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Piecewise Smoothed Value Picking Regularization
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Abstract—The Stepwise Relaxed Value Picking (SRVP) regular-
ization technique, proposed earlier for the iterative reconstruction
of piecewise (quasi-)homogeneous objects, is a non-spatial tech-
nique, whereby the reconstruction unknowns are clustered around
a limited number of—a-priori unknown—reference values. Arti-
facts have been observed in some 2-D and 3D complex permittivity
reconstructions. This paper therefore combines the non-spatial
SRVP technique with a spatial smoothing technique, whereby the
reference values provided by the former—in each iteration—are
employed by the latter to define separate smoothing regions.
This way edges are preserved, since the spatial smoothing con-
straints in the cost function are active within but not across the
region boundaries. This combined technique, denoted as Stepwise
Relaxed Piecewise Smoothed Value Picking (SRPSVP) regular-
ization, is formulated for the 2.5D microwave inverse scattering
problem and is illustrated with reconstructions from the Institut
Fresnel 2-D scattering database.

Index Terms—Complex permittivity, inverse scattering, mi-
crowave imaging, optimization, piecewise smoothing, reconstruc-
tion, regularization.

I. INTRODUCTION

EGULARIZATION by imposing spatial smoothing con-
straints on the entire reconstructed profile as in [1]-[3]
is less suitable for piecewise homogeneous objects. Imaging
piecewise homogeneous objects is of interest in various appli-
cations in non-destructive testing [4] and subsurface sensing
[5]. Several spatial smoothing techniques have been proposed
to enhance edges in nonlinear inverse scattering algorithms,
e.g., L1-norm total variation (TV) regularization [6], edge-pre-
serving regularization [7] with weighted L2-norm TV [8] and
with various potential functions [9], [10]. Other methods are
dedicated specifically to piecewise homogeneous profiles,
e.g., the level-set algorithm for binary or n-ary objects [11],
[12]. Stepwise Relaxed Value Picking (SRVP) regularization
[13] was proposed for piecewise (quasi-)homogeneous ob-
jects and has yielded promising results for the inversion of the
three-dimensional (3D) [14] and 2-D [15] microwave scattering
databases from Institut Fresnel and for 2.5D millimeter-wave
imaging of concealed objects [16].
Value Picking (VP) regularization is a non-spatial tech-
nique—it does not operate on the spatial neighborhood of
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the reconstruction variable—which gradually clusters the re-
construction unknowns around a limited number of a-priori
unknown reference values—the VP values—which in turn are
adjusted during the iterative reconstruction process by means
of a well-chosen regularizing function. The regularization thus
encourages each reconstruction variable to converge towards
one of these VP values. The basic idea of enforcing piecewise
homogeneity by introducing reference values in the cost func-
tion has been explored for binary objects in [17], [18] and for
one extra permittivity value in [19], but the choice function
in those previous works differs from the one used in the VP
regularization technique. The VP choice function is defined
for any number of permittivities and has well-documented
properties [13]; in particular it is “less than quadratic”, hence
it easily can be incorporated in the Gauss-Newton algorithm
through a sequence of quadratic approximations. The Stepwise
Relaxed (SR) approach refers to applying a severe regular-
ization in the beginning of the iterations, by using only one
VP value—the complex permittivity of the background—and
gradually relaxing the regularization by adding new VP values.
This considerably improves the convergence of the algorithm.
Some reconstructions with SRVP regularization [13]-[15]
have shown isolated (groups of) cells that are attracted to a
wrong VP-value. Note that those reconstructions were quite
challenging, since only single frequency data were used. When
the information content of the data is low with respect to the
number of degrees of freedom [20], additional regularization is
recommended.

This paper thus proposes to combine the non-spatial SRVP
technique with a piecewise spatial smoothing technique. This
combined technique, further denoted as Stepwise Relaxed
Piecewise Smoothing Value Picking (SRPSVP) regularization,
is more explicit in enforcing homogeneity within the image
parts that are recognized to be so: it additionally imposes spatial
smoothing within but not across a group of neighbor cells that
are attracted to the same VP value. Note in this context also the
approach in the Bayesian estimation framework presented in
[21] for a finite number of dielectric and conductive materials,
which applies a Gauss-Markov field for the distribution of
the contrast with a hidden Potts-Markov field for the class of
materials. Furthermore the presence of one-cell-artifacts can be
strongly reduced if smoothing across such cells is allowed. Of
course, this should be avoided in applications where the object
actually contains small inclusions with the size of one cell.

