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Abstract—A general framework to combine the finite-difference
time-domain (FDTD) and the finite-element time-domain (FETD)
formulations, both based on the vector wave equation, is proposed.
In contrast to the existing stable hybrid FETD-FDTD, there is no
transition layer between two subdomains. In addition, the stability
of the proposed approach is analytically proved. This framework
allows combining different FDTD and FETD formulations to-
gether. Particularly, a fully unconditionally stable hybrid method
is proposed, which is proved to be energy conservative too. The key
ingredient is a finite-element tearing and interconnecting method
for electromagnetic problems with a new interface condition that
preserves the stability of the numerical method in each region.
Several numerical examples are considered in order to validate
the proposed methods. The numerical results match with the
reference solutions very well in all cases.

Index Terms—Finite-difference time-domain (FDTD) method,
finite-element tearing and interconnecting (FETI), finite-element
time-domain (FETD) method, nonoverlapping.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method and
the finite-element time-domain (FETD) method are two

powerful and versatile differential-based numerical techniques
for the transient solution of electromagnetic problems [1]–[6].
However, each has their own pros and cons. The primary
weakness of the FDTD is the staircase approximation. The
simplest approach to improve accuracy is to refine the entire
mesh uniformly, which can greatly increase the computational
cost. Since in many practical situations only certain parts of
the problem have significantly more complexity than the rest,
a more efficient approach is to utilize subgridding techniques
to refine the mesh just around the desired regions [7]–[9].
This approach is not also without shortcomings, because the
implementation is more involved and the stability of the total
method is limited by the most refined region. On top of that,
all of the FDTD-based remedies share the same drawback: a
staircase approximation can not guarantee the convergence of
the solution, regardless of the level of refinement [10]. On the
other hand, the FETD based on the VWE can be formulated
in an US way, if the Newmark- method is utilized. The
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unstructured mesh can take into account very complex objects
in an accurate manner. However, the main drawback is its
higher computational complexity. In such situations, a hybrid
FETD-FDTD formulation can be very helpful in which only
the most complex parts of the problem are discretized using
the FETD method and the rest with the FDTD. Early attempts
to combine these methods suffer from instability problems
[11]–[15]. In 2000, the first stable hybrid method was devel-
oped by Rylander [16]. However, the FDTD and FETD regions
are overlapped and only the conditionally stable (CS) leap-frog
FDTD is utilized in the structured part, which makes the total
hybrid method CS. In the only attempt to develop a fully US
hybrid, highly dissipative results were obtained [17].
Finite-element tearing and interconnecting (FETI) is a type

of domain decomposition method (DDM), which first tears the
computational domain into several nonoverlapping subdomains
and then interconnects the subproblems together by solving an
interface problem defined on the boundaries between subdo-
mains. Although the FETI is widely-used in frequency-domain
methods [18], only a few formulations have been developed for
the time-domain Maxwell’s equation [19], [20]. All of them en-
force the continuity of the tangential electric field between sub-
domains and no proof is provided to investigate the effect of
FETI on the stability of the underlying FETD formulations in
each subdomain.
In this paper, we propose a general approach to combine

different variations of the FDTD and the FETD formulations.
FDTD and FETD formulations are constructed from the VWE
based on the fact that the spatial discretization of the FETD
on brick-shaped elements is identical to the FDTD when the
trapezoidal rule is employed for evaluating mass and stiffness
matrices [21]. The methods are hybridized using a new time-do-
main FETI (TD-FETI). In contrast to the existing TD-FETIs
in electromagnetics [19], [20], the tangential continuity of the
first time derivative of the electric field is enforced between
two regions. It can be shown that this condition can lead to a
stable formulation [22], [23]. The proposed approach is proved
to be stable as long as the stability condition of each region is
satisfied. Furthermore, it has two distinct advantages over the
previously-developed hybrid formulations: 1) There is no need
to consider a transition region between two methods; 2) It is
demonstrated that a fully US and energy conservative hybrid
method can be constructed, which is free from dissipation or
growth. The validity and accuracy of the proposed approach is
tested through several numerical examples.
It is worth mentioning that the proposed TD-FETI can be di-

rectly employed as a DDM to reduce the computational burden
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of the large-scale transient electromagnetic problems using the
FETD method.

