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Shrinkage-Thresholding Enhanced Born Iterative Method
for Solving 2D Inverse Electromagnetic Scattering Problem

Abdulla Desmal and Hakan Bağcı

Abstract—A numerical framework that incorporates recently developed
iterative shrinkage thresholding (IST) algorithms within the Born itera-
tive method (BIM) is proposed for solving the two-dimensional inverse
electromagnetic scattering problem. IST algorithms minimize a cost func-
tion weighted between measurement-data misfit and a zeroth/first-norm
penalty term and therefore promote “sharpness” in the solution. Conse-
quently, when applied to domains with sharp variations, discontinuities, or
sparse content, the proposed framework is more efficient and accurate than
the “classical” BIM that minimizes a cost function with a second-norm
penalty term. Indeed, numerical results demonstrate the superiority of the
IST-BIM over the classical BIM when they are applied to sparse domains:
Permittivity and conductivity profiles recovered using the IST-BIM are
sharper and more accurate and converge faster.

Index Terms—Born iterative method, iterative shrinkage thresholding
algorithms, microwave imaging, regularization.

I. INTRODUCTION

Development of efficient and rigorous methods for solving inverse
electromagnetic (EM) scattering problems has been an active research
field in the last three decades mostly because of the high demand for
such methods in various applications including remote sensing, med-
ical imaging, crack detection, hydrocarbon reservoir exploration, and
through-the-wall imaging [1]. Inverse EM scattering problems involve
recovery of material properties such as permittivity and/or conduc-
tivity in an unknown domain from measured EM fields. Solving these
problems accurately and efficiently is a challenging task; this difficulty
stems from (i) nonlinearity of the scattering equations and (ii) ill-posed-
ness of the problem [2].
Most of the deterministic methods developed for this purpose use

first-order approximations, such as diffraction tomography [3] and
Born and Rytov approximations [4], to linearize the problem. Even
though these methods are computationally less demanding, they fail
to provide accurate solutions when strong scatterers are present in the
investigation domain. In such cases, more accurate treatment of the
nonlinearity is needed. This can be achieved using more rigorous but
also computationally more demanding techniques such as Newton
[5] and distorted Born methods [6]. Other techniques, which make
use of higher order linearization schemes or iterative application of
the first-order ones, have been also developed. An incomplete list
of examples includes the extended Born approximation [7], Born
iterative method (BIM) [8], and variational Born iterative method [9].
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Ill-posedness of the inverse EM scattering problem is tackled using
a regularization method, which minimizes a cost function weighted
between measurement-data misfit and a penalty term [1], [2]. The
standard choice of the penalty term is the second norm of the solution.
The resulting minimization problem can be analytically solved using
the well-known Tikhonov method [1], [2]. Additionally, truncated
Landweber or conjugate gradient iterations lead to a similar type
of regularization [1]. It is well known that the second-norm penalty
term in the cost function promotes smoothness in the solution. Con-
sequently, inversion methods that make use of these cost functions
fail to produce accurate solutions or become drastically inefficient
when applied to domains with sharp variations, discontinuities, or
sparse content (i.e., scatterers occupy much smaller volumes/areas in
comparison to the investigation domain). This type of domains exists
in many practical applications, such as through-the-wall imaging, hy-
drocarbon reservoir detection, radar imaging, and crack detection. In
these applications, priori knowledge of the domain’s sparseness could
be used to alleviate the ill-posedness of the inverse problem using
a cost function with zeroth/first-norm penalty term. This choice of
penalty function promotes “sharpness” in the solution. Nevertheless,
some variation of second norm regularizes can also preserve sharp
boundaries such as the conjugate gradient method with multiplica-
tive/weighted constraints as proposed in [10]. Moreover, optimization
methods using mixed penalties between first and second norm have
also been shown to promote sharpness (e.g., elastic net [11]).
It should be noted here that use of sparsity-constraint regulariza-

tion for image restoration/de-blurring has recently gained popularity
in signal processing community due to the fact that most images have
sparse representations inwavelet domain [11]. This has led to the devel-
opment of highly efficient iterative shrinkage-thresholding (IST) algo-
rithms [11]–[15] for minimizing cost functions with zeroth/first-norm
penalty terms.
On the other hand, full potential of these methods in solving inverse