The proposed method is discussed in Section III and illus-
trated in Section IV with permittivity reconstructions from
the Institut Fresnel 2-D database [22], which contains mul-
tiple-frequency scattered field data for piecewise homogeneous
objects from TM- and TE-polarized 2-D incident fields—only
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single frequency data are used here. It is advantageous to
employ the 2.5D forward scattering solver [23], since both
polarization cases then can be computed with the same solver.
Consequently, the inverse scattering problem is formulated in
Section II for this more general 2.5D configuration, thus with
2-D material properties and 3D fields. An expression for the
2.5D field derivatives is derived in the Appendix.

II. THE ELECTROMAGNETIC INVERSE SCATTERING PROBLEM

Consider an inhomogeneous, possibly lossy, dielectric
cylinder with an arbitrary cross-sectional shape and with the
axis along the z-direction in a 3D cartesian coordinate system
p = r + zu;, where r = zu, + yu,. A 2-D rectangular
investigation domain P is defined as the area in the cross-sec-
tional x, y-plane where the (unknown) complex permittivity
e(r) = ege (r)+jo(r)/w can differ from the free space permit-
tivity €y. Here €, (r) is the relative dielectric permittivity, o(r)
the conductivity and w the angular frequency. To numerically
solve the inverse problem, the unknown e(r) is parameterized
over D by approximating it as a piecewise constant function
on a uniform grid with N* and NV identical square cells in,
respectively, the x- and y-directions:

N*—1NV-1

ety Y. > € emiPma(r), TED (1)

=0

m=0

with ®,,,; the unit expansion function and ¢, ; the unknown
coefficients. The latter are gathered in the N = N*NY-di-
mensional relative complex permittivity vector €, also {¢,},
v = 1...N. The input data of the inverse problem are a set
of scattered fields Ef(r,, z,.) = E;(r,,z.) — Ei(r,,2,), ob-
tained by successively illuminating the scatterer with known
incident fields Ei(r,z), i = 1...N?, and by measuring the
corresponding total fields E;(r, z) in a set of receiver points
(r,,z.),7 = 1...N". A time dependency exp{—jwt) of the
fields is assumed. The measured scattered fields are collected
in the N?¢-dimensional vector €*¢** with N¢ = 3N‘N", the
factor 3 stands for the z, y, z components. The excitations are
realized by (3D) angular diversity (N? transmitter positions or
propagation directions) and polarization diversity (V¥ polariza-
tions), hence N* = N*N?, where for N? = 1, TM- or TE- and
for N? = 2, TM- and TE-polarizations are applied.

The relation between the scattered field and the permittivity
is governed by a non-linear integral equation [16]. The inverse
problem thus is solved iteratively by minimizing a cost function
F, which consists of a data fit and regularization terms:

Fle,c) = F5(e) + vF  (e.c) + (F"5(e) )

with 77 the VP regularizing function, ¢ a PP-dimensional vector
(P < N) with the complex VP values ¢,,, "¢ the Piecewise
Smoothing (PS) regularizing function and ~y and ¢ positive reg-
ularization parameters. The least squares data fit,

escat 6) _ gmeas 2
I (mm i [ 3)
[[emeas]|

FES(e) =

is a measure for the difference between the experimentally ob-
tained scattered field and the corresponding simulated scattered
field e*°**(€)—also an N'*-dimensional vector—for the current
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value of €, which is computed with a 2.5D volume integral equa-
tion solver [23].

III. REGULARIZATION AND OPTIMIZATION

A. The VP Regularization Term
The function F7 is given by [13]

1 &
FP(E,C):NVZ::lfPHEV_C1|27~'~:‘€U_CP|2) 4)

where 7 is the P-dimensional choice function, defined as

fP(uy, .. up) = FP(ug, ..., up;0) ®)
with F'¥(uy,...,up;x) defined through the recursion formula
FPuy,... up;x)
FPYuy,...,up ;1)
= (u & —— : 6
(UP+l)FP*1(1L1,...,up,1;uP+:l7) ©)

with Y (ug;x) = up + .
The function (4) can be reformulated as a weighted sum of
penalty functions |e, — ¢,|? [13]:

N P
1
FP(e,c) = NZZb;iy(e,c)ky — % (7

v=1p=1

The behavior of 7% is as follows: (i) when the permittivity of
a cell is close to one of the VP values, the choice function tries
to enforce equality with this VP value (i.e., the corresponding
weight b” of that term in (7) is close to 1), (ii) when there is no
clear preference of a permittivity cell for a particular VP value,
no choice is made (b7 being somewhere intermediate between
0 and 1) and (iii) VP values that are clearly far away from the
considered permittivity cell are neglected (their b7 are almost
zero). Each VP value is initialized randomly (but different from
already present VP values) within some predefined upper and
lower bounds—the values of these bounds are not critical—and
is updated in each iteration, see Section III-C, except for cp,
which is kept fixed to the background permittivity.

