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iterations and the computational time for FGMRES, respectively. We
see that our preconditioners are effective also in this case, especially
in the neighborhood of Wood’s anomaly.

V. CONCLUSION

We summarize the results obtained in this communication as fol-
lows:
We extended the periodic FMM, which has been applied only to

BIEM so far, to VIEM for doubly-periodic transmissions problems for
Maxwell’s equations. We then verified the proposed method in non-pe-
riodic problems by comparing the numerical solutions with the analyt-
ical results. The proposed method was then applied to periodic prob-
lems in which we found that the numerical solutions agreed with the
BIEM solutions.
We also proposed two preconditioners. One is the Gram precondi-

tioner in which we use the Gram matrix part of the discretized linear
equation as the right preconditioner. The other is the -pre-
conditioner, which reduces the original integral operator essentially to
a compact perturbation of an identity when the domain is of infi-
nite extent. This approach makes good use of matrices which we al-
ready have in the computation of the coefficient matrix for the orig-
inal integral equation. With numerical examples, we verified that these
preconditioners can reduce the number of iterations and the computa-
tional time for iterative solvers. We also found that our preconditioners
work even in problems where no-preconditioned methods did not lead
to convergence within reasonable numbers of iterations. In terms of
the computational time, the Gram-preconditioned method is more ef-
ficient than the -preconditioned method. These precondi-
tioned methods remain effective even near Wood’s anomalies where
the non-preconditioned approach becomes inefficient.
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A New Unconditionally Stable Scheme for FDTD Method
Using Associated Hermite Orthogonal Functions

Zheng-Yu Huang, Li-Hua Shi, Bin Chen, and Ying-Hui Zhou

Abstract—An unconditionally stable solution using associated Hermite
(AH) functions is proposed for the finite-difference time-domain (FDTD)
method. The electromagnetic fields and their time derivatives in time-do-
main Maxwell’s equations are expanded by these orthonormal basis func-
tions. By applying Galerkin temporal testing procedure to these expanded
equations the time variable can be eliminated from the calculations. A set
of implicit equations is derived to calculate the magnetic filed expansion
coefficients of all orders of AH functions for the temporal variable. And
the electrical field coefficients can be obtained respectively. With the ap-
propriate translation and scale parameters, we can find a minimum-order
basis functions subspace to approach a particular electromagnetic field.
The numerical results have shown that the proposed method can reduce
the CPU time to 0.59% of the traditional FDTD method while maintaining
good accuracy.

Index Terms—Associated Hermite (AH) basis functions, electromagnetic
field, finite difference time domain (FDTD), unconditionally stable.

I. INTRODUCTION

The finite-difference time-domain (FDTD)method is a conditionally
stable numerical technique to analyze transient electromagnetic prob-
lems [1]. Its conditional stability means that the time step size should
be limited by the well-known Courant-Friedrich-Lecy (CFL) stability
condition. To mode fine structures, such as thin material and slot, many
efficient technologies like sub-gridding [2], spatial filtering [3] and
some less time consuming unconditionally stable methods, such as
alternating-direction implicit (ADI) method [4]–[6], Crank-Nicolson
scheme [7], [8], and weighted Laguerre polynomials (WLP) FDTD
method [9]–[12], have been proposed and applied in various electro-
magnetic computational problems.
In this communication, AH functions are applied as temporal

basis and testing functions to obtain an unconditionally stable FDTD
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solution. AH basis functions are derived from orthogonal Hermite
polynomials with a translated and scaled Gaussian function. AH
function has similar representation form in frequency-domain and
time-domain. This property allows it to perform simultaneous ex-
trapolation in time and frequency domains. It is widely used as the
expansion of time domain waveforms in many fields such as biomed-
ical engineering [13], signal analysis and processing [14]. Compared
to other orthogonal basis, AH functions have the most compact
time-frequency support (TFSs) [15] and therefore it is suitable to
expand transient signals with less order of polynomials [16]. One of
the most important applications of AH expansion in computational
electromagnetic is to use it for extrapolation of the full responses from
early time and low-frequency data [16]–[20]. However, it has not been
combined with FDTD to form an unconditionally stable method, like
WLP-FDTD.
The main purpose of our communication is to apply AH expansion

as temporal basis to FDTD calculation. First, for the case of 2-D
time-domain Maxwell’s equations, electromagnetic fields and their
time derivatives are expanded by these basis functions. Then, using
the Galerkin [9] method for a temporal testing scheme, an explicit
recurrence relation, from th and th order expansion coefficients
of AH functions to th order coefficients, is deduced. But as the
zeroth and first order coefficients can not be calculated independently,
we can not calculate these coefficients orders by orders directly like
other basis expansion method [9]. To deal with this problem, we
take all orders of coefficients at one point in computational domain
as an unknown vector variable. Then, we establish a set of implicit
equations for vector variables in whole computational domains. To
ensure the solvability of the equation set, we introduce an initial
condition. Finally, we solve the equation set to obtain the coefficients
of AH functions for electric and magnetic fields.
Since the equations set has a banded coefficients matrix in which all

