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Abstract—To enhance the scalability and performance of the
traditional finite-difference time-domain (FDTD) methods, a
three-dimensional summation-by-parts simultaneous approxima-
tion term (SBP-SAT) FDTD method is developed to solve complex
electromagnetic problems. It is theoretically stable and can be
further used for multiple mesh blocks with different mesh sizes.
This paper mainly focuses on the fundamental theoretical aspects
upon its three-dimensional implementation, the SAT for various
boundary conditions, and the numerical dispersion properties
and the comparison with the FDTD method. The proposed SBP-
SAT FDTD method inherits all the merits of the FDTD method,
which is matrix-free, easy to implement, and has the same level
of accuracy with a negligible overhead of runtime and memory
usage. Four numerical examples are carried out to validate the
effectiveness of the proposed method.

Index Terms—Energy stable, summation-by-part (SBP), simul-
taneous approximation term (SAT), stability, three-dimensional
finite-difference time-domain (FDTD) method.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) method has
been widely used in scattering analysis [1], designs of

waveguides [2], antennas [3], and biomedicine [4] due to its
simplicity, high parallel efficiency, and strong capability to
handle complex media. However, it suffers from accuracy
issues due to staircase errors when multiscale or complex
structures are involved.

The subgridding technique is one of the approaches to
effectively decrease staircase errors through local refinement
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meshes in regions including geometrically fine structures.
Many efforts have been made in the last few decades [5]–
[12]. Especially, a theoretically stable subgridding technique
through filtering out unstable modes was proposed in [13].
However, it may be computationally expensive for large-scale
problems to calculate those stable modes in simulations. In
[14] [15], a reduced-order model (MOR) was used in the
subgridding scheme to extend the Courant-Friedrichs-Lewy
(CFL) condition for improving the efficiency. Another high-
order smoothing technique was proposed to interpolate fields
on the interfaces in the non-standard (NS)-FDTD method [16].
An asymmetric FDTD subgridding technique was proposed in
[17], which can be used for any mesh refinement ratio. It’s
well-known that the long-time stability of those subgridding
algorithms can not be always guaranteed since the theoretical
proofs can hardly be given through making interpolation
operators meet the reciprocity principle [18] or the dissipation
theory [19].

Recently, the summation by parts simultaneous approxima-
tion term (SBP-SAT) technique provides the possibility of
implementing long-time stable subgridding techniques. The
finite-difference methods with the SBP-SAT techniques were
originally proposed to solve the Euler and Navier-Stokes
equations in [20] [21], and other applications are carried
out in [22] [23]. Then, it has been introduced to solve the
two-dimensional Maxwell’s equations in [24] [25], in which
electric and magnetic field components are collocated at field
nodes. Since staggered grids can decrease numerical disper-
sion errors [26], efforts have been done to extend the SBP-
SAT techniques to solving acoustic scattering problems with
staggered grids [27] [28]. In [29] [30], the SBP-SAT FDTD
method is developed to solve the two-dimensional Maxwell’s
equations on staggered grids.

However, to the best of the authors’ knowledge, there are
no reports or implementations based on the three-dimensional
SBP-SAT FDTD method to solve the Maxwell’s equations.
Based on our previous experience, extensions of the two-
dimensional time-domain methods into their three-dimensional
counterparts are nontrivial, and instability may occur. In this
article, a three-dimensional theoretically stable FDTD method
based on the SBP-SAT technique is proposed, which can be
used for multiple mesh blocks with different cell sizes. It will
be discussed in a follow-up article. The paper mainly focuses
on the fundamental theoretical aspects of the proposed method
and its validation. In the proposed method, additional field
nodes are added on the boundaries of computational domain
to satisfy the SBP property, and nodes inside the computational
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domain are the same as those of the traditional FDTD method.
Then, by using the properties of the SBP operator, the energy
of the whole computational domain is fully determined by
fields on the boundaries. The perfectly electrical conduct-
ing (PEC), perfectly magnetic conducting (PMC) boundary
conditions, and the periodic boundary condition (PBC) are
weakly enforced through the SAT technique. In addition,
the numerical errors are comprehensively investigated. These
theoretical proofs guarantee the long-time stability of the
proposed three-dimensional SBP-SAT FDTD method, and it
can be the spurious-free alternative for the FDTD method.
The main contributions of this article are divided into four
aspects.