B. The PS Regularization Term

PS regularization penalizes permittivity fluctuations within
but not across image parts that are considered—at a given it-
eration—to be homogeneous, further denoted as smoothing re-
gions. Smoothing regions are derived from a mapping of the grid
cells to VP-groups. A VP-group is the collection of cells that
clusters around one VP value and is determined as follows: at a
given iteration, the weights b’ (e, ¢) in (7) for cell v indicate
how close the permittivity of this cell is to each VP value ¢, ; the
two largest weights for cell © are compared and if their differ-
ence is larger than a threshold value (e.g., 0.2), then cell v is as-
signed to the VP-group that corresponds with the largest weight;
otherwise, it is assigned to the indefinite group. VP-groups (and
also the indefinite group) can consist of several spatially discon-
nected image parts. A smoothing region is an as large as possible
spatially connected group of cells belonging to one VP-group
(or to the indefinite group).



VAN DEN BULCKE et al.: PSVP REGULARIZATION APPLIED TO 2-D TM AND TE INVERSE SCATTERING

(m-2,1) (m-1,]) <= (m,))

(a)
(m-2,1) (m-1,1)
(m-2,]) (m,1)

(@]

Fig. 1. Illustration of defining S, ,. Cells of the same color belong to the same
VP-group. Allowed (arrow) and prohlblted (cross) smoothing.

Whereas with multiplicative smoothing (MS) as in [3]—the
cost function then is F = F£8 (1 + aF ), with « a positive
regularization parameter—the regularizing function 7 penal-
izes permittivity variations over all cell boundaries in the grid,
FPS only does so over cell boundaries within each smoothing
region. This is achieved by two matrices, S* and S? for the -
and y-directions, respectively,

N* NY-1
7“‘5 E E
F R Sm H |Fm 1 — €tm—1 I|
m=0 [=0
-1 NY
—I_ Z Z Sm R |€’m 1 — €m, - 1| (8)
m=0 (=0

where A/ is a normalization constant which accounts for the
dimensions of the object and the size of the cells. If cell (m —
1,1) belongs to the same VP-group as cell (m, 1), smoothing in
the z-direction is allowed and S... = 1,otherwise S} ; = 0.
This is also illustrated in Fig. 1(a) and (b), where cells hav1ng
the same color are assigned to the same VP-group. Similarly,
if cells (m,l — 1) and (m. ) belong to the same VP-group (or
to the indefinite group), S2, 1 = 1, otherwise Sfm ; = 0. Note
that the MS regularizing function FR is as (8) with all entries in
S! and S? equal to 1. To smooth out one-cell-artifacts nested in
a quasi-homogeneous image part, the second neighbor is taken
into account. For example, if the neighbor cell (m — 1,1) does
not belong to the same VP-group as cell (m, [) butcell (m—2,1)
does, it is assumed that cell (m — 1, 1) was attracted to a wrong
VP value, hence it is also allowed to smooth towards this cell
and 8}, , = 1, see Fig. 1(c).

C. The Optimization

Each iteration % in the optimization of (2) is a three-step pro-
cedure. Firstly, the permittivity profile is updated from iteration
ktok+1as

€x11 = € + Bisi 9

where s;, is a Gauss-Newton descent direction and 3y, is the step
size which approximately minimizes the cost function F along
this direction, computed with a line search [24]. During this step,
the VP values ¢ in F7 and the smoothing matrices S*, S? in
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FPS are kept fixed. The Gauss-Newton direction s; for F is
the solution of

(Jf‘]k + )\22k) sp = (JH [ scat emeas} +)\ZQZ)
(10)

where A? denotes |le™c¢¢||2, () and (-)* stand for conjugate
transpose and complex conjugate, respectively and

D=~ Q) +¢Q.°
IEEPY HANEIGD i (11)
Equation (10) follows from the equation for the Newton cor-
rection in complex notation [25] for the cost function (2), by
neglecting in the Hessian matrix the second order derivatives
of the scattered field with respect to the permittivity unknowns,
in a manner similar as in [13]. In the following, the subscript
k is mostly omitted. Elements of the Jacobian matrix J are
Jow = 0(e*")  /O¢,, an expression is derived in the Ap-
pendix. Q" and 7% contain the first order derivatives of the
regularizing functions