elements are nested sub-matrixes, we use a banded matrix decomposi-
tion principle [21] to solve the equation set indirectly. Our method only
requires the coefficients matrix to be assembled and decomposed once.
The minimum order or number of basis functions is dependent on the
time duration and the bandwidth of the analysed fields. Therefore the
order-selection of the AH functions has been discussed. Moreover, un-
like the alternately solving method in [9], our method allows the whole
coefficients of magnetic fields be calculated separately and then the
electric ones.

II. FORMULATIONS AND AH-FDTD METHOD

A. AH Functions

Associated Hermite basis functions are an orthonormal set of basis
functions
[13], where is Hermite poly-
nomials [22]. Unlike the Laguerre basis functions mentioned in
[9] and [23], the AH basis functions are not causal [13]. However,
they can be transformed to the causal form by virtue of a proper
time-translating parameter and then used to span the causal electro-
magnetic responses [16], [17]. The transformed basis function set

are also orthogonal with
respect to the transformed time variable . Where
is a time-translating parameter. is a time-scaling parameter. By
controlling these two parameters, the time-frequency support of the
AH functions space can be changed flexibility. So arbitrary
locally time-supported functions can be spanned by these transformed
basis functions, including the causal electromagnetic responses.

The time support and frequency support of the AH functions
can be approximated by the following empirical formula [24]

(1)

(2)

A causal function , such as the electric or magnetic field func-
tion, can be expanded by

(3)

By using the time derivation of the th order AH function [13]

(4)

we can deduce the first derivative of with respect to

(5)

where . The derivation of (5) can be found in Appendix 1.

B. FDTD With AH Functions Subspace

With simple and lossless media, the time-domain Maxwell’s equa-
tions for 2-D model case is

(6)

(7)

(8)

where is the electric permittivity and is the magnetic permeability.
Applying (3) and (5) to (6)–(8), the field functions in these equations
can be expanded by

(9)

(10)

(11)
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By using the orthogonal property of the AH functions, we use the
temporal Galerkin testing procedure [9] to eliminate the time-depen-
dent terms . Then, we get

(12)

(13)

(14)

where

(15)

(16)

For a compactly supported source, we can use a finite time interval
to replace limit of infinity, and then perform the integrations in (15)

and (16) numerically. This interval should cover the range of interest
of waveforms. Then we can rewrite (12)–(14) in a matrix form

(17)

(18)

(19)

For a signal with compact support, its time-frequency domain
can be covered by an AH basis function subspace spanned by

[13]. (17)–(19) reflect an explicit recurrence
relation from th and th order expansion coefficients of AH
functions to th order coefficients. If the zeroth and first order
coefficients can be calculated, the reminders can also be obtained.
However, it is difficult to realize in this way, for its zeroth order
coefficients could not be obtained separately and firstly like the way
proposed in [9]. Instead, we propose another approach to obtain a
solution.
Firstly, initial conditions of electromagnetic fields are introduced

and expanded by . For instance, the

initial condition of magnetic field can be represented as
.

Then all orders of coefficients at one point in the computational do-
main are taken as an unknown vector variable and a set of implicit
equations with vector variables including initial conditions can be as-
sembled. (17)–(19) can be rewritten in a form of implicit equations set
by

(20)

(21)

(22)

where

. . .

. . .

. . .

and are Q-tupple representations in AH
subspace for the electric and the magnetic fields. For an ex-
ample, .

and can be represented as an uniform forma-
tion or .
To eliminate the electric field, we apply (20)–(21) to (22)

(23)

where
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Fig. 1. The five-diagonal banded coefficient matrix .

From (23), we can find that each magnetic field vector variable has
a relationship with the adjacent four magnetic field vector variables. If
the magnetic field vector variables in the whole computational
domain are calculated, the electronic field vector variables and

can be obtained from (20)–(21).
Rewriting (23) as a nested matrix equation, we have

(24)

where is an unknown vector assembled with vector variable el-
ements that is consist of magnetic field coefficients of all orders for all
points. is a vector related with excitation source coefficients for
all points. is a banded sparse coefficient matrix, and each row of it
has five nonzero order sub-matrixes, which have the same invariant
part of . The shape of the banded matrix is shown in
Fig. 1. In the case of the boundary edges, should be modified ac-
cording to certain conditions. It should be note that each nonzero ele-
ment is a order matrix.
For the PEC boundary condition, the rows and columns matrix ele-

ments of should be replaced with order null sub-matrix except
diagonal sub-matrix elements. Also the respective vector variables of
the exciting vector should be order null vectors.
For the first-order dispersive boundary condition (DBC), we choose

the absorbing boundary (ABC) from [25]. Then, at or ,
we have

(25)

