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Abstract—Magneto-mechanical resonator arrays have emerged
as a promising transmitter solution for compact ultra-low
frequency (ULF) wireless communication systems and can be
extremely power-efficient compared to traditional electrical an-
tennas in the ULF range. The efficiency of ULF signal generation
using magneto-mechanical transmitters (MMTs) is dictated by
multi-physical effects from mechanical, magnetic, and electrical
domains, leading to an interesting trade space. In this work,
we show that an MMT’s most power-efficient and most voltage-
efficient driving frequencies always differ, forcing designers to
sacrifice one efficiency for the other. To address this issue,
we propose an efficiency optimization method that minimizes
the total impedance of the MMT at the most power-efficient
driving frequency, by means of a compensation capacitor added
to the electromagnetic actuation coil system. Our experimental
results show excellent agreement with our analytical model,
and we demonstrate that our approach enables simultaneous
maximization of voltage and power efficiencies of an MMT
at the same driving frequency. We additionally describe how
to apply this optimization method on multi-resonator magneto-
mechanical arrays and present numerical analysis that predicts
much greater improvement factors in systems having larger net
magnetic moments and drive coils with larger sizes.

Index Terms—Ultra-low frequency (ULF) transmitters, wire-
less communication, magneto-mechanical systems.

I. INTRODUCTION

W IRELESS data transfer plays a valuable role in our
daily activities. However, wireless communications are

particularly important for marine and underground activities,
including search and rescue, locator beacons, and environmen-
tal monitoring. Unfortunately, radio signals cannot propagate
through conductive media such as seawater, metal, rock, and
soil due to significant signal attenuation [1]. In this context,
ultra-low frequency (ULF, < 3 kHz) communication systems
have been shown as a good alternative due to the very large
skin depth at ULF, which significantly enhances the range.
The difficulty arises with traditional electrical antennas since,
when scaled for ULF, they require a very large area [2] and
prohibitive power for generating sufficient signal levels [3],
[4], making them impractical for many real-world applications.
Recently, a fundamentally new approach to building ULF
transmitters has been developed [5]–[12], commonly referred
to as magneto-mechanical transmitters (MMT). In an MMT,
the magnetic field carrier signal is generated through the
angular motion of permanent magnetic dipoles, on which data
can be encoded using amplitude or frequency modulations.
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Since the permanent magnetic dipole brings the power require-
ment for generating the magnetic field to exactly zero, the
power dissipation now only appears in the driving mechanism
[5], the mechanical losses in the suspension system [13],
and the eddy current losses in the magnetic materials [14].
Notably, as the mechanical oscillation frequency decreases, the
associated mechanical loss and eddy current loss also decrease
rapidly. Therefore, MMTs provide a power-efficient alternative
to traditional electrical antennas for ULF transmitters.

A typical oscillatory MMT consists of a drive coil and a
magneto-mechanical resonator array (MMRA) [14] as shown
in Fig. 1a. The MMRA can be designed with one or more
rotors and stators, with the stators providing a restoring torque
for resonant operation [5], [6]. An ac current provided to
the coil produces an alternating magnetic field, generating
an alternating torque on the rotors, which in turn leads to
oscillatory motion. The resulting mechanical motion of the
permanent dipoles produces a time-varying magnetic field at
all points in space around the MMT, whose amplitude is
directly related to the oscillatory amplitude of the rotors [5].
The driving frequency ω of the source is always set to be
close to the mechanical resonant frequency of the MMRA
[5], [6], [14] in order to achieve higher voltage efficiency,
which can be expressed in terms of the time-varying magnetic
field signal strength at the receiver normalized to the voltage
level applied on the drive coil. We can also define power
efficiency as the time-varying magnetic field signal strength
normalized to the power dissipated in the MMT system. Both
efficiency metrics are key for determining the practicality of
MMTs, and both are functions of the driving frequency ω due
to the resonance behavior of the MMRA as well as the coil
[5]. In this paper, we observe that an MMT’s most power-
efficient and most voltage-efficient driving frequencies always
differ, i.e. their resonances do not align, forcing designers to
necessarily sacrifice one efficiency for the other. To address
this issue, we propose an efficiency optimization method that
minimizes the total impedance of the MMT at the most power-
efficient driving frequency. Using experiments and analysis,
we demonstrate that this method allows us to simultaneously
maximize the voltage and power efficiencies of an MMT at
the same driving frequency.