007 (e, c; €, ¢1)

P =
i’ Oe?,
1 r
N > bpulen cx)len — o) (12)
p=1
gpse _ 9F7°
T e

m,l

1 .
2
NR |: el (Em,l - Emfl,l,) + Sm,l (Em,l - F-m.,lfl)

+ Sm,+1,l (E‘m,l - Eerl.,l)

(13)

2
+ Sm,l—i—l (Em,l - 6'rn.,l+1)i|

where Q7 is an approximation to F7 , obtained by considering
the weights at their current values bp N (ek, Cx) as constants. »”
and 7 contain the second order derivatives

$P 3?9 (e, c; €, c)

P
1
_ = Sy D OP(er
v 8€“a€z o, BN )p.v(E"w Ck) (14)

p=1

with 6; ; the Kronecker symbol; for the diagonal elements

ZPS 62]:778
VY Qe ,ae
1

= VR [57171 1+ S+ Shq +Sh]  (15)
and for the non-diagonal elements (which are zero except if v
denotes a neighbor of ;)

s 82.7‘—PS

v
06? qdem A

,\/’7'\) I:Sm lbp m— léql + Sm lép,mb‘q,lfl
+ Sm+1,16p,m+1éq,l

+ S?rb,l+16p,'rrz(sq,l+1:|. (16)
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Note that with MS regularization (used as a benchmark in
Section IV) the employed modified Gauss-Newton direction
satisfies an equation as (10) with ©;, = QF, %, = %% and
X = allem |2ZFES (1 + aFR) [3].

Secondly, the VP values {¢, } are updated, while the permit-
tivity and smoothing matrices are kept fixed. Since they are sub-
ject to upper and lower bounds on their real and imaginary parts,
a constrained optimization is performed by an active set method
[24], which acts on F7 only. Similarly as with SRVP regular-
ization, VP values are also updated whenever a new VP value
is introduced.

Thirdly, the VP-groups/indefinite group and next the
smoothing matrices S* and S2 are updated, see Section ITI-B.
The iterations are stopped when the data fit reaches the noise
level, 7% =~ TV . The noise level TV = F£5(e") is defined
as the data fit for €”, which is the discretized permittivity profile
that yields the closest approximation to the true profile.

With MS regularization it was observed [3] that the data fit is
able to reach 7Y with choices of the regularization parameter cv
in a wide range of values and that - is not much further min-
imized once this happens; a rather large « in this range yields
an appropriately smoothed reconstruction, see the discrepancy
principle [26].

With SRVP regularization the iterations start with only one
VP value (strong regularization) and proceed until a local min-
imum of the corresponding cost function F is reached (i.e., its
gradient is small) or until 7~ increases again. For a sufficiently
large regularization parameter -, this first step terminates with
FES > TN The regularization then is relaxed by adding an
extra VP value and the optimization proceeds as before. New
VP values are added this way until 7S reaches (an estimate
of) TV . Ideally, P = P, at this stage, with P, the number of
different permittivity values in the exact profile, but when -y is
chosen too large, the algorithm typically stops with P > FPy;
some of these VP values tend to merge such that still a satisfac-
tory reconstruction is obtained. When = is too small, F~¢ easily
reaches TV, even with too few VP values, but the reconstruc-
tion then is of poorer quality.

In this paper, the choice of v results from numerical exper-
imentation, but a priori knowledge of the exact profile—apart
from its piecewise-homogeneous character with Py <« N—is
not assumed: if the final reconstruction shows insufficient clus-
tering of the permittivity unknowns around the VP values, a
larger « is tried; if the clustering is sufficient, a smaller v can
be tried to see if a comparable clustering can be achieved with
fewer VP values and/or with fewer iterations. We did not per-
form an in-depth study on the choice of the parameters -y and ¢ in
case of SRPSVP regularization. In the examples of Section IV,
v is chosen as with the SRVP regularization case and ¢ as with
the MS regularization.

IV. RECONSTRUCTIONS FROM EXPERIMENTAL DATA

A. Objects, Measurement Set-Up and General Settings

Single frequency scattering data at 4 GHz (A = 74.9 mm)
are considered for two objects from the Institut Fresnel 2-D
database [22]: the FoamDielExt object, which consists of a
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plastic cylinder with radius 7, = 15.5 mm & 0.2\ and relative
permittivity ¢, , = 30.3 thatis placed against a foam cylinder
with 7, = 40 mm ~ 0.5X¢ and ¢, ;, = 1.45 = 0.15 (Fig. 3(a))
and the FoamTwinDiel object, which is as FoamDielExt plus
an extra plastic cylinder off-centered inside the foam cylinder,
with their centers 5 mm apart (Fig. 3(¢)).