EM problems is yet to be explored. To this end, in this work, a spar-
sity-constraint regularization scheme is used in conjunction with the
BIM to solve the two-dimensional (2D) inverse EM problem in sparse
domains. The work presented here is built upon that of [16], but it goes
further beyond the use of thresholded Landweber iterations and makes
use of IST algorithms originally developed for signal/image processing
applications. In the proposed framework, at every iteration of the BIM,
IST is used to minimize the cost function with zeroth/first-norm penalty
term. Use of IST within the BIM is different than its direct application
in signal/image processing in two ways: (i) Soft- and hard-thresholding
functions must be defined in the complex domain. (ii) Stopping criteria
of the IST should be carefully selected to take into account the lin-
earization errors that change during the BIM iterations. Additionally,
the letter describes a simple sparsification method, which allows the
proposed framework’s efficient use in detection of targets embedded in
a larger medium with known permittivity. Numerical results demon-
strate the superiority of the IST-BIM over the Tikhonov-BIM when
they are applied to sparse domains.

II. FORMULATION

A. 2D EM Scattering Equations and Their Discretization

Let represent the support of an investigation domain that resides in
an unbounded backgroundmedium. Let represent the permittivity;
on , is unknown, and in the background medium . Per-
meability on and in the background medium is . One transmitter
and number of receivers, which also reside in the same medium,
are located around . The transmitter operating at frequency radi-
ates an incident electric field with components , .

Components of the total electric field, , generated under this ex-
citation satisfy [1]

(1)

, . Here, is the contrast and
are the components of the vector potential

where is the Green function and
is the wavenumber of the background medium. is

discretized by square cells with dimension and and are
approximated as

(2)

Here, is the pulse basis function defined on cell with support
and it is nonzero only for with unit amplitude; and
and , where , , denote the

centers of the cells. Inserting (2) into (1) and evaluating the resulting
equations at , , yield

(3)

Here, , , and
. The matrix is given by

(4)

where is an identity matrix, operator generates a diagonal ma-
trix from the entries of its argument, and entries of the matrices , ,
and are

. Let represent the compo-
nents of the scattered electric field. Inserting (2) in (1) and evaluating
the resulting equation at the receiver locations, , ,
yield

(5)

Here, and . The
matrix is given by

(6)

where the entries of the matrices , , , and are

. Note that (3) and (5) are derived assuming a single
transmitter. They can simply be cascaded into larger matrix systems
for multiple transmitter configurations where the scattered fields are
computed at receiver locations for one transmitter a time.
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B. Born Iterative Method (BIM)

Consider , where store
components of the scattered electric field measured at the receiver lo-
cations, , , under the same excitation described in
Section II-A. Then, the inverse EM scattering problem is constructed
in such a way that its solution gives that would minimize the misfit
between and in the least square sense:

(7)

Both and are unknowns to be recovered from . Also, it should
be clear from (1) [and its discretized versions (4) and (6)] that these two
unknowns are nonlinearly interdependent. In this work, nonlinearity of
(7) is tackled using the BIM [8]. The algorithm of the BIM reads:

Step 1) ,

Step 2) , iterate until convergence:
2.1) insert , , in (6) to compute
2.2) find

2.3) insert in (4) to compute
2.4) solve (3) with for ,

end iterations

Several comments about the BIM are in order: (i) Variables with su-
perscript belong to the Born iteration . (ii) At Step 2.2, a penalty
term, , which is weighted with , is added to the misfit between

and to alleviate the ill-posedness of the inverse problem.
When , the minimization problem is analytically solved
using the Tikhonov method [1]. Also, truncated Landweber or conju-
gate gradient iterations result in a similar type of regularization scheme
[1]. When , , the resulting cost function can be
efficiently minimized using IST algorithms (under the assumption that
many entries of are zero, i.e., is sparse) [12] (Section II-C). (iii) Born
iterations are terminated when the solution converges (Section II-E).
(iv) Step 1 uses the first-order Born approximation, i.e., assumes that
total field at is same as the incident field. This is used to initialize
the iterative algorithm. When is sparse, scattered fields are expected
to be weaker and the first-order Born approximation provides a good
initial guess for the BIM. As shown by numerical results, this results in
faster error convergence at the first few Born iterations independent of
the choice of . (v) The system of (3) at Step 2.4 is solved iteratively
using the stabilized bi-conjugate gradient (STABICG) method. Since
, , , and are Toeplitz, the matrix-vector multiplications

required by the STABICG are accelerated using fast Fourier transform
(FFT).