Applying (3) and (5) to (25) and eliminate the temporal terms to
obtain (at )

(26)

Using the averaging technique and the central difference scheme [9]

(27)

rewriting (26) as a discrete form at point, we have

(28)

Assembling all of orders from (28) as a matrix equation

(29)

we have a similar ABC matrix equation at

(30)

Introducing (29), (30) and the PEC boundary condition to (20)–(22),
we can adapt (24) into a completeness matrix equation as following

(31)

where is an adapted banded sparse coefficient matrix. Its rows re-
lated to boundary condition have no more than five nonzero order
sub-matrix elements. We use a banded matrix decomposition principle
[18] to indirectly obtain the results of (31). We can first perform the
lower-upper (LU) decomposition of , and then calculate the coef-
ficients of the magnetic field by using the back-substitution method.
The decomposition and the back-substitution routine are performed
only once. Then, the electric fields’ coefficients can be obtained from
(20)–(21).
Finally, we can obtain and from all of the

expansion coefficients of the electric and magnetic fields. For instance,
can be reconstructed as

(32)

III. NUMERICAL EXAMPLE

To validate our numerical method, an experiment with 2-D parallel
plate waveguide is performed. The rectangular waveguide with a thin
PEC slot and partially filled with dielectric material is shown in Fig. 2.
The width of this waveguide is 0.08 m, and the length is 1.2 m. There
are 140 8 non-uniform cells in the computational domain. In the PEC
slot area, the PEC plate is divided into small cells, and the minimum
cell size is 0.6 m 0.0045 m. The thickness of dielectric material
is 0.04 m, and the relative permittivity with no loss is 2. A sinusoidal-
modulated Gaussian pulse is chosen as the y direction excitation source

(33)
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Fig. 2. Computational domain of 2-D parallel plate waveguide with the thin
PEC slot of the thickness 1.2 m and the distance 0.9 cm, and the partly filled
dielectric material of the thickness 0.04 m.

Fig. 3. The comparison of transient magnetic fields at (a) , (b) and (c) .

where , and GHz. The time duration
of interest for the analyzed fields is chosen as ns and
the bandwidth is limited up to the frequency GHz. Then,
according to (1)–(2), we expand the signal by a set of AH functions

under the condition of
. Then we can find the minimum required order of and the

rang of from the condition above.
The time-step size is set as 1.98 fs for the conventional FDTD

method because of the CFL condition requirement, while for our
method, the time-step size is set as 8 ps. This value is small enough
to evaluate (15)–(16) to numerically calculate the AH functions’
coefficients of the excitation pulse.
The results of the magnetic field at and in Fig. 2 are

shown in Fig. 3. The agreement between the proposed method and con-
ventional FDTD method is quite good. From Fig. 4, we can deduce
more details from the relative errors compared with the conventional
FDTD at these points. The values of relative error for three curves are
very small, almost below dB. The relative error here is defined

Fig. 4. Relative error of the proposed method to conventional FDTD.

TABLE I
COMPARISON OF THE CPU RESOURCES FOR THE PARALLEL PLATE WAVEGUIDE

as , where and
are the magnetic fields tested in the proposed method and the

conventional FDTD method respectively. Table I provides the infor-
mation of time-step size and the computing resources for the numerical
simulations.
The proposedmethod needs to assemble a banded nested matrix only

once and then perform a decomposition and back-substitution routine.
Although its basic computing elements are order matrixes, with a
relatively longer time and larger storage space, the time step can be
set as 4040 times that of the conventional FDTD, which is not lim-
ited by the CLF stability condition and unconditional stable. The total
memory storage for the proposed method is increased to 77.8 Mb, al-
most 80 times of one iteration of conventional FDTD, while the total
CPU time for the proposed method can be reduced to about 0.59% of
the conventional FDTD method, with the accuracy still being guaran-
teed.

IV. CONCLUSION

This communication proposes an unconditionally stable solution for
the FDTD algorithm based on AH basis functions. The method is free
from CFL stability condition for it has eliminated the time variable in
calculation. Instead, we have derived a set of implicit equations for or-
ders-vector variables to indirectly solve theMaxwell’s equations. Com-
pared with conventional FDTD method, the proposed method requires
fewer CPU time while rendering in an efficient solution for it has elim-
inated the time iteration. In the numerical simulation of the 2-D TEz
case with fine structures, the new method is very efficient, and the re-
sults agree well with that of the conventional FDTD method. Further
study will focus on the more general three-dimensional cases, and the
way to reduce the memory consumption should also be investigated.

APPENDIX

The derivation of (5) from (3) and (4) is as following
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Using the time derivation in (4), we have

where

then we have
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