The illumination—receiver configuration, with 360 (1°
spaced) possible antenna positions on a circle with radius 1.67
m in the zy-plane, is detailed in [27]. Here, we use a subset of 8
(45° spaced) transmitter positions for FoamDielExt and 18 (20°
spaced) positions for FoamTwinDiel, and 241 receiving antenna
positions on an arc (from 60° to 300°) facing the source (when
at 0°). We invert both TM and TE data simultaneously, whence
separate inversions are presented in [28], the only contribution
in [22] that exploits both polarizations for the considered
objects. This means that we include both polarizations in the
field vectors €™°%* and e***! in (3), e.g., by filling each vector
first with the TE-data followed by the TM-data. Since the fields
in this paper are considered purely 2-D [27], all TM-fields
are parallel to the z-axis, in particular E¢™ = E3TMy_
E5™ = 0, ES™ = 0, and all TE-fields are parallel to
the wy-plane, in particular E*TF = E3TPu, + E5 TPy,
E*TE = 0 (the TE scattered field furthermore is tangential to
the measurement circle). For this configuration, the 2.5D solver
[23] solves both polarization cases at once, if the incident field
is chosen as the sum of the TE and TM incident fields at a given
source position, i.e., B! = E{TEu, + FiTEy, + FLTMy,
yields E* = E3™Fu, + ESTFu, + £ ™. . The dimension
of the data vector €™"** then is N = 3N*N" = 5784
complex numbers for FoamDielExt and N* = 13014 for
FoamTwinDiel. A simple calibration is applied to match phase
and energy between measured and simulated fields [27]: all
measured field values are multiplied by a complex factor, which
is the ratio of the simulated and measured incident fields at the
receiver location opposite to the source. The incident fields are
treated as plane waves.

In each experiment, the foam cylinder was positioned in the
center of the antenna circle (within the positioning uncertainty),
which is also the center of the reconstruction grid. This grid
is a 150 mm x 150 mm square, that is discretized in 30 x 30
square cells with edge 5 mm (roughly 15 cells per Ag), yielding
a total of 900 permittivity unknowns. This relatively small cell
size should facilitate the reconstruction of the curved object
contours. For the forward problem solution, each cell is sub-
divided further in 2 x 2 = 4 forward problem cells, the tol-
erance for the BICGSTAB routine is set to 1072 [23] and a
marching-on-in-source-position approach [29] using three pre-
vious solutions is applied. Since the fields are 2-D, the 2.5D
computations only need to be done for one Fourier component
k. = 0.

During the reconstructions, constraints are imposed on the
VP values but not on the permittivity profile. They are 1.1 <
R(ep) < 5and —0.001 < 3(¢p) < 0.001,p =1...P —1,
knowing that the permittivities under test do not have a signif-
icant imaginary part. Consequently, most figures in this paper
only show the real part of the permittivity (see [15] for the imag-
inary parts). The iterations are stopped when the data fit reaches
F~S = 51073 or as soon as a sixth extra VP value is to be
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Fig. 2. Data fit 7% as a function of the iteration number: SRVP (dash-dots),
SRPSVP (solid). Vertical lines indicate when a VP value was added. (a)
FoamDielExt (b) FoamTwinDiel.

introduced. All computations are performed on a machine with
two AMD Opteron 270 Quad core processors occupying all 8
CPU cores (each core solves a set of forward problems). In the
following, reconstructions with MS, SRVP and SRPSVP regu-
larization are discussed.

B. Reconstructions of FoamDielExt

For all the reconstructions of FoamDielExt a free space grid
is chosen as the initial permittivity estimate. First a reconstruc-
tion with MS regularization is performed with a regularization
parameter = 2 102 Fig. 3(b) shows the result after 16 itera-
tions, when the data fit stagnates around 7~ = 1.4 10~3. The
plastic cylinder is clearly visible and its permittivity is well esti-
mated (approximately 3), but the foam cylinder is rather blurry
without a clear shape or permittivity and artifacts are present in
the background. Due to the globally imposed smoothness, per-
mittivities are not well clustered.