II. POWER AND VOLTAGE EFFICIENCIES OF AN MMT

We consider a single-rotor MMT as shown in Fig. 1a.
The driving voltage, V (t), is a sinusoid at frequency ω. The
induced current in the coil, I(t), and the resulting rotor motion,
θ(t), can then generally be expressed as I(t) = 1

2Imejωt+c.c.
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Fig. 1. The operational principle of an MMT. (a) Schematic diagram of a single-rotor MMT. The drive coil is supplied with an alternating voltage V (t),
which induces an alternating current I(t) flowing through the coil. The drive coil generates an alternating magnetic field Bc(t) in the x̂ direction. The rotor
and stators in the MMRA have uniform magnetization, Mr and Ms, respectively, pointing in the ŷ direction at rest, which is orthogonal to Bc(t) to maximize
the driving torque on the rotor. During operation, stators remain static, and the rotor oscillates about its longitudinal axis with a time-varying angular position
θ(t) with amplitude θm. The switch is used to implement the ON-OFF keying modulation. (b) Schematic diagram showing the relative position of the MMT
and the receiver (scalar magnetic field sensor). The MMT generates a magnetic field at any point in space, B⃗, which varies with the angular position of the
rotor magnet. The scalar magnetic field sensor is placed in the x̂ direction to measure the projected magnetic field Bmeas(t) along the x̂ direction.

and θ(t) = 1
2θmej(ωt+ϕ) + c.c. where Im and θm are the

current amplitude and the oscillation amplitude, respectively,
and ϕ is some relative phase difference between I(t) and θ(t).
The configuration of MMT and receiver (x-oriented) shown in
Fig. 1b has been previously discussed [5] as being the most
optimal for generating the largest time-varying magnetic field
at frequency ω. The x-oriented magnetic field measured at the
receiver, Bmeas(t) = BMMRA(t)+Bc(t), is comprised of the
magnetic fields generated by both the MMRA and the coil.
Under approximation that the angular motion of the MMRA
dipole is relatively small, we can expand the sinusoidal using
Taylor expansion and ignore the higher-order dependencies
and simply write BMMRA(t) = Aθθ(t) and Bc(t) = AII(t)
where Aθ and AI are coefficients that describe the relationship
between the magnetic fields and the current and rotor motion,
whose values have been discussed in Ref. [14] and Ref. [15],
respectively. The received magnetic signal can be defined as
the RMS value of Bmeas(t):

Bmeas, rms =
1√
2
|Aθθm ejϕ +AIIm| . (1)

The average power consumed by the MMT can be evaluated
as

Ptotal, avg =
1

2
RcI

2
m +

1

2
βω2θ2m (2)

where Rc is the resistance of the coil and β is the damping
coefficient of the MMRA.

To quantify the power efficiency, we normalize the at-
receiver magnetic signal strength to the average power con-
sumed through the Field Per square Root Watt (FPRW) metric:

FPRW(ω) =
Bmeas, rms√
Ptotal, avg

=
|AθHθ/I(ω) +AI |√
Rc + βω2|Hθ/I(ω)|2

(3)

where Hθ/I(ω) is the transfer function from the coil current to
the angular position of the rotor. We take the square root of the
average power in this expression since FPRW is independent
of the input voltage level for a particular MMT. To quantify the
voltage efficiency we similarly relate the at-receiver magnetic

Fig. 2. Equivalent circuit model of the MMT. The circuit on the left models
the driving system, and the circuit on the right models the MMRA. Rc and Lc

are the resistance and inductance of the coil, respectively. Cc is the optional
capacitance that can be introduced as a part of the driving system. κ, β, and
J are the restoring stiffness, damping coefficient, and moment of inertia of
the rotor, respectively. Two circuits are coupled through a gyrator [5], [16]
where the coupling coefficient is Γo. The flow variables in the coil and MMT
circuits are I(t) and θ̇(t), respectively. V (t) in the coil circuit is the input
voltage.