II. FETD FORMULATIONS

A. FETD Formulation Based on the VWE

Discretizing the VWE in space using the curl-conforming
basis functions gives a linear system of differential equations
as [6]

(1)

where and

(2)

(3)

(4)

in which and represent the vector edge basis
function and electric impressed current, respectively. The
Newmark- method is usually employed to directly discretize
(1), which involves the following approximations [24]

(5a)

(5b)

in which . and denote
the value of the first and second time derivatives of at

. It is easy to extract the following relations from (5):

(6a)

(6b)

The value of results in an US formulation while
yields a CS formulation, which are equivalent to discretizing
(1) using the trapezoidal rule and the central difference method,
respectively, as can be validated by (6). For the sake of brevity,
we call the VWE-based FETD method NB-FETD.

B. Mixed FETD and Equivalence to the FDTD

In contrast to the previous section, one can discretize the two
first-order Maxwell’s equations as follows [5]:

(7a)

(7b)

where is defined in (2) with is replaced with theWhitney
1-form elements, , is the discrete curl operator solely
composed of 1 nonzero entries and

(8)

where represents the Whitney 2-form elements. It can be
shown that is identical to the stiffness matrix (3)
for the Whitney elements [25]; hence, (7) becomes equivalent
to (1).
The mixed FETD formulation (7) has a similar form to the

FDTD method; hence, it can be considered as a generalization
of the FDTD method to unstructured grids. In fact the standard
FDTD method, before temporal discretization, can be written
in the same matrix from as (7) in which and are re-
placed with and , respectively. The matrices marked
with “ ” can be obtained from the original definitions by evalu-
ating the integrals using the trapezoidal approximation instead
of exact integration over the brick elements (mass-lumping)
[21]. It should be noted that , and consequently , are
identical to , and , in the 2-D case; however, it does not
hold in 3-D [26]. These equivalences were also utilized in the
development of stable FDTD subgridding techniques [7], [8].
The leap-frog method is the most widely-used approach to

discretize (7) in time, which can be shown to be equivalent
to the NB-FETD with . Recently, it has been shown
that the same equivalence holds between the mixed FETD for-
mulation discretized with the trapezoidal rule [known as the
Crank-Nicolson (CN)-FETD [27]] and the NB-FETD with

[28].
From the discussion above it can be concluded that the

NB-FETD with mass-lumped matrices and discretized with
and is equivalent to the standard leap-frog

FDTD and the CN-FDTD, proved to be US [4], respectively.
The first equivalence has been utilized to develop the stable
hybrid FETD-FDTD method with overlapping grids [16].

III. TIME-DOMAIN FINITE-ELEMENT
TEARING AND INTERCONNECTING

The finite-element formulation based on the variation prin-
ciple involves finding a functional whose stationary point cor-
responds to the original governing differential equation. For the
spatially-discretized VWE (1) such a functional can be found as
[29]

(9)

in which the source term is omitted for simplicity.
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However, in the conventional FETI formulation, the entire
computational domain is divided into several, here one and
one , nonoverlapping subdomains. In order to preserve the
continuity of the solution, a condition must be enforced between
subdomains. The conventional condition is the tangential con-
tinuity of the electric field [19]; however, we impose the conti-
nuity of the first time derivative of the electric field
[22]. This constraint can be expressed as

(10)

where is a Boolean matrix to extract the degrees of freedom
(DOFs) residing on the interface between two regions and
is a zero vector of appropriate size. The and ma-
trices are solely composed of 1 and 1 nonzero entries, or vice
versa, respectively to enforce the continuity of on
every DOF on the interface. The problem now involves finding
the stationary point of the functional in every subdomain
by which the constraint (10) is also satisfied. The method of
Lagrange multipliers is widely used to solve this constrained
problem. We first need to augment the original functionals with
the constraint by defining a new variable known as the La-
grange multiplier, as

(11)

taking the first variation of the Lagrangian and integrating
both sides shows that the solution of the original problem is
equivalent to solving the following modified equation in each
subdomain

(12)

Solving (12) for each subdomain together with the continuity
condition (10) and discretizing them using the Newmark-
method, gives

(13)

where and

(14)

Fig. 1. Pyramidal elements are employed to connect the FETD unstructured
mesh to the FDTD part.