Next a reconstruction with SRVP regularization is performed
with v = 3 and ¢ = 0 in (2). It was observed that with v = 1
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the data fit decreased too fast, leaving insufficient influence for
the regularization, while with v = 5 convergence was too slow.
The reconstruction is obtained after 32 iterations (3 h 40 min),
see Fig. 2(a). The algorithm adds more VP values than there are
materials (in the last iterations a new VP value is introduced in
each step), but most of these end up merging or approaching
one another. The final VP values are ¢; = 2.99, ¢ = 1.39,
c3 = ¢4 = 2.70 and ¢5 = 2.8. They all lie within the speci-
fied uncertainties on the object properties (¢, , = 3 &= 0.3 and
€3 = 1.45 & 0.15). None of the weights (7) corresponding
with ¢1, ¢3, ¢4 and c5 are dominant, but the cells of the plastic
cylinder are slightly more attracted to ¢3 = 2.70, which may
explain why the cylinder dimensions are somewhat overesti-
mated, see Fig. 3(c). Some artifacts are clearly visible in the
three permittivity regions: cells in the plastic cylinder pick the
VP value corresponding to the foam cylinder and vice versa; a
similar exchange of VP values is observed for the background
and foam. These artifacts also appear in the dash-dot curves in
Fig. 4, which show the permittivity along lines parallel to the
- and y- axes of the grid at y = —5 mm and x = —5 mm
respectively.

Let us therefore apply the proposed SRPSVP regularization,
withy = 3and ¢ = 210 3 (NV® = 1). Compared to the SRVP
cost function, the weight of the regularizing terms relative to the
data fit term has increased, resulting in a slower decrease of the
data fit, see Fig. 2(a). Consequently, VP values are added later
in the optimization process. The final VP values (after 53 iter-
ations) are ¢c; = 3.00, co = 1.48 and ¢35 = ¢4 = ¢5 = 2.75.
They fit even better within the uncertainties on the object prop-
erties than those obtained with SRVP. None of the weights cor-
responding with ¢q, c¢3, ¢4, c5 are dominant, hence all cells
within the plastic cylinder end up in the indefinite group and
the smoothing is performed over this complete cylinder. Also
the cells in almost the exact foam cylinder contour belong to
the same VP-group. The reconstructed permittivity profile in
Fig. 3(d) shows that most artifacts of Fig. 3(c) have disappeared.
Dimensions and positions of both cylinders are correctly recon-
structed and the shapes are better than with SRVP regularization
alone. The dashed curves in Fig. 4 show that the permittivity of
the foam cylinder is accurately reconstructed while that of the
plastic cylinder is somewhat underestimated.

C. Reconstructions of FoamTwinDiel

A reconstruction with MS regularization is performed, with
a = 2 1072 and starting from a free space permittivity grid.
Fig. 3(f) shows the result after 22 iterations, when F~5 =
2.4 103, The presence of the two plastic cylinders is clearly
visible, although their shape is harder to determine. As with
FoamDielExt the foam cylinder is less perceptible and there are
fluctuations in the background.

Next a reconstruction with SRVP regularization is performed
with v = 3 and ¢ = 0 in (2). Since the number of transmitters
now is about twice that for FoamDielExt, resulting in a longer
computation time, the initial permittivity is chosen as the avail-
able profile at iteration 5 of the MS reconstruction, see Fig. 5
(with %5 = 9.5 1072 after 2 h 30 min). Note that the final
result of Fig. 3(f) cannot be used since the corresponding data
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Fig. 4. Real part of the reconstructed permittivity along x - and y-directions for
FoamDielExt. Solid: exact profiles from Fig. 3(a), Dash-dots: SRVP profiles
from Fig. 3(c), Dashes: SRPSVP profiles from Fig. 3(d). (a) Along » at y =
—5 mm. (b) Along y at 2 = —3 mm.

fit is on the noise level and leaves no room for further optimiza-
tion. The reconstruction is obtained after 10 iterations (3 h 35
min), see Fig. 2(b). The VP values then are given by ¢; = 3.00,
¢ = 1.39 and ¢3 = ¢4 = ¢5 = 2.59. The values ¢; and c»
lie well within the uncertainties on the object properties, while
c3 = ¢4 = ¢y are slightly too low. However, the clustering of
the permittivities (Fig. 3(g)) compared to the MS reconstruction
(Fig. 3(f)) is apparent. As with FoamDielExt artifacts are visible
in all permittivity regions: cells in the plastic cylinders pick VP
values corresponding to the foam cylinder and background and
vice versa. Fig. 7 shows cross-sections along the z- and y- axis
and through the center of the reconstruction grid.