1) A three-dimensional SBP-SAT FDTD method is pro-
posed in this article. To make the discrete operators
satisfy the SBP properties, additional electric and mag-
netic nodes are sampled on the boundaries of the
computational domain. Its time-marching formulations
are comprehensively derived based on modified grids,
and the matrix-free implementations are also presented
in detail. Although several matrices are involved in
our derivation, the time-marching formulations can be
decomposed into the elemental manner as that in the
FDTD method. Therefore, it is as efficient as the FDTD
method.

2) The PEC, PMC, and PBC are derived through the SAT
technique to guarantee their stability. Unlike implemen-
tations in the FDTD method, those boundary conditions
are weakly enforced through the SAT technique. It
can be used to develop theoretically stable subgridding
methods for multiple mesh blocks with different mesh
sizes. Since the SATs only exist on the boundaries of
computational domain, a negligible overhead of memory
and runtime is imposed.

3) The numerical dispersion of the proposed method is
comprehensively investigated and compared with that of
the FDTD method. It is found that the proposed SBP-
SAT FDTD method has the same level of accuracy and
anisotropy as the FDTD method.

4) Four practical numerical examples are carried out to
validate its stability, accuracy, and efficiency. Numerical
results show that the proposed SBP-SAT FDTD method
shares the same merits as the FDTD method. It is simple,
easy to implement, matrix-free and has strong capability
of handling complex media.

This paper is organized as follows. In Section II, grids used
in the proposed three-dimensional SBP-SAT FDTD method
are first presented in detail. Then, the time-marching formu-
lations based on the modified grids are shown. In Section III,
treatments of the PEC, PMC boundary conditions and PBC
by the SAT technique are rigorously derived to guarantee the
long-time stability. In Section IV, its numerical dispersion
error based on PBC is comprehensively investigated and
compared with that of the FDTD method. Then, the practical
implementation and its efficiency comparison are carried out in
Section V. In Section VI, four numerical examples are carried
out to domesticate the effectiveness of the proposed method.

Finally, conclusions are drawn in Section VII.

II. THE GRIDS AND FORMULATIONS IN THE SBP-SAT
FDTD METHOD

A. Fields Nodes Distribution on Grids

Without loss of generality, a lossless, homogenous and
isotropic medium is considered. The three-dimensional
Maxwell’s equations [31] are given by

∇×H = ε
∂E

∂t
, (1a)

∇×E = −µ∂H

∂t
, (1b)

where ε and µ are the permittivity and the permeability of
the medium, respectively. In order to solve (1a) and (1b),
the FDTD method uses Yee’s grids to sample electromagnetic
fields in the spatial domain, as shown in Fig. 1(a). Electric
field nodes (E-nodes) are located in the middle of each cell
edge, and magnetic field nodes (H-nodes) are located at the
center of each cell face. E- and H-nodes are interlaced with
each other on Yee’s grids.

The electromagnetic fields in the proposed three-
dimensional SBP-SAT FDTD method are similar to those in
the FDTD method. The SBP-SAT FDTD method and the
FDTD method have exactly the same field node distributions
inside the computational domain. However, to meet the SBP
properties, both E- and H-node distributions in the SBP-SAT
FDTD method have to be modified on the boundaries of
computational domain.

To clearly demonstrate grids used in the
proposed method, two kinds of one-dimensional
grids, x+ = [x0, x1, . . . , xi, . . . , xn]

T and x− =[
x0, x1/2, . . . , xi−1/2, . . . , xn−1/2, xn

]T
, where subscripts

denote field node locations and xi = ih with h as the
interval, are used to sample electromagnetic fields in the
one-dimensional spatial domain. In our implementation,
three-dimensional grids are extended from x+ and x−
with appropriate combinations, which implies that they
are decomposed into three one-dimensional grids in the
x, y, and z directions, respectively. Table I lists how six
three-dimensional grids for each fields are decomposed into
corresponding three one-dimensional grids in the x, y, and z
directions, respectively.