signal strength to the RMS value of the supplied voltage
through the Field Per Volt (FPV) metric:

FPV(ω) =
Bmeas, rms

Vrms
= |HI/V (ω)| · |AθHθ/I(ω)+AI | (4)

where HI/V (ω) is the transfer function from the input voltage
to the coil current. FPV(ω) also remains constant for an MMT
regardless of the input voltage level. Since it is typical to use
a voltage source to drive the coil [5], [6], the natural choice
for driving frequency is where the FPV(ω) is maximized.
We can find this resonance condition using Eq. 3, with the
simplification that the damping coefficient β of the MMT is
very small for most MMTs [5], [6], [14]. The denominator
of FPRW(ω) is then dominated by the coil resistance Rc,
implying that the shape of FPRW(ω) closely matches the
shape of Hθ/I(ω), which exhibits a resonance as we will see
in the following paragraph. On the other hand, as can be seen
in Eq. 4, the shape of FPV(ω) depends on both Hθ/I(ω) and
HI/V (ω). Since Hθ/I(ω) also exhibits a resonance, the most
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Fig. 3. (a) Schematic diagram of the single-rotor MMT. The single-rotor MMT uses a cylindrical neodymium magnet (NdFeB) as the rotor, two cuboidal
NdFeB with a square cross-section as stators, and two copper beryllium (CuBe) wires as the suspension system. The drive coil is a 100-turn coil made of
AWG 18 enameled copper wire and the capacitors are non-polarized ceramic capacitors. (b) Photograph of the experimental setup. The single-rotor MMT
consists of a 3D-printed frame and two 3D-printed wheels to adjust the tension on the CuBe wires. We use a flux-gate magnetometer (Texas Instruments
DRV425EVM) as the scalar magnetic field sensor to pick up the magnetic field signal as illustrated in Fig. 1b.

power-efficient and most voltage-efficient driving frequencies
always differ, forcing the users to necessarily sacrifice one
efficiency for the other. One approach to improve the FPV is
by adding a step-up voltage transformer. However, adding a
step-up transformer will not change the most power-efficient
and most voltage-efficient driving frequencies and does not
provide a solution to the problem.

To maximize FPRW(ω) and FPV(ω) at the same driving
frequency, we need to match the resonant frequencies of
Hθ/I(ω) and HI/V (ω). To accomplish this, we start from
an equivalent circuit model [5] that describes the dynamical
behavior of the system, as shown in Fig. 2. The circuit
equations (all variables are defined in Fig. 2) can be written
as

Lcİ +RcI +
1

Cc

∫
Idt = Γoθ̇ + V (5a)

Jθ̈ + βθ̇ + κθ = −ΓoI . (5b)

Here we have introduced an extra compensation capacitor Cc

in series with the coil which we will use later to optimize the
efficiencies with respect to drive voltage and power consump-
tion. By converting to frequency domain, the transfer functions
HI/V (ω) and Hθ/I(ω) can be evaluated as

HI/V (ω)
−1 =

[
Rc +

Γ2
oω

2β

(κ− Jω2)
2
+ (βω)

2

]

+ j

[
ωLc −

1

ωCc
+

Γ2
oω

(
κ− Jω2

)
(κ− Jω2)

2
+ (βω)

2

]
(6)

and Hθ/I(ω) =
Γo

−Jω2 + jωβ + κ
. (7)

The resonance of Hθ/I(ω) can be evaluated readily from

Eq. 7 as ωres =
√

κ
J − β2

4J2 ≈
√

κ
J and is the same as the

mechanical resonance frequency. We can similarly extract the
spectral characteristics of the impedance function HI/V (ω)
by examining Eq. 6. With the assumption of small β, we
can see that the Re{HI/V (ω)

−1} will reach a minimum value
Rc at the frequency at which Im{HI/V (ω)

−1} = 0. At this
frequency, which we define as ωopt, the function HI/V (ω)

will hit a resonance condition. Our optimization goal is now
to find a compensation capacitor such that the resonance of
HI/V (ω) and of Hθ/I(ω) are aligned, i.e. when ωopt = ωres.
The value of this series capacitor Cc can then be found by
setting Im{HI/V (ωres)