Let us again apply SRPSVP with vy = 3 and { = 2 1073,
The final VP values after 12 iterations are ¢; = 3.50, ¢ = 1.40
and cg = ¢4 = ¢5 = 2.88. Fig. 6 shows the VP-groups map-
ping at some iterations when a new VP value is added. It follows
that no cells finally are attracted to ¢; = 3.50 (Fig. 6(d)). How-
ever, the introduction of ¢; has not been useless, as appears from
Fig. 6(a), when ¢; = 3.03 and the two plastic cylinders start
to appear at the correct locations. After introducing ¢; = 1.34
(Fig. 6(b)), the foam cylinder also appears at the correct posi-
tion. In Fig. 6(d), all cells at the location of the plastic cylin-
ders pick ¢35 = ¢4 = ¢; = 2.88 and belong to the indefinite
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Fig. 5. Initial estimate for the reconstructions of FoamTwinDiel with SRVP
and SRPSVP. (a) Real part. (b) Imaginary part.
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Fig. 6. Mapping of the permittivity cells into VP-groups at different iterations
(it.) during the reconstruction of FoamDielTwin. Each VP-group is represented
by its VP value, ¢q stands for the fixed background VP value and indef for the
indefinite group. (a) it. 1: ¢; = 3.03. (b)it. 5: 2 = 1.34. (¢) it. 10: ¢5 = 2.92.
(d)it. 11: ¢4 = c3 = 2.88.

group, while those located in the foam cylinder are attracted
to ¢co = 1.40. We can conclude that also for FoamTwinDiel
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Fig. 7. Real part of the reconstructed permittivity along - and y-directions for
FoamTwinDiel. Solid: exact profiles from Fig. 3(e), Dash-dots: SRVP profiles
from Fig. 3(g), Dashes: SRPSVP profiles from Fig. 3(h). (a) along x at y =
0 mm. (b) along y atz = 0 mm.

the smoothing is performed in the appropriate regions. The re-
constructed permittivity in Fig. 3(h) shows that the artifacts of
Fig. 3(g) have disappeared. The reconstruction quality is com-
parable to that of Fig. 3(d): shape, dimensions and positions
of all cylinders are correctly reconstructed, except for a slight
translation (approximately two cells) of the foam cylinder to the
left. The dashed curves in Fig. 7 show that the permittivities of
the foam and exterior plastic cylinders are almost exactly re-
constructed while the permittivity of the inner plastic cylinder
is somewhat underestimated.

Concluding, the combination of piecewise smoothing with
SRVP regularization can significantly improve the results com-
pared to applying SRVP regularization alone. The reconstruc-
tions obtained here from single frequency data visibly are of su-
perior quality than those presented in [22] for the same objects
and also using single frequency data, e.g., with a multi-resolu-
tion inversion technique [30]. They even are comparable to and
in many cases better than the reconstructions from multi-fre-
quency or frequency-hopping data in [22], see e.g., with n-ary
level-sets [11], with an adaptive multiscale approach [31], with
a frequency-weighted data fit cost function [32], with an ex-
tended Born inversion with Tikonov regularization [33], with
multiplicative weighted TV regularized contrast source inver-
sion (CSI) [28], with a diagonal tensor approximation CSI [34],
and with compound Markov modelling [21]. Compared to the
weighted L2-norm TV regularization applied to CSI in [28]
or applied to a hybrid technique in [35], both using multi-fre-
quency data, the SRPSVP regularization yields sharper edges,
especially for the foam cylinders in [28] and for the plastic
cylinder in [35]. Also in the 3D case, edges are clear when using
SRVP regularization [14] while some smoothing is observed
with weighted L2-norm TV regularization [36]. A possible ex-
planation is that with SRPSVP regularization, the smoothing
strength is set equal to zero across cell boundaries that are as-
sumed, at a given iteration, to coincide with edges, while with
L2-norm TV regularization, the spatially dependent smoothing
weights then are small but still non-zero. Therefore, SRPSVP
regularization may present advantages compared to TV when
dealing with piecewise constant objects.

V. CONCLUSION

In this contribution we have presented a regularization
strategy for piecewise (quasi-)homogeneous objects, that com-
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bines a non-spatial value picking regularization method with
a piecewise spatial smoothing regularization. In each iteration
of the optimization scheme, the VP values provided by the
former serve to determine the separate smoothing regions
in the image for the latter. The new method is validated by
reconstructions of real world objects from experimental data.
In particular reconstructions from single-frequency TM- and
TE-polarized scattering data from the Institut Fresnel 2-D data-
base were presented for two piecewise homogeneous objects,
FoamDielExt and FoamTwinDiel. These reconstructions are
quite accurate and show a significant improvement compared
to those obtained with the non-spatial technique only or with
a global spatial smoothing approach. They also compare well
to reconstructions of the same objects with various techniques
by other authors. It can be concluded that SRPSVP is indeed
a valuable approach to deal with artifacts that may appear
when SRVP only is applied to piecewise (quasi-)homogeneous
objects.