TABLE I
THE THREE-DIMENSIONAL GRIDS IN THE X, Y, Z DIRECTIONS

Field Nodes Axis

E-nodes
Ex x− y+ z+

Ey x+ y− z+

Ez x+ y+ z−

H-nodes
Hx x+ y− z−

Hy x− y+ z−

Hz x− y− z+

E- and H-nodes on the boundaries of computational domain
in the SBP-SAT FDTD method are shown in Fig. 1(b) and
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Fig. 1. The distribution of fields in the SBP-SAT FDTD method: (a) E- and H-nodes in the FDTD method, (b) E-nodes in the SBP-SAT FDTD method,
(c) H-nodes in the SBP-SAT FDTD method.

1(c), respectively. It can be found that additional magnetic
fields need to be added in middle of boundary edges in
their vertical direction, and four corner nodes of their vertical
boundary edges. To clearly demonstrate field distribution on
the boundaries, we take Ex and Hx as examples.

Two Ex nodes are added at each edge along the x direction.
Therefore, two additional electric field nodes are added at
the end and beginning of each edge along the corresponding
directions. Additional Hx nodes are added in the middle of
boundary edges along the y and z direction, respectively, and
intersections of two edges.

As it is stated above, node distributions are exactly the
same as those in Yee’s grids inside the computational domain.
Only additional field nodes are required to be added on the
boundaries to meet the SBP properties. Therefore, only a small
amount of memory is required to store those additional nodes.

B. The SBP Operators in the One-Dimensional Space

In order to discrete (1a) and (1b) with the SBP grids, several
operators, which are similar to those in [25], are first defined
in the one-dimensional space. Two discrete finite-difference
matrices D+ and D− are defined on x+ and x− [29]. D+ and
D− should satisfy the following accuracy relationship

D+xk− = kxk−1
+ ,D−xk+ = kxk−1

− ,k = 0, 1, (2)

where the dimensions of D+ and D− are N+×N− and N−×
N+, respectively. When k = 0, x−1

− = 0 and x−1
+ = 0. D+

and D− can be further expressed as

D+ = P−1
+ Q+,D− = P−1

− Q−, (3)

where P+ and P− are positive definite matrices, and their
entities denote the Gaussian weights associated with corre-
sponding field nodes. Q+ and Q− satisfy

Q+ + QT− = B (4)

where

B =


−1 0 · · · 0 0
0 0 0
...

. . .
...

0 0 0
0 0 · · · 0 1


N+×N−

. (5)

When difference operators satisfy (3) and (4), they can be
regarded as the SBP operators. With the definition of B, we
get

xT+Bx− = xnxn − x0x0, (6)

where ‖·‖2 is the two-norm of a column vector, which will be
used to estimate the discrete energy. From (6), it can be noted
that the energy in computational domain only depends on the
boundary nodes.

Entities of D+, D−, P+, P−, Q+ and Q− can be found
in [29]. For readers’ convenience, they are also listed in the
Appendix.

C. The Semi-Discrete Formulations of the SBP-SAT FDTD
Method without the Boundary Conditions

Several discrete finite-difference matrices are used to ap-
proximate the partial differential operators in (1a)-(1b). By
using these discrete matrices, the semi-discrete Maxwell’s
equations can be written as

dEx

dt
= DyHz

Hz − DzHy
Hy, (7a)

dEy

dt
= DzHx

Hx − DxHz
Hz, (7b)

dEz

dt
= DxHy

Hy − DyHx
Hx, (7c)

dHx

dt
= DzEy

Ey − DyEz
Ez, (7d)

dHy

dt
= DxEz

Ez − DzEx
Ex, (7e)

dHz

dt
= DyEx

Ex − DxEy
Ey, (7f)

where Ex is a column vector collecting all Ex nodes in the
computational domain in the x, y, z directions, and it is similar
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for Ey , Ez , Hx, Hy , and Hz . The discrete finite-difference
matrices are defined as

Dxi = Iz ⊗ Iy ⊗ Dx, (8a)
Dyj = Iz ⊗ Dy ⊗ Ix, (8b)

Dzk = Dz ⊗ Iy ⊗ Ix, (8c)

where I are identity matrices with the corresponding dimen-
sions. ⊗ is the Kronecker product operator, which can be
regarded as an extension of the low-dimensional operator
into its high-dimensional counterpart. The subscripts of these
matrices denote finite-difference operators defined for the
corresponding components. Since Ex, Ey , Ez , Hx, Hy , and
Hz are arranged in the order of x, y, and z, respectively,
the Kronecker product operation should be performed in the
corresponding order.

