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A p-MUS Preconditioner for the EFIE
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Abstract—This paper considers the solution of the electric field
integral equation (EFIE) in electromagnetics. As with associated fi-
nite element methods, their solution relies upon the construction of
conforming bases.While lowest order (RWG) spaces are near ubiq-
uitous, their extension to higher order offers, potentially, a number
of benefits in terms of accuracy and efficiency, which has been well
documented in both finite elements and integral equation formula-
tions. A further evolution of higher order conforming bases is the
hierarchical basis. These have demonstrated considerable gains in
efficiency infinite element applications. Such bases allow for the de-
velopment of effective acceleration schemes, for instance, the mul-
tilevel Schwarz type preconditioner (p-MUS). An obvious question
arises as to the applicability of such hierarchical bases and their as-
sociated acceleration schemes to integral equations. It is seen that
the conclusions as to their efficacy depend strongly on the scattering
regime. In particular, high-frequency problems (those where the
wavelength is the principal determinant of mesh size) are shown
to benefit little from hierarchical functions. On the other hand, for
“low-frequency” problems (where geometry is the main determi-
nant of mesh size), there are significant improvements in perfor-
mance over corresponding interpolatory schemes.

Index Terms—Integral equation (IE), hierarchical, pre-
conditioner.

I. INTRODUCTION

T HE solution of the integral equations, especially the elec-
tric field integral equation (EFIE), is notably challenging.

Nonetheless, integral equation (IE) schemes have become a
powerful tool, particularly with the development of accelerated
schemes such as the fast multipole method (FMM) [1]. Key
to most such treatments is the requirement to solve matrix
equations iteratively, which at their core involve matrix-vector
multiplications. Much of the cost of such solutions then de-
pends on the number of iterations and the cost per iteration.
There has been much work in reducing the number of iterations
via the use of various preconditioners [2]–[5].
The vast majority of IE implementations (accelerated or oth-

erwise) employ the simplest Rao–Wilton–Glisson (RWG) basis
functions on triangles [6]. High order interpolatory bases have
been developed which (in principle) offer improved accuracy
for a given cost, though these are comparatively recent devel-
opments, such as [7].
The next natural step beyond high-order interpolatory

methods is to arrange these bases hierarchically. Many varia-
tions on such hierarchical bases have been extensively studied
within the finite element community [8]–[18], but little has
been done for integral equations such as those studied here,
though we should note [19], [20] and [21]. In [20], a two level
scheme is demonstrated, employing a spectral preconditioning
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technique. More recently, classes of hierarchical conforming
bases have been developed for a wide range of element types
for both finite and integral equation methods [22]–[24]. Such
bases are concisely described in terms of differential forms
and it is this terminology which we adopt here, although this
is essentially a notational convenience and the results apply
to standard vector forms of bases. Of themselves hierarchical
bases offer little more than their high order interpolatory coun-
terparts. However, as has been demonstrated in finite elements
[17], [18], [25], [26] it is possible to employ this hierarchical
structure to great effect in the reduction of the computational
cost of the underlying iterative scheme via a multilevel Schwarz
type preconditioner (p-MUS). In this paper we will demonstrate
the application of hierarchical bases to integral equations and
investigate the efficiency gains (if any) to be achieved.
In Section II, we briefly recall the form of the EFIE and the

hierarchical bases used in this work. These bases are detailed in
[27]. In Section III, a p-MUS multilevel preconditioner is de-
scribed, together with results demonstrating its effectiveness on
selected problems. It is noted that there is limited (if any) gain
for frequency dominated problems due to the existence of a crit-
ical level of discretization, below which, the p-MUS method
fails to converge. Except in exceptional circumstances (those re-
quiring very high accuracy), such methods offer little in terms of
efficiency gains over conventional interpolatory bases. The key
result presented here is that the principal benefits of the p-MUS
approach lie in its application to problems where discretization
is determined by geometrical complexity. In such cases, it is
clear that a speed-up of between 5 and 20 times their conven-
tional interpolatory counterparts are achieved. Such cases arise
frequently in areas such as frequency selective surfaces (FSS),
antenna arrays and sub-wavelength resolution.