Having obtained , and can be
evaluated using (5). In the case of the hybrid FETD-FDTD for-
mulation, the matrices with should be replaced with the
-signed ones tomake the formulation spatially equivalent to the
FDTD method in the structured region. As shown in Fig. 1, the
pyramidal elements are employed to connect tetrahedra to brick
elements in this case. It is instructive to note that if the formu-
lation equivalent to the standard FDTD, mass-lumped matrices
and , are utilized in both regions, can be readily
evaluated, because on brick-shaped elements is fully di-
agonal. This can be assumed as a domain decompositionmethod
for the FDTD method. Furthermore, the procedure described
above can be considered as a FETI method for just FETD with
unstructured meshes in both, or multiple, regions.
At first glance, it seems from (14) that the explicit inverse

of ’s are required to evaluate . This is a very memory-
demanding task even formedium-size problems, particularly for
unstructured parts, which would make the proposed methods
hardly useful in practice. However, a closer look at (14) reveals
that matrices are actually required for the update
process. According to the nature of the Boolean matrix ,

is equivalent to calculating a few rows of
corresponding to the interface DOFs. Each row of can be
evaluated by solving a linear system of equations. Since the
matrix is already factorized for updating (13), the required rows
of the inverse matrix can be obtained in a simple and efficient
manner. This process has to be performed once, because the
matrices are time-independent.

IV. STABILITY ANALYSIS

In this section, we prove the stability of the proposed for-
mulation. The stability analysis is carried out based on the en-
ergy method. This method is widely-used in mechanical and
civil engineering [30]; however, it has found popularity in elec-
tromagnetic community in recent years [31]–[33]. The idea is
to demonstrate that the energy of the method remains bounded
during time stepping. For the sake of simplicity, we should first
define the jump and average operators as follows:

(15a)

(15b)
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using the above operators, the following relations can be ob-
tained from (5)

(16a)

(16b)

it is also easy to show that for any symmetric matrix , we
have

(17)

Consider the VWE FETD in each subdomain (12) as

(18)

where the source term has been removed, because it has
no effect on the stability. Multiplying both of (18) by

and making use of (16), yields

(19)

where

(20a)

(20b)

can be interpreted as the electric and magnetic energy in each
subdomain at , respectively [33]. The summation of
(19) over both subdomains results in the right-hand side van-
ishing due to the continuity condition (10). Using in
both regions, yields

(21)

where subscript “ ” denotes total contribution of all subdo-
mains. This implies that the total electromagnetic energy of
the proposed hybrid method is preserved during time stepping
regardless of , which not only shows the US stability of the
method, but also demonstrates that the continuity condition (10)
preserves the energy conservation property of the Newmark-
with .
The stability analysis becomes more involved for .

Since the mass matrix is symmetric and positive-definite (SPD),
we can multiply both sides of (12) by to obtain

(22)

Substituting (22) in (19) and making some simplifications, gives

(23)

where

(24)

(25)

Note that (24) has an extra energy term compared to , which
is generated by the time discretization method for
and exists in the conventional NB-FETD formulation too. The
energy produced by the interface condition is given by (25). The
summation of (23) over both subdomains causes the right-hand
side to vanish due to the continuity condition (10). In order to
have a nonincreasing energy, the matrix in (24) has to be
positive semi-definite (PSD). This condition is always satisfied
for , which is the unconditional stability criterion of
the original Newmark- method. However, the PSD condition
for holds, if

(26)

where denotes the spectral radius of . The above con-
dition is the same as the stability condition of the original
NB-FETD. simplifies it to

(27)

If one utilizes the -signed matrices instead of conventional
ones, it can be shown that (27) is equal to [34]

(28)

which is the stability condition of the leap-frog FDTD method.
This is an expected result, because NB-FETD with
and mass-lumped matrices is equivalent to the FDTD method.
Hence, they have to possess the same stability condition.
Now we turn our attention to the third term of the left-hand

side (LHS) of (23), which is the contribution of the interface
condition and was not present in the previous case with
. In order to have a stable time stepping, this term must not

be negative. Although we could not find such a bound on this
term, the summation of (23) over both subdomains implies that

(29)
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Fig. 2. Normalized energy for all four scenarios during 1000 time steps.