Four types of finite-difference matrices for (8a)-(8c) are
used in the following derivation. For (8a), we have (1) i = Hz;
(2) i = Hy; (3) i = Ez; (4) i = Ey . For (8b), we have (1)
j = Hz; (2) j = Hx; (3) j = Ez; (4) j = Ex. For (8c), we
have (1) k = Hy; (2) k = Hx; (3) k = Ey; (4) k = Ex. The
subscripts x, y and z correspond to field nodes i in Table I.

By using (7a)-(7f), electromagnetic fields can be discretized
in the temporal domain. Then it is necessary to add boundary
conditions by using the SAT technique.

III. BOUNDARY IMPLEMENTATION IN THE PROPOSED
SBP-SAT FDTD METHOD

A. The Proposed SBP-SAT FDTD Method with the PEC
Boundary Condition

In the SBP-SAT FDTD method, the PEC boundary condi-
tions imply tangential electric fields at the boundary vanish as
shown in Fig. 2.

In the FDTD method, it is achieved by directly enforcing
tangential electric fields as zeros. However, in the proposed
SBP-SAT FDTD method, it is weakly enforced by the penalty
terms using the SAT technique. The SAT for the PEC boundary
condition is added in (7d)-(7f) to weakly enforce that tangen-
tial electric fields vanish. Then, (7d)-(7f) can be expressed as
dHx

dt
− DzEy

Ey + DyEz
Ez (9)

= σr1

(
P
′′′

Hx

)−1

RTHxr
P
′′

zxEzr + σl1

(
P
′′′

Hx

)−1

RTHxl
P
′′

zxEzl

+ σt1

(
P
′′′

Hx

)−1

RTHxt
P
′′

yxEyt + σd1

(
P
′′′

Hx

)−1

RTHxd
P
′′

yxEyd ,

dHy

dt
− DxEz

Ez + DzEx
Ex (10)

= σb1

(
P
′′′

Hy

)−1

RTHyb
P
′′

zyEzb + σf1

(
P
′′′

Hy

)−1

RTHyf
P
′′

zyEzf

+ σt2

(
P
′′′

Hy

)−1

RTHyt
P
′′

xyExt
+ σd2

(
P
′′′

Hy

)−1

RTHyd
P
′′

xyExd
,

dHz

dt
− DyEx

Ex + DxEy
Ey (11)

= σr2

(
P
′′′

Hz

)−1

RTHzr
P
′′

xzExr
+ σl2

(
P
′′′

Hz

)−1

RTHzl
P
′′

xzExl

+ σb2

(
P
′′′

Hz

)−1

RTHzb
P
′′

yzEyb + σf2

(
P
′′′

Hz

)−1

RTHzf
P
′′

yzEyf .

Exr
, Exl

, Ext
, Exd

, Eyt , Eyd , Eyb , Eyf , Ezr , Ezl , Ezb ,
Ezf are column vectors collecting components nodes on the
boundaries, where subscripts denote different electric compo-
nents on boundary faces of the computational domain. Take
Eyt as an example, it can be calculated by Eyt = RTEyt

Ey ,
where RTEyt

= eN+ ⊗ Ix+ ⊗ Iy− with eN+ = [1, 0, . . . , 0]
T .

It selects Ey nodes on the top boundary face. σ and χ with
subscripts represent free parameters to meet the stability of
semi-discrete system in the SBP-SAT FDTD method.

It should be noted that tangential electric fields are located
in the corresponding directions on the right hand side (RHS)
of (9)-(11). By taking (9) as an example, it can be rewritten
as

dHx

dt
− DzEy

Ey + DyEz
Ez (12)

= σr1

(
P
′′′

Hx

)−1

RTHxr
P
′′

zx(Ezr − 0)

+ σl1

(
P
′′′

Hx

)−1

RTHxl
P
′′

zx(Ezl − 0)

+ σt1

(
P
′′′

Hx

)−1

RTHxt
P
′′

yx(Eyt − 0)

+ σd1

(
P
′′′

Hx

)−1

RTHxd
P
′′

yx(Eyd − 0).