II. DIFFERENTIAL FORMS AND THE EFIE

Using the notation of differential forms, a discretized
Galerkin form of the EFIE on a surface can be written as [22]

(1)

where is an incident wave, the wavenumber, the free-
space green function for the Helmholtz equation, the
basis function and are the unknown surface magnetic field
coefficients.
While the notationmay be unfamiliar to many in the EM com-

munity, it has the advantage of explicitly separating the field
approximation from the geometry description. This makes the
implementation of curvilinear geometry modeling much more
straightforward. The conventional vector notation using RWG
type functions requires that the bases also embody geometric,
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TABLE I
HIERARCHICAL BASES ON PARENT TRIANGLE

TABLE II
HIERARCHICAL BASES ON PARENT SQUARE

as well as field information. In fact, RWG type bases can be
obtained as Hodge star operations (corresponding to a cross
product with a unit normal; a 90 degree rotation) on these 1-form
bases, as shown in [22].
Given this, it remains to specify precisely the discretization of

these equations, and three choices must be made. First, the ge-
ometry: In this implementation, we describe the geometry using
six noded Lagrangian triangular elements and/or nine noded
quadratic square elements. Second, the surface fields must be
approximated by basis functions: We will choose a class of hi-
erarchical conforming basis functions (shown in Tables I and II
up to third order) obtained as surface traces of the functions de-
veloped in [27]. These have been shown to be well-conditioned
in a finite element sense. Third, we will employ a Galerkin ap-
proach and must specify appropriate testing functions: We will
choose the very same bases used to approximate the fields, as is
the norm with such formulations.

III. P-MUS GAUSS-SEIDEL MULTILEVEL PRECONDITIONING

Such hierarchical bases can be shown to be highly effective,
certainly in finite element formulations. An attractive approach
is the amultiplicative Schwarzmethod. To explain this, consider
a problem for which . Solving the IE for this case gives
rise to a matrix equation . Now consider the case
for . In principle, we may form the entire matrix

(2)

Note that the first diagonal block of and the first block of
is unchanged from the first-order case. We may attempt a full
solution of this, treating the case as an entirely new
problem (we term this a single level (SL) scheme). Rather, as
is the case with some hierarchical FE implementations, we use
the result of the calculation to aid us in the solution of
the second order problem, and so on, in principle to arbitrary
degree (we term this a Multilevel (ML) scheme). In the scheme
proposed here, we employ a block Gauss–Siedel method. For
the case above, we begin by obtaining a solution to
the case, that is, we solve

(3)

We then use this result to compute via

(4)

We can now return to the first-order problem, with a perturbed
RHS and compute a new , i.e.,

(5)

We proceed by repeating this cycle, successively solving (4) and
(5) until convergence is achieved.
The solutions of the individual block matrix equations [(4)

and (5)] can be performedwith any appropriate solver and in this
work we have used a complex bi-conjugate gradient algorithm
(BiCG).
This procedure generalizes to arbitrary order, and is em-

bodied in the following algorithm:

while do
for to do

for to do

end for

end for
for to 2 do

for to do

end for

end for
end while
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where denotes the coefficient vector of order . The conver-
gence criteria for the solution of all matrix equations is that

(6)

with analogous expressions for the subproblems. The tolerances
are denoted by TOL for the overall problem and for the
subproblems. Note that this is a classical V-cycle in multigrid
terminology.

A. Convergence of the p-MUS Scheme

The assumption has been made that the p-MUS scheme con-
verges. As we shall see, this is not always the case (even if each
sub matrix solution does) and it is worthwhile considering why
this may be the case. We begin by considering the residual ob-
tained at the end of each cycle, for the case. If we recast
the equations in terms of successive corrections and we have an
approximate solution after the th cycle, given by

(7)

With analogous notation for other vectors. The th residual at
this cycle is clearly

(8)

where is the full matrix. At the next cycle , we obtain a
new solution , which we can express as a correction to the
old solution, that is we let

(9)

Or equivalently that is the solution to

(10)

The Gauss–Seidel cycle obtains the correction as

(11)

which can be written explicitly as

(12)

It is then clear that

(13)

Combining (12) and (13) we obtain

(14)

where

(15)

Clearly, if the eigenvalues of the matrix lie within the unit
disc then the scheme will converge. Note that this discussion

Fig. 1. Modulus of largest eigenvalue of for plates (221 and 441 nodes) and
spheres (194 and 386 nodes) versus Number of bases per wavelength at lowest
order.

assumes exact inversion of the sub-matrices, which gives rise
to the zero entries in the second row of (and associated zero
eigenvalues). In practice, the BiCG is used for the sub-matrix
equation solution, with a large tolerance, so in reality we have
an approximate inverse and these entries will generally differ
somewhat from zero. Nevertheless, convergence will likely be
determined by the largest eigenvalue of the matrix in the first
entry of . We will demonstrate this link between the spectrum
of the iteration matrix and convergence of the p-MUS scheme
in the following section.