−1} = 0, resulting in the solution:

Cc =

[
ω2
resLc +

Γ2
oω

2
res

(
κ− Jω2

res

)
(κ− Jω2

res)
2
+ (βωres)

2

]−1

. (8)

The slight deviation should appear due to the small β ap-
proximation that we applied earlier, which is best adjusted
via experiments. As we will show later, this is not the same
capacitance where the coil resonant frequency matches with
the MMRA resonant frequency. It is also worth noting that
irrespective of the compensation capacitor, the FPRW of the
system is unaffected.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We have experimentally verified this optimization method
using a single-rotor MMT. The MMT device is shown in
Fig. 3, and values of experimental parameters used for ef-
ficiency calculations are measured and listed in Table I (other
material properties and geometric parameters are given in
Table II). We can now employ Eq. 8 to estimate that the
required capacitance of the compensation capacitor will be
Cc = 31.0µF. As a side note, Cc = 53.5µF is the capacitance
required to form an L-C tank resonator with the coil with a
resonance that matches the MMRA.

We now experimentally test three important scenarios: (1)
using a coil alone as the driving system (i.e., no compensation
capacitor), (2) introducing the series compensation capacitor to
match the coil resonant with the MMRA resonant frequency
(i.e., Cc = 53.5µF), and (3) setting the compensation ca-
pacitor to the predicted value (i.e., Cc = 31.0µF). In each
scenario, we experimentally measure the FPRW and FPV of
the system and compare them to the analytical predictions
from Eqs. 3 and 4. As shown in Fig. 4(a), the FPRW of the
system in all three scenarios remains unchanged. The slight
difference comes from the parasitic resistance intrinsic to the
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TABLE I
PARAMETERS USED IN EFFICIENCY CALCULATIONS

Parameter Symbol Value

Rotor moment of inertia J 13.7 mm2g
Damping coefficient β 39.6 nNm · s/rad
Restoring stiffness κ 0.1207 Nm/rad

Coupling coefficient Γo 0.64 Nmm/A
Coil inductance Lc 2.1 mH
Coil resistance Rc 1.16 Ω

Receiver distance d 100.14 mm
Angle coefficient Aθ 0.1443 mT/rad

Current coefficient AI 0.1486 mT/A

TABLE II
MATERIAL PROPERTIES AND GEOMETRIC PARAMETERS FOR THE

SINGLE-ROTOR MMT

Parameter Value

Rotor magnet remanence 1.338 T
Rotor length 2.3125 in

Rotor diameter 4 mm
Suspension torsional stiffness 2.2 N mm/rad

Stator magnet remanence 1.355 T
Stator length 3 in
Stator width 0.5 in
Stator height 0.5 in

Center distance between rotor and stator 21.85 mm
Coil inner length 135 mm
Coil inner width 95 mm
Coil outer length 155 mm
Coil outer width 115 mm
Coil thickness 18 mm

ceramic capacitors. The optimal driving frequency for maxi-
mizing FPRW is experimentally measured at 472.0 Hz in all
scenarios. Fig. 4b presents the simultaneously measured FPV
for the three scenarios. We find that the correct compensation
capacitance yields an FPV whose resonance is aligned with
the FPRW resonance. The FPV on resonance is also 3.2 times
higher than that of the system using the coil alone, i.e. without
any compensation capacitor and is 1.62 times higher than when
the coil and MMRA have the same resonant frequency. The
experimental and analytical results confirm that this efficiency
optimization method helps maximize the FPV of the system at
the optimal driving frequency without affecting the FPRW of
the system. From Fig. 4, we can also see that there is a very
good agreement between the analytical model (Eqs. 3 and 4)
and the experimental data for both the FPRW and FPV.