The PEC requires that tangential electric fields vanish. There-
fore, additional terms, are added on the RHS of (12), which
correspond to the SATs. By using them, we can easily enforce
the boundary conditions, like the PEC, PMC, and PBC.
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Fig. 2. The electric fields distribution in the SBP-SAT FDTD method on the
PEC.

The normal matrices are defined as

P
′′

j = Pm ⊗ Pn, (13a)

P
′′′

i = Pz ⊗ Py ⊗ Px. (13b)

For (13a), six scenarios need to be considered as follows. (1)
j = xy, m = y+ and n = x−; (2) j = yx, m = y− and
n = x+; (3) j = xz, m = z+ and n = x−; (4) j = zx,
m = z− and n = x+; (5) j = yz, m = z+ and n = y−; (6)
j = zy, m = z− and n = y+. As for (13b), six scenarios will
be used in the our derivation, which can be expressed as (1)
i = Ex; (2) i = Ey; (3) i = Ez; (4) i = Hx; (5) i = Hy;
(6) i = Hz , and subscripts x, y and z also correspond to field
nodes i in Table I.

In the proposed SBP-SAT FDTD method, the electromag-
netic energy can be expressed by electromagnetic fields on
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the boundary. In a three-dimensional cavity with the PEC
boundary conditions, the electromagnetic energy in the whole
computational domain can be calculated as follows

E =
1

2
EH
x P

′′′

Ex
Ex +

1

2
EH
y P

′′′

Ey
Ey +

1

2
EH
z P

′′′

Ez
Ez

+
1

2
HH
x P

′′′

Hx
Hx +

1

2
HH
y P

′′′

Hy
Hy +

1

2
HH
z P

′′′

Hz
Hz,

(14)

where (·)H is conjugate transpose operator. After taking the
partial derivative with respect to time, (14) can be written as

dE
dt

=
1

2

dEx

dt

H

P
′′′

Ex
Ex +

1

2
Ex

HP
′′′

Ex

Ex

dt

+
1

2

Ey

dt

H

P
′′′

Ey
Ey +

1

2
EH
y P

′′′

Ey

Ey

dt
+

1

2

Ez

dt

H

P
′′′

Ez
Ez

+
1

2
EH
z P

′′′

Ez

Ez

dt
+

1

2

Hx

dt

H

P
′′′

Hx
Hx +

1

2
HH
x P

′′′

Hx

Hx

dt

+
1

2

Hy

dt

H

P
′′′

Hy
Hy +

1

2
HH
y P

′′′

Hy

Hy

dt
+

1

2

Hz

dt

H

P
′′′

Hz
Hz

+
1

2
HH
z P

′′′

Hz

Hz

dt
.

(15)

It can be seen that the partial derivative of electromagnetic
fields with respect to time can be replaced by (7a)-(7c) and
(9)-(11). Therefore, we can obtain dE/dt by substituting
(7a)-(7c) and (9)-(11) into (15). After some mathematical
manipulations, (15) can be expressed as
dE
dt

= (σt2 − 1) ET
xt
P
′′

xyHyt + (σd2 + 1) ET
xd
P
′′

xyHyd

+ (σr2 + 1) ET
xr
P
′′

xzHzr + (σl2 − 1) ET
xl
P
′′

xzHzl

+ (σb2 + 1) ET
yb
P
′′

yzHzb + (σf2 − 1) ET
yf
P
′′

yzHzf

+ (σt1 + 1) ET
ytP

′′

yxHxt
+ (σd1 − 1) ET

yd
P
′′

yxHxd

+ (σb1 − 1) ET
zb
P
′′

zyHyb + (σf1 + 1) ET
zf
P
′′

zyHyf

+ (σr1 − 1) ET
zrP

′′

zxHxr
+ (σl1 + 1) ET

zl
P
′′

zxHxl
.

