model the magnetized plasma by DGTD, an ADE method is
employed by introducing an auxiliary volume polarization cur-
rent density P(r, t) into the Maxwell–Faraday’s law equation.
The ADE governing the current density P is defined as [37]

∂tP+ υeP = ε0ω
2
pE+ ωCe ×P. (57)

To study the effects of the plasma layer, we first calculate
the RCS for the unmagnetized case with ωp = π × 2.8× 109

Hz and υe = 2π × 109. Then, the RCS for magnetized plasma
with ωx

Ce
= ωy

Ce
= ωz

Ce
= 2π × 109 Hz is computed. In Fig. 5,
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Fig. 6. Calculated (a) insertion loss (or transmission) ΓT and (b) reflection
coefficient ΓR versus different chemical potential μc but with fixed scattering
rate Γ = 0.35meV/2π�.

the detailed RCS plots are shown. As can be seen, for the
unmagnetized plasma, the RCS is symmetric. In the presence
of static magnetic field, the RCS becomes antisymmetric due to
the presence of Lorentz force which causes Faraday rotation.

C. Parallel-Plate Waveguide Loaded by a Graphene Sheet

In this example, the propagating properties of a plane wave in
a z-directed parallel-plate waveguide intercepted by a graphene
sheet are studied. The backward and forward plates are per-
fectly electric conductor (PEC), and the left and right plates
are perfectly magnetic conductor (PMC). The two ends of the
waveguide are truncated by Silver–Müller absorption bound-
ary condition (SM-ABC). The parameters of the Gaussian
pulse are set as: fm = 5× 1012 Hz, τm = 2/(π × 1013) s,
and t0 = 10τm. By launching the plane wave at the near-end
of the waveguide, the insertion loss ΓT and reflection ΓR
can be obtained for different chemical potentials, as shown in
Fig. 6. To verify the accuracy of the proposed algorithm, the
exact solution given by ΓT = 1 + ΓR and ΓR = − σgη0

2+σgη0
[19],

[38] are also presented, where η0 denotes the characteristic
impedances in free space. As expected, excellent agreements
are achieved. It is interestingly noted that the transmission
degrades but the reflection becomes significant as the increasing
of the chemical potential, which is attributed that the conduc-
tivity of the graphene becomes larger (more like an effective
conductor) as μc increases.

D. 5 by 10 µm2-Graphene Patch

To validate the proposed DGTB-TIBC algorithm for
graphene modeling, a 5× 10µm2-graphene patch in [39]

Fig. 7. Comparison of the normalized ECS and the reference result calculated
by DGTD-TIBC and the IE method [39].

under the illumination of a normally incident plane wave with
modulation frequency fm = 2.5 THz, duration τm = 1.274×
10−13 s, and delay t0 = 3tm is revisited. The parameters of
the surface conductivity σg are given by T = 300 K, μc =
0 eV, and Γ = 1

2τ with τ = 10−13 s. The figure-of-merits
for this example are either the total scattering-cross-section
(TSCS), the absorption-cross-section (ACS), the extinction-
cross-section (ECS), or the surface plasmon resonances (SPR).
In this example, the normalized ECS from 0.1 to 4 THz are cal-
culated by the proposed DGTD-RBC algorithm, as shown in
Fig. 7. For comparison, the numerical result in [39] obtained
by IE method is also shown. Apparently, good agreements are
observed.

E. Nonmagnetized Micrometer Graphene Ribbon

In the last example, a graphene ribbon with width w = 20µm
and length l = 100µm in the xy-plane is characterized by
the proposed DGTD-TIBC algorithm. The time step sizes for
DGTD and TDBI of this example are 1.1068× 10−16 and
2.6919× 10−15, respectively; the total number of tetrahedrons
involved in this example is 102 758. For this example, we set
fm = 5× 1012 Hz, τm = 2/π × 1013 s, t0 = 3τm, T = 300 K,
and Γ = 0.25 meV/2π�.