C. Sparse Regularization

If it is known priori that the investigation domain is sparse, i.e., many
entries of are zero, then the penalty term at Step 2.2 of the BIM is
chosen as , , yielding the minimization prob-
lems

(8)

In (8), the first term is a measure of how well the solution fits the noisy
data and the second term is a measure of the solution’s regularity. In
the remainder of this section, two recently developed IST algorithms,
which can be used to efficiently solve the minimization problems in
(8), are described.
Two-Step IST (TWIST): TWIST is an improved version of the orig-

inal IST algorithm that incorporates a thresholding shrinkage function

to the well-known Landweber iteration. It accelerates the IST algo-
rithm using the information from two consecutive iterations without
increasing the computational cost [13]. TWIST iterations applied at
Step 2.2 of the BIM read:

Step 1)

Step 2)

Step 3) for ,

3.1)

end for

Several comments about the TWIST are in order: (i) Variables with
subscript belong to the Landweber iteration . (ii) At Steps 2 and
3.1, is a scaling factor that determines the step size of the
Landweber iteration. At Step 3.1, coefficients of the linear combina-
tion of and are and with

. Here, and are the max-
imum and minimum singular values of , respectively. (iii)
is the thresholding function. For in (8), is termed hard
thresholding function [14], and in complex domain

if
otherwise

(9)

Similarly, for , is termed soft-thresholding function [14],
and in complex domain

(10)

Magnitudes of and are plotted in Figs. 1(a) and (b), re-
spectively. The figures reveal that IST, at each iteration, applies a pro-
jection-like function to the Landweber iteration, which iteratively im-
poses the constraint. Thresholding level is determined by the value
of (Section II-E). (iv) Landweber iterations are terminated when

(Section II-E).
Split Augmented Lagrangian Shrinkage Algorithm (SALSA):

SALSA makes use of augmented Lagrangian method (ALM) to split
the cost function and its argument [15]. Assume that in (8) is split
into two variables and , and the cost function is split into and

:

Minimizing under the constraint that and are equal,

(11)

is equivalent to minimizing the cost function in (8). By applying alter-
nating direction method of multipliers (ADMM) [15], (11) is converted
into a form where the minimization iteratively alternates between and
:

Step 1) and

Step 2) for ,

2.1)

2.2)

2.3)

end for
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Fig. 1. Thresholding functions on the complex domain for (a) ,
(soft-thresholding) and (b) , (hard-thresholding).

Here, and are the Lagrange multiplier
coefficients associated with the ALMmethod [15]. Minimization prob-
lems at Steps 2.1 and 2.2 are solved analytically using the Tikhonov
method and thresholding function , respectively [15]. The re-
sulting SALSA iterations applied at Step 2.2 of the BIM read:

Step 1) and

Step 2) for ,

2.1)

2.2)

2.3)

end for

Several comments about the SALSA are in order: (i) Variables with
subscript belong to the SALSA iteration . (ii) Regularization
and thresholding parameters and are selected as described in
Section II-E. (iii) The system of equations at Step 2.1 is iteratively
solved using STABICG. (iv) SALSA iterations are terminated when

(Section II-E).

D. Sparsification

In many inverse EM scattering problems, the targets in the inves-
tigation domain are sparse in comparison to a larger scatterer or an
embedding medium with known permittivity. Most common exam-
ples of these problems are found in the field of non-destructive testing,
which typically include crack detection in wood, cement, or paste. For
these applications, the permittivity of the embedding medium (wood,
cement, or paste) is known. Let and denote
this permittivity and the contrast of the embedding medium. Then, the

permittivity of the embedded crack represents a sparse unknown per-
turbation to . Let represent the perturbation to at the
location of the crack. Assuming the embedding medium completely
fills the investigation domain, . Applying the
discretization scheme to this equation yields:

(12)

Here, and , . Using
(12), Step 2.2 of the BIM is replaced with

(13)

while the rest of the BIM iterations is kept unchanged. Note that
and are known while is the unknown to be solved for. Then,
TWIST and SALSA can be efficiently used within the BIM after
is replaced with and is replaced with in the
algorithm descriptions.