(16)

To guarantee the stability of the system, which implies that
there is no dissipation of the energy, dE/dt = 0 should be
satisfied. From (16), we can find that the stability of the
proposed method can be analytically proved with appropriate
free parameters. One option is

σt2 = σl2 = σf2 = σd1 = σb1 = σr1 = 1,

σr2 = σd2 = σb2 = σt1 = σf1 = σl1 = −1.
(17)

B. The Proposed SBP-SAT FDTD Method with the PMC
Boundary Condition

Similarly, the penalty terms from the SAT technique are
added in (7d)-(7f) to weakly enforce the PMC boundary con-
ditions. The PMC boundary condition requires that tangential
magnetic fields on the boundary vanish, as shown as Fig. 3.
Therefore, in order to enforce the boundary magnetic fields,
the time-marching formulations can be expressed as
dEx

dt
− DyHz

Hz + DzHy
Hy (18)

= χt1

(
P
′′′

Ex

)−1

RTExt
P
′′

xyHyt + χd1

(
P
′′′

Ex

)−1

RTExd
P
′′

xyHyd

+ χr1

(
P
′′′

Ex

)−1

RTExr
P
′′

xzHzr + χl1
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Fig. 3. The magnetic fields distribution in the SBP-SAT FDTD method on
the PMC.

dEy

dt
− DzHx

Hx + DxHz
Hz (19)

= χb1

(
P
′′′

Ey

)−1

RTEyb
P
′′

yzHzb + χf1

(
P
′′′

Ey

)−1

RTEyf
P
′′

yzHzf

+ χt2

(
P
′′′

Ey

)−1

RTEyt
P
′′

yxHxt
+ χd2

(
P
′′′

Ey

)−1

RTEyd
P
′′

yxHxd
,

dEz

dt
− DxHy

Hy + DyHx
Hx (20)

= χb2

(
P
′′′

Ez

)−1

RTEzb
P
′′

zyHyb + χf2

(
P
′′′

Ez

)−1

RTEzf
P
′′

zyHyf

+ χr2

(
P
′′′

Ez

)−1

RTEzr
P
′′

zxHxr
+ χl2

(
P
′′′

Ez

)−1

RTEzl
P
′′

zxHxl
.

By taking (18) as an example, it can also be written as

dEx

dt
− DyHz

Hz + DzHy
Hy (21)

= χt1

(
P
′′′

Ex

)−1

RTExt
P
′′

xy(Hyt − 0)

+ χd1

(
P
′′′

Ex

)−1

RTExd
P
′′

xy(Hyd − 0)

+ χr1

(
P
′′′

Ex

)−1

RTExr
P
′′

xz(Hzr − 0)

+ χl1

(
P
′′′

Ex

)−1

RTExl
P
′′

xz(Hzl − 0),

where the SATs are used to enforce boundary condition.
For the PMC boundary condition, the proof of the stability is

similar to that with the PEC boundary condition. After taking
the derivative of electromagnetic energy in the computational
domain with respect to time, dE/dt can be expressed by
derivative of electromagnetic fields. By substituting (7d)-(7f)
and (18)-(20) into (15), dE/dt can be written as

dE
dt

= (χt1 − 1) ET
xt
P
′′

xyHyt + (χd1 + 1) ET
xd
P
′′

xyHyd

+ (χr1 + 1) ET
xr
P
′′

xzHzr + (χl1 − 1) ET
xl
P
′′

xzHzl

+ (χb1 + 1) ET
yb
P
′′

yzHzb + (χf1 − 1) ET
yf
P
′′

yzHzf

+ (χt2 + 1) ET
ytP

′′

yxHxt
+ (χd2 − 1) ET

yd
P
′′

yxHxd

+ (χb2 − 1) ET
zb
P
′′

zyHyb + (χf2 + 1) ET
zf
P
′′

zyHyf

+ (χr2 − 1) ET
zrP

′′

zxHxr
+ (χl2 + 1) ET

zl
P
′′

zxHxl
.