From the above equation we can conclude that re-
mains bounded during time stepping, and hence, the method is
stable, if remains bounded. By multiplying both sides of
(14) by , it becomes evident that (25) is bounded as
long as and its first and second time derivatives are bounded.
Although this statement is perfectly valid for , we believe
that this result can be extended to the other values of , because

and share the same property: both are SPD. To summa-
rize, we can subdivide the stability regions into three categories:
• : the method is US and preserves the energy
conservation property of the original NB-FETD.

• : the method is CS with the stability condition
(26). However, the total discrete energy differs from the
original energy definition. There are two extra contribu-
tions in the discrete energy: one from the interface condi-
tion and the other from the asymmetry of (5a) for .

• : the method has the same energy properties as
the previous case, but it is US.

In order to validate the stability analysis results, we con-
ducted a simple numerical example: a 1-D cavity divided into
two subdomains and glued to each other using the proposed
method. The cavity is excited with a randomly distributed ini-
tial vector, identical for all cases. Four different scenarios are
considered: both regions with the same and
0.4 and in the last scenario one subdomain with and
the other with . In the first, third and fourth cases,
two energy norms are calculated: and

. However, in the second case,
, only is considered, because the interface con-

dition has no contribution to the energy of the method. In all
cases the results are normalized with respect to the energy
for example. The time step is set to 95% of the sta-
bility condition (27).
Fig. 2 shows the values of within 1000 time steps for all

scenarios. As can be seen, the energy remains bounded during
time stepping in all cases; however, is the only case
that exactly preserves energy of the problem. The modified en-
ergy for each three mentioned scenarios is depicted in
Fig. 3. The modified energy remains bounded in all three cases

Fig. 3. Normalized modified energy for three specified scenarios during
1000 time steps.

and is exactly preserved as long as both subdomains are dis-
cretized using the same , as dictated by (29). The fluctuations
in the energy with has a logical explanation: the contri-
butions of the interface condition and the extra term that appear
in of the modified energy do not match for subdomains with
different ’s, but it remains bounded.

V. NUMERICAL EXAMPLES

In this section, we provide three numerical examples to val-
idate the proposed hybrid formulations. Among different pos-
sibilities for hybrid FETD-FDTD, we choose two of them to
be considered in this section. One of them is a fully US hy-
brid method in which is utilized in both subdomains,
which is called “US hybrid” (equivalent to hybrid CN-FDTD
and NB-FETD with ) and the other employs and
0.25 in the structured and unstructured regions, respectively.
The latter method is named “CS hybrid”, which is equivalent to
combining the leap-frog FDTD with NB-FETD with .
In all examples the time step for the CS hybrid is 95% of the
maximum allowable time step in the standard FDTD method
(28) . The time step for the US hybrid is
set to . The structured part is discretized using
relatively large cubical elements and the unstructured part is
meshed by the Salome open source mesh generator [35], which
is capable of producing transition pyramidal elements to con-
nect brick-shaped elements to the tetrahedral elements.
Table I shows the required time for computation of a single

time step of the FDTD part using both hybrid methods for every
problem. A similar direct solver is employed in both cases. As
can be seen, the CS hybrid method is at least around 2 times
faster than the US method and becomes faster as the number
of interface DOFs are decreased. Exploiting the sparsity of the
LHS matrix in the CS case would result in a further speedup.
It should be noted that taking into account the FETD part, ex-
citation, boundary conditions, and the other parts of a practical
implementation makes the required time for a single complete
time step almost the same. That is where the US hybrid method
can solve a problem faster in a certain physical time window
compared to the CS one because of the larger time step.
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TABLE I
COMPARISON OF THE COMPUTATION TIMES BETWEEN US AND CS HYBRID

METHODS IN DIFFERENT EXAMPLES

Fig. 4. Resonance frequencies of the cavity.

TABLE II
CALCULATED RESONANCE FREQUENCIES OF THE CAVITY.

ALL VALUES ARE IN MHZ

A. Resonance Frequencies of a Cubic Cavity

The first example involves calculating the resonance frequen-
cies of a m cubical metallic cavity. A m
region located at the center of the cavity is discretized with tetra-
hedral elements. This region is wrapped by four layers of 5 cm
wide cubical elements. The simulation consists of 10,000 time
steps in the US case and 20,000 in the CS case, to make the sim-
ulation time the same.
Fig. 4 shows the first four excited modes obtained by either of

methods along with the analytical solutions. No spurious mode
is produced because of the interface condition. In order to study
the accuracy more easily, we have calculated the error of each
mode in Table II. As can be seen, all results match with the
exact solutions very well. In addition, the error of the US hybrid
method is generally more than the CS method, because of the
larger time step, particularly for the higher modes, as expected.