E. Parameter and Stopping Criteria Selection

The BIM is terminated when the difference between the solutions at
two consecutive iterations becomes small, i.e., when the convergence
condition

(14)

is satisfied. Here, is a user-defined parameter. TWIST and SALSA
iterations are truncated by setting a limit on the total number of itera-
tions, i.e., setting . This is done using the following discussion
as a guideline. Assume that the convergence condition (14) is satisfied
at iteration . Also assume that and are separated
into two components:

(15)

Obviously, as , and . Let
represent the noise in , which is defined with respect to scattered
field of the original model:

(16)

where is the contrast of the original model and is the corre-
sponding matrix computed using (6) with the fields obtained by solving
(3) with . Inserting (15) into (16), , an “equivalent” noise figure
at iteration is obtained:

(17)

where and
. Note that as

, , while does not change with . One can
think of as the equivalent noise figure at iteration . It
has two components: (i) , which represents the measurement error,
and (ii) , which is the difference between
the scattered field of the original model and the scattered field due to
the converged solution of the regularized and linearized model. The
discussion here demonstrates that as , gets smaller.
Landweber iterations inherent in TWIST, start by recovering the

components of the solution associated with the largest singular values
and proceed to components associated with smaller ones as the iter-
ations evolve. This means that TWIST iterations should be truncated
before they start recovering the components of the solution that are
corrupted by the equivalent noise. Therefore, should be set to
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Fig. 2. Actual permittivity profile and transmitter-receiver locations.

smaller values for small (since the equivalent noise figure is
high for small ) and should be increased as .
Unlike TWIST, SALSA makes use of Tikhonov inversion. Conse-

quently, at a given SALSA iteration, all components of the solution,
which are associated with singular values larger than the regulariza-
tion parameter , are recovered. Following the discussion above, one
could set to higher values for small and decrease it as .
But also, it should be realized here that ADMM enforces the equiva-
lency of the minimization problems (8) and (11) iteratively. Obviously,
the accuracy of this operation also depends on the maximum number of
iterations, . Since the overall accuracy of the Born iterations is
lower ( is higher) when is small, is set to a lower value.
As , is increased. Under this condition, it is suffi-
cient to set to a fixed value.
The thresholding level for both TWIST and SALSA are determined

by . This parameter should be chosen in such a way to “remove” the
effect of equivalent noise from the solution. Since the effect of varying
equivalent noise is taken into account by varying , is set to a
fixed value during Born iterations.

III. NUMERICAL RESULTS

In this section, effectiveness of the IST-BIM in solving 2D inverse
EM problems involving sparse and piecewise discontinuous domains
is demonstrated via two numerical examples. In these examples, the
relative norm error between and is computed using

(18)

Noisy measurement samples, , are generated by adding white
Gaussian noise to the scattered field samples of the original model,
which are computed using (5) with and the fields obtained by
solving (3) with . The level of noise is measured in decibels (dB)
using (SNR), where SNR represents the signal to noise ratio.
For both experiments, and , and the level of noise
in is 25 dB. All simulations were carried out on a Unix work-
station with two Intel Xeon X5650, 2.67 GHz processors (12 cores in
total) and 48 GB RAM using MATLAB R2012b.

A. Austria

The relative permittivity profile of the domain, , and the
receiver-transmitter configuration are shown in Fig. 2. The 6 m 6 m
investigation domain is discretized using square cells with
dimension . The sparseness level in is 15%. The
numbers of receivers and transmitters are 48 and 12, respectively. The
transmitters are operated at frequency .
Fig. 3 plots for the BIM iterations regularized using TWIST

with , , and (i) , , (ii) ,

Fig. 3. computed during the execution of the BIM regularized using
TWIST, SALSA, and Tikhonov.

Fig. 4. Profiles recovered by the BIM regularized using (a) TWIST with
and (b) Tikhonov .