(22)
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To ensure dE/dt = 0, the free parameters can be chosen as
follows

χt1 = χl1 = χf1 = χd2 = χb2 = χr2 = 1,

χr1 = χd1 = χb1 = χt2 = χf2 = χl2 = −1.
(23)

C. The Proposed SBP-SAT FDTD Method with the PBC
Since both electric and magnetic fields exist on the bound-

aries in the proposed SBP-SAT FDTD method, the additional
penalty terms will be added in (7a)-(7f) to weakly enforce the
PBC. The electromagnetic fields on the PBC in the y direction
is shown in Fig. 4.
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Fig. 4. The magnetic and electric fields distribution in the SBP-SAT FDTD
method on the PBC in the y direction.

The phase shift e−jαx , e−jαy , e−jαz are considered in the
x, y, and z directions, respectively. αx, αy, αz are defined as
αi = k0ihi where k0 = k0xx̂+k0yŷ+k0z ẑ is the wave vector
and x̂, ŷ, ẑ are the unit vector in the corresponding directions.
hi denotes length of the computational domain in the x, y and
z directions. (7a)-(7f) with PBC can be written as

dHx

dt
− DzEy

Ey + DyEz
Ez

= σr1

(
P
′′′

Hx

)−1

RTHxr
P
′′

zx

(
Ezr − e−jαyEzl

)
+ σl1

(
P
′′′

Hx

)−1

RTHxl
P
′′

zx

(
Ezl − ejαyEzr

)
(24)

+ σt1

(
P
′′′

Hx

)−1

RTHxt
P
′′

yx

(
Eyt − e−jαzEyd

)
+ σd1

(
P
′′′

Hx

)−1

RTHxd
P
′′

yx

(
Eyd − ejαzEyt

)
,

dHy

dt
− DxEz

Ez + DzEx
Ex

= σb1

(
P
′′′

Hy

)−1

RTHyb
P
′′

zy

(
Ezb − e−jαxEzf

)
+ σf1

(
P
′′′

Hy

)−1

RTHyf
P
′′

zy

(
Ezf − ejαxEzb

)
(25)

+ σt2

(
P
′′′

Hy

)−1

RTHya
P
′′

xy

(
Ext
− e−jαzExd

)
+ σd2

(
P
′′′

Hy

)−1

RTHyd
P
′′

xy

(
Exd
− ejαzExt

)
,

dHz

dt
− DyEx

Ex + DxEy
Ey

= σr2

(
P
′′′

Hz

)−1

RTHzr
P
′′

xz

(
Exr − e−jαyExl

)
+ σl2

(
P
′′′

Hz

)−1

RTHzl
P
′′

xz

(
Exl
− ejαyExr

)
(26)

+ σb2

(
P
′′′

Hz

)−1

RTHzb
P
′′

yz

(
Eyb − e−jαxEyf

)
+ σf2

(
P
′′′

Hz

)−1

RTHzf
P
′′

yz

(
Eyf − ejαxEyb

)
,

dEx

dt
− DyHz

Hz + DzHy
Hy

= χt1

(
P
′′′

Ex

)−1

RTExa
P
′′

xy

(
Hyt − e−jαzHyd

)
+ χd1

(
P
′′′

Ex

)−1

RTExd
P
′′

xy

(
Hyd − ejαzHyt

)
(27)

+ χr1

(
P
′′′

Ex

)−1

RTExr
P
′′

xz

(
Hzr − e−jαyHzl

)
+ χl1

(
P
′′′

Ex

)−1

RTExl
P
′′

xz

(
Hzl − ejαyHzr

)
,

dEy

dt
− DzHx

Hx + DxHz
Hz

= χb1

(
P
′′′

Ey

)−1

RTEyb
P
′′

yz

(
Hzb − e−jαxHzf

)
+ χf1

(
P
′′′

Ey

)−1

RTEyf
P
′′

yz

(
Hzf − ejαxHzb

)
(28)

+ χt2

(
P
′′′

Ey

)−1

RTEya
P
′′

yx

(
Hxt
− e−jαzHxd

)
+ χd2

(
P
′′′

Ey

)−1

RTEyd
P
′′

yx

(
Hxd

− ejαzHxt

)
,

dEz

dt
− DxHy

Hy + DyHx
Hx

= χb2

(
P
′′′

Ez

)−1

RTEzb
P
′′

zy

(
Hyb − e−jαzHyf

)
+ χf2

(
P
′′′

Ez

)−1

RTEzf
P
′′

zy

(
Hyf − ejαzHyb

)
(29)

+ χr2

(
P
′′′

Ez

)−1

RTEzr
P
′′

zx

(
Hxr

− e−jαzHxl

)
+ χl2

(
P
′′′

Ez

)−1

RTEzl
P
′′

zx

(
Hxl
− ejαzHxr

)
.