B. Results

The multilevel scheme (ML) developed in the previous
section is applied to a range of canonical problems including
spheres, plates, cubes, and dihedrals. In each case, we also com-
pute the computational cost based on both a non-accelerated
scheme (where each iteration involves operations)
and an accelerated scheme (e.g., where each iteration involves

operations). In these cases and
. These costs are compared with a direct appli-

cation of the BiCG method (a single level scheme (SL)) to the
“entire” matrix, again with .
We begin by investigating the convergence properties of the

p-MUS scheme. Numerical experiments demonstrate the im-
portance of an appropriate degree of mesh refinement: If the
number of bases per linear wavelength (BPW) for the lowest
order is less than 7, theML scheme is prone to divergence. The
relationship between convergence and discretization is demon-
strated clearly in Fig. 1, where the modulus of the largest eigen-
value, , of the matrix is plotted against the lowest order
BPW for two plate and sphere cases in a 2-level p-MUS scheme.
These results are obtained by varying the incident wavelength
and mesh refinement in each case. Note that in all cases where

we obtain convergence and that beyond some crit-
ical value of lowest order BPW this is always the case. Note that
given this baseline discretization ( BPW), a 2-level problem
will have BPW and a 3-level problem BPW. It is
clear that it is necessary to have a “good enough” lowest order
approximation.
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Fig. 2. Residual versus iteration for a PEC cube (350 DoF): —level 1,
—level 2, —level 3, —total residual.

Fig. 3. Operation count for multilevel scheme, single-level scheme, and first-
order only scheme—flat PEC plate.

It is clear from Fig. 1 that in the limit of very fine meshes,
tends to a fixed value ( 0.7), independent of the ge-

ometry. Also from Fig. 1, we see that the baseline BPW is
weakly dependent on the geometry. In particular, the dihedral
(not shown in the figure) is more demanding than the other
shapes, requiring a lowest order BPW of 8 for convergence.
This is possibly due to the higher Q of the dihedral, although
this is little more than speculation. In the following examples,
in order to make appropriate comparisons, we fix the number of
overall bases in a 3-level scheme at roughly 15 BPW (except
for the dihedral case, where we choose ). Thus, we
increase the number of bases by refining the mesh, as we in-
crease frequency. This, then, allows us to approximately fix the
discretization error.
The BiCG residuals are plotted against cumulative iteration

number in Fig. 2 for a 350 DoF PEC cube. It is clear that most
iterations occur for the lowest order (level 1) and that conver-
gence is very rapid for levels 2 and 3. The operation count
is plotted as a function of number of degrees of freedom in
Figs. 3–5 for plates, spheres, and dihedrals, respectively. These

Fig. 4. Operation count for multilevel scheme, single-level scheme, and first-
order only scheme—PEC sphere.

Fig. 5. Operation count for multilevel scheme, single-level scheme, and first-
order only scheme—PEC dihedral.

problems range from approximately to in size. It is clear
from these cases that the majority of the computational cost is in
the lowest order calculation (Level 1), with significantly fewer
iterations required for the high-order cases (Level 2 & 3). In-
deed, the higher level iterations have frequently converged after
just one or two iterations. Given the lowest order baseline re-
quired for convergence, there seems little point in going beyond
the third order. This is probably due to the fact that 15 BPW (or
17 in the dihedral case) is enough to capture all of the scattering
processes. This may not, of course, always be the case and there
may be circumstances when higher level schemes are beneficial,
as we shall note later. These figures also include the cost for a
conventional “single level—third order” (SL) application of the
BiCG, (i.e., simply applying the BiCG to the whole impedance
matrix) and the cost for a conventional first-order (FO) RWG
type calculation. Comparing the SL result with the FO result
appears to indicate that there is little benefit to be had in the use
of high-order basis functions in isolation. However, this is mis-
leading—one would reasonably expect that for a given accuracy
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Fig. 6. Aperture array Mesh with 475 triangular elements.