, (iii) SALSA with , , and , and
(iv) Tikhonov, where the weight of the penalty term is calculated as

with . For both TWIST and SALSA
iterations, for , for , and

, for . The profiles recovered in simulations (i) and
(iv) are shown in Fig. 4(a) and (b), respectively. Simulations (i)–(iv)
required 60 s, 116 s, 125 s, and 434 s of execution time to reach an
error level of 49% in the solution. Note that this is the minimum error
level that can be achieved by the Tikhonov-BIM.
To characterize the effect of the parameter on the conver-

gence of the solution, three simulations are carried out: TWIST-BIM
with (i) for , for ,
and , for , (ii) for and

, for , and (iii) for all . For all three
simulations, , , , and and
is plotted in Fig. 5(a). Finally, the effect of the thresholding parameter
is characterized via five simulations: TWIST-BIM with and

(i) , (ii) , (iii) , and TWIST-BIM
with and (iv) , (v) . For all five simula-
tions, , , for , for

, and , for , and is plotted in
Fig. 5(b).

B. Pulses Embedded in a Conductive Medium

The conductivity profile of the domain and the receiver-transmitter
configuration are shown in Fig. 6. The 8.85 m 8.85 m investigation
domain is discretized using square cells with dimension

. In this example the sparsification method proposed in
Section II-D is used. This leads to a sparseness level of 2.7% in .
The numbers of receivers and transmitters are both 36. The transmitters
are operated at frequency .
Fig. 7 plots for the BIM iterations regularized using TWIST

with (i) , , , and , (ii) ,
, , , and (iii) Tikhonov where the weight of
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Fig. 5. Effects of (a) maximum number of regularization iterations and
(b) the thresholding level on the accuracy and convergence of the solution.

Fig. 6. Actual conductivity profile and transmitter-receiver locations.

Fig. 7. computed during the execution of the BIM regularized using
TWIST and Tikhonov.

the penalty term is calculated as with .
The profiles recovered in simulations (i) and (iii) recovered profiles are
shown in Figs. 8(a) and (b), respectively. Simulations (i)–(iii) required
64 s, 91 s, and 1401 s, respectively, to reach an error level of 52% in the
solution. Note that this is the minimum error level that can be achieved
with the Tikhonov-BIM.

Fig. 8. Conductivity profiles recovered by the BIM regularized using
(a) TWIST with and (b) Tikhonov

.

C. Comments

Several comments about the results presented in Sections III-A and
III-B are in order: (i) Convergence in computed for IST-BIM
and Tikhonov-BIM is similar (and faster) for the first Born few
iterations. This is expected since, for sparse domains, the first-order
Born approximation provides a good initial guess for the BIM. For the
Tikhonov-BIM, the error gets flat after a certain point indicating that
the regularization with second norm penalty term cannot recover the
domain with a higher accuracy. On the other hand, IST-BIM maintains
the convergence for a higher number of Born iterations (i.e., the error
gets flat at a later point and at a lower value). This is expected since it
is well known that shrinkage thresholding methods work efficiently up
to 30% sparseness levels for signal processing applications [12]. (ii)
The profiles recovered by Tikhonov-BIM have artificial wavelike “rip-
ples”. This results in generation of rather noticeable “ghost” scatterers
in the domain [Fig. 4(b)]. The IST-BIM eliminates these ripples using
thresholding. The resulting images are sharper and more accurate.
(iii) Convergence in is faster when soft-thresholding is used.
Additionally, for the profile recovered with hard-thresholding, there
are few nonzero samples are identified in the background. The latter is
due to the use of zero-norm penalty term that promotes a collection of
sparse solutions to the minimization problem. Soft-thresholded regu-
larizations result in better constructions since it uses the first-norm as
a penalty term. Unlike zero-norm, first-norm penalty term elects only
one global solution with enhanced sharp boundaries. (iv) TWIST-BIM
with soft-thresholding requires the least amount of execution time for
the solution to reach a certain level of accuracy, i.e., it is the most
efficient method. (v) Fig. 5(a) demonstrates that the accuracy and
convergence of the solution benefits from gradually increasing the
maximum number of regularization iterations, i.e., as discussed
in Section II-E. (vi) Fig. 5(b) shows that low values of thresholding
parameter increases the error in the converged solution. Also, setting
a high value for might result in a diverging solution. One can always
make a function of (like it is done for ) to increase the
convergence in the solution.