B. Waveguide loaded with a Bow-tie-shaped Metallic Post

The second example is a waveguide filter with a bow-tie-
shaped metallic post [36]. A bow-tie-shaped metallic post is

Fig. 5. Top view of the waveguide filter. The dimensions of the unstructured
region are mm (13 cells) and mm (19 cells).

mm is the width of the waveguide.

Fig. 6. Cut of the unstructured part of the mesh pertaining to the bow-tie-
shaped filter. The pyramidal elements are colored in green.

placed inside a standard WR-90 waveguide with the cross-sec-
tion of 22.86 mm 10.16 mm. Fig. 5 shows the top view of the
problem. The bow-tie-shaped post is composed of two concen-
tric cylinders with the radii of mm and mm,
respectively. The sectors of the larger cylinder have the angle
of . The metallic post is placed mm away
from the waveguide wall. The post is extended over the entire
waveguide height along the direction. As shown in Fig. 5, just
a limited volume around the post is discretized with the unstruc-
tured mesh and the rest with 0.846 mm ( , where is the
wavelength of the highest frequency of interest, i.e., 13 GHz)
cubical elements. The dominant mode is incident on Port
1 with a Blackman-Harris pulse shape.
The reflection coefficient is calculated using both US and CS

hybrid methods and depicted in Fig. 7 along with the FDTD ref-
erence solution taken from [36]. There is a very good agreement
between our results and the reference one.

C. Cross Circular Loop Resonator (CCLR)

The last example involves calculating the transmission coef-
ficient of a dual-band Cross Circular Loop Resonator (CCLR)
metamaterial [37]. Fig. 8 shows the structure composed of two
CCLR unit cells in horizontal position. Simulating such a del-
icate structure using the FDTD requires an extremely refined
grid and a very small time step. It is designed on a 0.5 mm thick



AKBARZADEH-SHARBAF AND GIANNACOPOULOS: ON THE DEVELOPMENT OF NONOVERLAPPING AND STABLE HYBRID FETD-FDTD 6305

Fig. 7. Computed reflection coefficients using the proposed methods along
with the FDTD reference solution [36].

Fig. 8. Dual-band CCLR shown in the horizontal position. The dimensions
are as follows: mm, mm, mm, mm,

mm, and .

Fig. 9. Unstructured mesh around the CCLRmetamaterial placed in the middle
of the waveguide. Two sides of the waveguide are removed for the sake of
clarity.

substrate with the relative permittivity of . The tan-
gent loss of the substrate is not included in the simulation. The
metamaterial is placed in the middle of a WR-90 waveguide
(see Fig. 9). The simulation details are the same as the bow-tie-
shaped filter. The reference solution is obtained by solving the
whole problem using NB-FETD with and
denoted as “Full FETD” (on the same mesh without TD-FETI).
The transmission coefficients obtained using three different

methods are depicted in Fig. 10. All results match with each

Fig. 10. Computed transmission coefficients using the proposedmethods along
with the full FETD result as the reference. In our opinion, fluctuations and re-
sulting slightly positive values are due to utilizing a coarse grid in the FDTD
part.

Fig. 11. Time-domain signals recorded on Port 2 using three different methods.
The inset shows the absolute error between the reference (full FETD) and US
hybrid samples.

other very well. Particularly, the US hybrid result is almost iden-
tical to the reference solution. Fig. 11 shows the time-domain
electric field recorded on Port 2. The same similarity exists
between time-domain signals. The absolute error between the
US hybrid and the reference solution is plotted as inset, which
shows a negligible error.

VI. CONCLUSION

In this paper, a novel and general approach to hybridize dif-
ferent formulations of the FETD and FDTD has been proposed.
The idea is to utilize a new FETI algorithm to combine formu-
lations in a nonoverlapping and stable manner. In addition, it
has been shown that the hybrid method is stable as long as the
stability condition of each subdomain is satisfied. The validity
and accuracy of the proposed approach has been tested through
several numerical examples.
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