APPENDIX
SCATTERED FIELD DERIVATIVES

A closed form expression is derived for the scattered field
derivatives 9E*(r, z) /O¢,,. In the 2.5D formulation [23] Fourier
field expansions are employed, hence the derivative is written as

OB(r,z) 1 /00 OE*(r, k.)

Oe T om Je e’t=*dk an
where ~ stands for the Fourjestransform,
glr. k) = g(r, 2)e IRz, (18)

— O

An operator G acting on a vector function p with support V is
defined as

, ) 1~ PN
[6Y(p))(r) = jwno (I+ k_QVV) : / G(r,r's k. )p(x')dr’
’ Y o (19)
where I is the 3x3 identity dyadic, V =

((9/9x).(8/9y), jk.) and

Gr.x's k) = iHél) ( k2 — k2 v — r’|> (20)
which corresponds to the 2-D scalar Green’s function of homo-
geneous space with relative permittivity €, = 1 — k2/k2. The
CSIE [23] for the total field E(r, k. ) then is formulated as

E(r,k.) = [65))(r) + [67 (~jwle — ]E)(r)  (21)

where J¢ and —jw[e — eo]f) are the applied and induced current
densities, respectively. Since the incident field does not depend
on the permittivity, derivation of (21) and using (1) yields

OB (r, k. ~
% = [P (—jweg®, E))(r)

57
OE*(r, k)

de, (22)

+HGP (—jwle — e )(x)-
Comparing (22) with (21), it follows that OE* (r,k.)/0¢, sat-
isfies an equation as (21) corresponding to an applied current
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density —jweq®,, E in cell v. Consequently, an expression is
readily obtained from the total field solution of (21) when it is
expressed as a function of Ji , by replacing J? with —jweg®, E.
Therefore the 3 x 3 dyadic Green’s function of inhomogeneous
space Ginn(r,r’; k) is constructed by applying a 2-D elemen-
tary dipole current density

~ 1
Js (r—r¢') =
ol ) Jwho

§(r — ' Hu, (23)
along a unit vector u,, in a pointr’ in presence of the scatterer for
the three orthogonal directions p = =, y, z. The resulting total
fields E4'P°'° yield the columns of the inhomogeneous dyadic
Green’s function

Egipol(\,(r, kz) = jwl / ainh(rv I‘N; kz) ‘3571)(1‘// - I'/)(ZI'N
JD

= Ginh(r', I'/; kz) s Uy (24)

The total field resulting from the current density J¢(r, k.) in
presence of the scatterer then is expressed as

~

E(r,k.) = jwuo/ Gian(r, ' k.) ~j'i(r’, k)de'.  (25)
D

It follows that

OB (1, k.)

5 :kg/ 3, (r')Ginn(r, t' k) - B(r', k. )dr'.
El/ D

(26)

Now the elements E7 (r,, z.) - u, , of the scattered field

vector e*“®! are considered. These are the z, ¥, # scattered field

components in receiver points (r,, z,) resulting from illumina-
tions E; juy . It follows that

OE
df,,

(I‘, 3 kz) Wy = k(Q) / éu(r/) Uy p - a’inh(r'm I'/; kz)

D
By, (v, k)dr'. (27)

Due to reciprocity (A?rinh(rr, ' k.) = (A}Elh(r’, r,; k.) and from

(24) it follows that

Ly, IJ; kz) = ainh(r/v L kz) s Wy
=EP (' k).

Wy pr - éinh(
(28)

Here, E;}g’f’le(r’ , k=) is the total field generated by a 2-D dipole
in the point r, oriented along u, s in presence of the scatterer.
Introducing (28) into (27) finally yields

IE;,

(r,,‘, ]i/z) . l_l,,‘7p/

= k2 | /D O, (x") By p (v, k) - BV K )dr' . (29)
To compute (29), two types of forward problems must be solved
for each spectral component k. of the incident field: (i) a regular
forward problem to compute E; ,(r',%k.) on D for each inci-
dence (,p), or a total of #k. N*NY forward problems; these
have been solved already to determine the data fit term (3);
(ii) a dipole forward problem to compute Edlp"le( " k) onD

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 6, JUNE 2013

for dipole excitations in each receiver position r,., or a total of
#k.N"NP forward problems.
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