of result we could employ significantly fewer high-order bases
than the conventional first-order case.
We see from these figures that the computational cost of the

ML scheme in comparison with the conventional application of
the BiCG to the overall matrix equation results in a speed-up by
up to a factor . Note also that the effective cost for an accel-
erated (e.g., FMM) scheme results in a speed-up by a factor .
While these results appear promising, they do obscure an un-

derlying problem. The critical value places a lower bound on the
discretization. In fact, used as a single level scheme, third-order
bases can deliver sufficient accuracy (for far field scattering) for
5 BPW, which corresponds to a lowest order discretization of
3 BPW. Note that the multilevel scheme would simply not

converge in such circumstances. In the comparisons shown, we
have used a discretization of 15 BPW at third order. In applica-
tions where the discretization is determined principally by the
frequency (e.g., large smooth antennas and canonical RCS prob-
lems), it is clear that there is little gain (if any) to be had in using
hierarchical bases in this fashion. However, a large and growing
body of cases arise where the discretization is determined by ge-
ometry, notably frequency selective surfaces, sub-wavelength
resolution and sub-wavelength waveguides, etc. By their very
nature, feature size in such cases is less than a wavelength, al-
though the overall target size could still be large. It is neces-
sary to resolve these features properly to accurately predict res-
onances, transmission coefficients and the like. For these cases,
the wavelength is relatively large in comparison with the fea-
ture size and many of these problems result in discretizations
of 15 BPW and more, as a by product of the requirement to
model the geometry accurately. In such cases the gains made by
the p-MUS approach would be realized.
An example of such a problem is given next: This involves

a plate with square apertures, of the kind arising in metama-
terials and sub-wavelength resolution problems. The apertures
are sub-wavelength , although the overall scatterer is
across. The mesh used in this calculation is shown in Fig. 6 and

Fig. 7. H-field near aperture array versus position across the plate along a line
through the midsection.

has 475 triangular elements and the apertures are of similar size
to the elements. Clearly, it is the geometry which dictates the
mesh refinement in this case. In such problems, accurate de-
termination of the near field is important and Fig. 7 shows the
near H-field magnitude computed away from the surface
for various orders of interpolation due to a plane wave incident
normal to the array. Also shown is a reference result based on
a fine mesh with 2600 elements. It is clear that the lowest order
bases give rise to significant errors and that third-order bases
are required to achieve convergence on the coarse mesh. Fur-
thermore, the p-MUS scheme demonstrates a speed-up of 35
over the standard BiCG scheme for this problem.

IV. CONCLUSION

This paper considers the solution of the EFIE. Hierarchical
conforming bases have been developed which are subsequently
used in the construction of multilevel Schwarz-type precondi-
tioners. The effectiveness of this approach has been assessed
by the computation of scattering from a range of perfectly con-
ducting objects including spheres, cubes, plates, and dihedrals.
For problems whose mesh size is determined by the frequency
(e.g., RCS of electrically large smooth objects), these schemes
require more BPW in order to converge than is demanded by
accuracy. As a result the single-level BiCG scheme is gener-
ally superior for such cases. For problems where the mesh size
is determined by geometry, p-MUS is shown to be faster than
conventional schemes by factors of between 5 and 20. It should
be noted that these gains are largely independent of any other
aspects of the solution (e.g., solver type, other preconditioners,
etc.). This work concerns only the use of the EFIE for PEC scat-
terers and other formulations (MFIE, CFIE) for both PEC and
dielectric cases may equally benefit from this hierarchical ap-
proach and an assessment of these cases is currently underway.

APPENDIX
HIERARCHICAL BASIS FUNCTIONS

The basis functions used in the paper are listed in Tables I and
II and refer to the parent elements shown in Fig 8. Note that
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Fig. 8. Parent element and manifold assignments.

denotes the th dimensional sub-manifold with which each
of the bases are associated, i.e., The second-order edge basis
function associated with the third edge of the parent triangle is

, etc. We have included these due to
the fact that there are a number of alternative bases available in
the literature, and the precise forms of the bases may have an
impact on the performance reported in this paper.
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