First, the TSCS versus different chemical potentials μc is
investigated, as shown in Fig. 8. To obtain the TSCS, we use
the formula given as

TSCS =

∮
S
Es ×H∗

sdS

||Einc ×H∗
inc||

(58)

where Es and Hs denote the scattered fields, the superscript
∗ represents complex conjugate, Einc and Hinc are the inci-
dent fields, and S is a surface enclosing the graphene. It is
first noted from Fig. 8 that the TSCS displays sharp maxima
at some frequency points in the THz band, which are due to
the far-field enhancement resulted from the surface plasmon
resonances. Also, the surface plasmon resonant frequencies are
up-shifted with higher μc. The reason behind this phenomenon
is that higher chemical potential requires more photon energy
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Fig. 8. Normalized total cross-scattering-section (TSCS) corresponds to differ-
ent chemical potentials.

Fig. 9. Calculated forward bistatic RCS of the graphene ribbon corresponding
to different chemical potentials

to excite the resonance, where the photon energy E is propor-
tional to frequency, namely E = �ω. Also, the forward bistatic
RCSs corresponding to different chemical potentials are pre-
sented in Fig. 9. It is observed that the peaks of the RCS happen
at the same frequency as the TSCS and higher chemical poten-
tial results in stronger scattering. To verify the strongly local
field confinement, the distributions of the electric field Ex at
the first two resonant frequencies f1 = 0.9541 and f2 = 2.806
THz for μc = 1.5 eV case are plotted in Fig. 10. To have
a basic insight into the far-field pattern, the normalized far-
field radiations in the E-plane at the above two frequencies
are shown in Fig. 11. It is interestingly noted that the far-field
patterns at f1 = 0.9541 and f2 = 2.806 THz are very simi-
lar to a half-wavelength dipole and one and a half-wavelength
dipole, respectively. This is attributed that the current distribu-
tion J = σgEt is very similar to the dipole’s current as shown
in Fig. 10.

Next, to show the effects of oblique incident wave (propagat-
ing in the yz-plane) on the plasmon resonance, the propagating
wave vector k̂ is redefined as k̂ = sin(θ)ŷ + cos(θ)ẑ with θ

denoting the angle between the wave vector k̂ and z-axis. The
calculated TSCSs corresponding to different incident angles
for the E-polarized wave (vector H calculated by k̂×E/η0 is
across the graphene ribbon) are presented in Fig. 12. It is noted

Fig. 10. Magnitude distribution of the normalized electric field Ex over the
graphene sheet at resonant frequencies f1 = 0.9541 THz (a) and f2 = 2.806
THz (b). Based on the current distribution, the periodicity at f1 is around one
third of that at f2, which complies with the frequency ratio f2/f1 ≈ 3.

Fig. 11. Normalized far-field patterns at f1 = 0.9541 THz and f2 = 2.806
THz for μc = 1.5 eV case.

Fig. 12. Normalized total cross-scattering-section (TSCS) versus different
incident angles for E-polarized wave.
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Fig. 13. Normalized total cross-scattering-section (TSCS) versus different
dielectric substrates.

that the magnitudes of resonant peaks at higher order plasmon
modes are pronouncedly influenced.

Finally, to have a better understanding about the impacts
of substrates on the SPR, we assume that the graphene rib-
bon is covered by two dielectric slabs with 2 µm thickness. In
Fig. 13, the TSCS versus substrates with different permittivi-
ties are presented. We observe that the resonant frequencies are
shifted down to the low-frequency region for higher permittiv-
ity substrate. This is due to the fact that the physical dimension
of the graphene becomes larger compared with wavelength
λ = λ0/

√
εr.

IV. CONCLUSION

In this paper, the DGTD algorithm combined with the SIBC
is developed to analyze the scattering from finite conducting
objects with skin depth much smaller than the conductor’s
thickness. Then, the DGTD is further integrated with the TIBC
to study the electromagnetic properties of graphene in the THz
band. Due to the application of IBC, the volumetric discretiza-
tion is avoided, which results in reduced number of unknowns
and improved CFL number for the explicit time-marching
scheme. Various numerical examples are provided to verify the
accuracy and feasibility of the proposed algorithm.
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