Fig. 4. Analytical (solid lines) and experimental (dots) results of (a)
FPRW and (b) FPV of the system at different driving frequencies. Red color
represents scenario 1 (no capacitor in the experiment), blue color represents
scenario 2 (Cc = 54.1µF in the experiment), and green color represents
scenario 3 (Cc = 29.0µF in the experiment). The vertical black dash line
marks the optimal driving frequency, which is ωopt = 472.0Hz in all three
scenarios. FPVs of three scenarios at the optimal driving frequency are 41.8
µT/V, 82.7 µT/V, and 133.8 µT/V, respectively, as indicated in (b).

IV. CONCLUSION

In this work, we demonstrate an optimization method that
simultaneously maximizes the voltage efficiency and power
efficiency of an MMT through the simple addition of a
compensation capacitor to the drive coil. Our analytical model
exhibits excellent agreement with experimental results. In
practical applications, increasing the magnetic moment of an
MMT is often necessary to enhance the signal strength or
extend the communication distance. One way to achieve this
is to use a larger magnet for a single-rotor MMT, while another
approach is to employ multiple smaller rotors in a multi-
rotor MMT, which offers advantages such as higher power
efficiency and higher resonant frequency [5]. In Appendix A,
we describe in detail how to leverage this optimization method
with multi-rotor MMTs. Importantly, our numerical analysis
with multi-rotor MMTs, presented in Appendix B, suggests
that the improvement factors can be significantly higher than
we have shown in our single-rotor experiments. These findings
highlight the potential benefits of this efficiency optimization
method and suggest promising directions for future research.
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APPENDIX A
IMPROVING EFFICIENCY OF MULTI-ROTOR MMTS USING

COMPENSATION CAPACITORS

Consider a multi-rotor MMT consisting of a linear chain
of rotors and stators driven by a drive coil [5], [6], [14], as
shown in Fig. S1. The differential equations that describe an
N -rotor MMT system can be written as{

Lcİ +RcI +
1
Cc

∫
Idt = ΓTΘ̇+ V

JΘ̈+BΘ̇+KΘ = −ΓI
(A1)

where Lc, Rc, and Cc are the inductance, resistance, and
capacitance of the coil, respectively. The vector Θ =
[θ1, θ2, ..., θN ]T represents the instantaneous angle of each
rotor. The vector Γ = [Γ1, Γ2, ..., ΓN ]T represents the cou-
pling where Γi is the coupling coefficient between the ith

rotor and the drive coil. The inertia matrix J is an N × N
diagonal matrix written as J = diag(J1, J2, ..., JN ) where
Ji is the moment of inertia of the ith rotor. The damping
matrix B can be expanded into two major contributions
B = Bsus + Beddy . Bsus is an N × N diagonal matrix
written as J = diag(β1, β2, ..., βN ) where βi is the damping
coefficient of the ith rotor from its suspension. Beddy is an
N ×N matrix that represents the eddy current loss coefficient
whose value can be calculated from the model developed in
(Ref. [14]). The stiffness matrix K can be expanded into
three major contributions K = Ksus + Kr + Ks. Ksus

is a diagonal matrix written as Ksus = diag(κ1, κ2, ..., κN )
where κi represents the restoring stiffness on the ith rotor
from its suspension. Kr and Ks are N × N matrices that
represent the restoring stiffness generated by rotors and stators,
respectively, and their values can be calculated from the model
developed in (Ref. [14]). The mechanically synchronized mode
(i.e., the in-phase mode) is particularly well suited for MMT
applications [5], [6] since it has the highest resonant frequency,
produces the largest magnetic signal, and couples best to the
drive coil (the other modes tend to be magnetically dark) [14].
The oscillation mode shape Φ for the in-phase mode of the
multi-rotor MMT can be evaluated from the eigenvector of the
matrix J−1K. The differential equations can be rewritten as{

Lcİ +RcI +
1
Cc

∫
Idt = ΓTΦθ̇e + V

ΦTJΦ θ̈e +ΦTBΦ θ̇e +ΦTKΦ θe = −ΦTΓI
(A2)

where θe is the effective oscillation angle such that Θ = Φθe.
We can further simplify Eq. A2 into this form:{