IV. CONCLUSION

Sparsity constraint regularization is used in conjunction with the
BIM to solve the 2D inverse EM scattering problem in sparse/sparsi-
fied or piecewise discontinuous domains. In the proposed framework,
at every BIM iteration, an IST algorithm is used to numerically min-
imize the zeroth/first-norm regularized cost function. Guidelines for
selecting IST regularization parameters are described. Performance
of two accelerated IST algorithms, namely, TWIST and SALSA,
are studied within the framework of the BIM for solving the 2D
inverse EM scattering problem. Indeed numerical experiments demon-
strate that IST-BIM produces more accurate solutions than classical
Tikhonov-BIM when applied to sparse and piecewise discontinuous
domains.
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Development of nonlinear inversion schemes with sparsity con-
straint regularization is underway. The nonlinear schemes will allow
accurate imaging in domains with sharp variations, discontinuities, or
sparse content even when the contrast is very high.
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Parallelization of the Multilevel Fast Multipole Algorithm
by Combined Use of OpenMP and
VALU Hardware Acceleration

Jinbo Liu, Mang He, Kang Zhang, Binbin Wang, and Qingwei Qiu

Abstract—A parallel scheme that combines the OpenMP and the vector
arithmetic logic unit (VALU) hardware acceleration is presented to speed
up the multilevel fast multipole algorithm (MLFMA) on shared-memory
computers. Performance of the hybrid parallel OpenMP-VALU MLFMA
is investigated and several strategies are employed to improve the overall
speedup and parallel efficiency. Effectiveness of the hybrid parallel scheme
is verified by numerical results of the electromagnetic (EM) scattering ex-
amples, and related numerical stability issue is discussed as well.

Index Terms—Electromagnetic scattering, multilevel fast multipole algo-
rithm, OpenMP, parallel computing, vector arithmetic logic unit (VALU).

I. INTRODUCTION

As a powerful fast integral equation solver, various parallel schemes
of the MLFMA, either based on the single-program-multiple-data
(SPMD) [1]–[7] or single-instruction-multiple-data (SIMD) paradigms
[8], [9], have been extensively studied. However, in the existing par-
allelized MLFMA, the vector computing ability provided by modern
central processing units (CPUs) was almost neglected [10], [11]. In
fact, since Intel Pentium IV, modern CPUs can realize vector compu-
tations by virtue of VALU and the instructions of streaming SIMD
extensions (SSE). Unlike the floating-point unit (FPU), VALU could
simultaneously handle four operands rather than one data sequentially.
Therefore, in principle a computer code using VALU could be four
times faster than that only uses FPU. This indicates that existing
serial or parallel MLFMA codes can benefit from combination of
the vector computing capability of VALU through SIMD paradigm
and the SPMD parallel model provided by multiple cores of CPU. In
contrast to GPU acceleration techniques [8], [9], this hybrid parallel
scheme does not require any extra device since VALU is an intrinsic
component of CPU; and more importantly, the use of VALU will
always enhance the performance of a code, but the same conclusion
cannot be applied to the GPU based techniques [10], [11].
In [10] and [11], Yu and Mittra recognized the advantage of VALU

in computational electromagnetics for the first time and utilized it with
MPI and OpenMP to accelerate their finite-difference time-domain
(FDTD) code on a mixed-memory platform. However, it should be
pointed out that there are fundamental differences in implementing
VALU hardware acceleration with OpenMP to the MLFMA as com-
pared to the FDTD method in shared-memory computers. First, VALU
can only operate on pure real operands efficiently, and since all data
involved in FDTD method is of real type, it is natural that the FDTD
code can make full use of VALU; whereas most numerical calculations
in the MLFMA are carried out in complex domain, so the vectoriza-
tion capability of VALU cannot be directly utilized in the MLFMA
if we do not modify the codes appropriately. Moreover, it should be
emphasized that existing MLFMA codes may already implicitly use
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