Lcİ +RcI +
1
Cc

∫
Idt = Γeθ̇e + V

Jeθ̈e + βeθ̇e + κeθe = −ΓeI
(A3)

where Γe = ΓTΦ = ΦTΓ is the effective coupling coefficient,
Je = ΦTJΦ is the effective moment of inertia, βe = ΦTBΦ
is the effective damping coefficient, and κe = ΦTKΦ is the
effective stiffness of the multi-rotor MMT. The magnetic field
at the receiver along the x̂ direction can be written as

Btotal(t) = Aθeθe(t) +AII(t) . (A4)

where AI is the current coefficient and Aθe is the effective
angle coefficient. Under the dipole approximation and the

small angle approximation, the effective angle coefficient can
be evaluated as

Aθe = AθΦ (A5)

where Aθ = −[
µ0Mr, 1

2πd3 ,
µ0Mr, 2

2πd3 , ...,
µ0Mr,N

2πd3 ]. Therefore, using
Eqs. A3 and A4, we can follow the same procedure and
apply the efficiency optimization method described in the main
manuscript on multi-rotor MMTs.

APPENDIX B
NUMERICAL ANALYSIS FOR MULTI-ROTOR MMTS

Let us consider a multi-rotor MMT with N identical rotors
and suspension systems, and the same resonant frequency ωres

as the single-rotor MMT, i.e., assuming i as the rotor index
we have Ji = Jr, βi = βr, and κi = κr for all individual
rotors. As a reminder, ωres is the resonance for the transfer
function Hθ/I(ω), and it is only set by the mechanics in
our model. For simplicity we can also assume the N -rotor
MMT has an uniform mode shape, i.e., Φ is an identity
matrix, and thus Je = NJr, βe = Nβr, and κe = Nκr.
Here it is important to emphasize that in a real multi-rotor
system the rotor participation is generally non-uniform, and the
synchronized oscillation mode of a multi-rotor MMT typically
has a much higher frequency ωres than the individual rotors
[14]. For the sake of simplicity and insight development, we
will choose to ignore these subtleties, but details for interested
readers can be found in [14].

Based on the above assumptions, we find that as the number
of rotors N increases, the coil size will need to increase to
accommodate the size of the rotor array. Since both coil size
(and thus the coil inductance and resistance) and magnetic
moment increase by a factor of N , the coupling coefficient
increases by a factor of N2 as it linearly depends on both the
coil size and the magnetic moment [5], i.e., Γe = N2Γr. If
we assume this rapid scaling on the coupling coefficient and
maintain the above assumptions on individual rotors, it can
be shown that there will be a more substantial improvement
in the FPV of the MMT when a compensation capacitor is
used. Since the analytical arguments for this conclusion are not
easily presented, we instead conducted numerical simulations
for MMTs with varying numbers of rotors N = 1, 5, 10, 20.
The results of this numerical analysis are presented in Fig.
B1. This analysis confirms that, for larger numbers of rotors,
the improvement in FPV can be significantly higher than what
we have reported in single-rotor MMT experiments conducted
in the main manuscript. These findings highlight the potential
benefits of this efficiency optimization method for multi-rotor
systems.
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Fig. A1. The operational principle of a multi-rotor MMT. (a) Schematic diagram of a multi-rotor MMT. The rotors and stators in the MMT have uniform
magnetization, M⃗ri and M⃗s, respectively, pointing in the ŷ direction at rest, which is orthogonal to B⃗c(t) to maximize the drive torque on the rotor. (b)
Schematic diagram showing the relative position of the MMT and the receiver (scalar magnetic field sensor).

Fig. B1. Numerical results for MMTs with varying numbers of rotors (N = 1, 5, 10, and 20) at different driving frequencies. The solid blue lines represent
the simulated FPRW of the MMTs. The dashed orange lines present the simulated FPV of the system with the coil alone (FPVcoil, scenario 1 from the
main manuscript). In contrast, the solid orange lines present the simulated FPV of the system with the capacitor-based efficiency optimization applied for each
individual case (FPVopt, scenario 3 from the main manuscript). The vertical black dashed lines indicate the optimal driving frequencies and the improvement
factors (measured as FPVopt/FPVcoil) are indicated in the plots. The results show that significantly higher factors of improvement are possible than in the
single-rotor MMT case.
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