By substituting (24)-(29) into (14) and taking the partial
derivative with respect to time, dE/dt with the PBC can be
expressed as

dE
dt

= (σt2 + χt1 − 1) ET
xt
P
′′

xyHyt

+ (σd2 + χd1 + 1) ET
xd
P
′′

xyHyd (30)

+ (σr2 + χr1 + 1) ET
xr
P
′′

xzHzr + (σl2 + χl1 − 1) ET
xl
P
′′

xzHzl

+ (σb2 + χb1 + 1) ET
yb
P
′′

yzHzb + (σf2 + χf1 − 1) ET
yf
P
′′

yzHzf

+ (σt1 + χt2 + 1) ET
ytP

′′

yxHxt
+ (σd1 + χd2 − 1) ET

yd
P
′′

yxHxd

+ (σb1 + χb2 − 1) ET
zb
P
′′

zyHyb + (σf1 + χf2 + 1) ET
zf
P
′′

zyHyf

+ (σr1 + χr2 − 1) ET
zrP

′′

zxHxr
+ (σl1 + χl2 + 1) ET

zl
P
′′

zxHxl
.
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In order to ensure the stability, σ and χ can be

χt1 = χl1 = χf1 = χd2 = χb2 = χr2 =
1

2
,

χr1 = χd1 = χb1 = χt2 = χf2 = χl2 = −1

2
,

σt2 = σl2 = σf2 = σd1 = σb1 = σr1 =
1

2
,

σr2 = σd2 = σb2 = σt1 = σf1 = σl1 = −1

2
.

(31)

IV. DISPERSION ANALYSIS

In order to illustrate the numerical dispersion error of the
proposed SBP-SAT FDTD method in free space, a cubic
computation domain with PBC is considered. The whole com-
putational domain is filled with air. The analytic wavenumber
is k0 = w

√
ε0µ0. The numerical wavenumber k̃0 = k̃real +

jk̃imag can be calculated by the SBP-SAT FDTD method and
the FDTD method. The dispersion error, dissipation error and
global error are defined similar to [31] as

Dispersion Error:
∣∣∣e−jk0λ − e−jk̃realλ

∣∣∣ , (32)

Dissipation Error:
∣∣∣1− e−jk̃imagλ

∣∣∣ , (33)

Global Error:
∣∣∣e−jk0λ − e−jk̃0λ∣∣∣ , (34)

where λ is the wavelength and satisfies λ = 2π/k0.
k̃0 can be calculated by eigenvalues of the amplification ma-

trix. A vector Un =
[
En
x , En

y , En
z , H

n− 1
2

x , H
n− 1

2
y , H

n− 1
2

z

]T
,

where En
x , En

y , En
z , H

n− 1
2

x , H
n− 1

2
y , and H

n− 1
2

z containing all
field nodes in the x, y, and z directions, is defined. Take En

x as
an example, En

x =
[
Ex|n1,1,1, Ex|n2,1,1, . . . , Ex|nm,p+1,q+1

]T
,

where the subscripts m, p, and q denote field components’
indices in x, y and z directions, respectively. By using Un,
the time-marching formulations in the FDTD method or the
SBP-SAT FDTD method in the whole computational domain
can be written as

ejω∆tUn = ΛUn. (35)

After eigenvalues of Λ are solved, k̃0 can be calculated as

k̃m0 =
ln (λm)

jc∆t
, (36)

where c = w/k0 is the speed of light in vacuum, the
superscript m denote the mth eigenvalue of matrix Λ. Since
the eigenvalues of matrix Λ are different, we choose the
k̃m0 nearest to the analytic wavenumber k0 to calculate the
numerical error of the SBP-SAT FDTD method and the FDTD
method.

We set the phase shift of PBC as e−jαz in the z direction,
where αz = k0zhz , and zero in the x and y directions to
simulate a plane wave propagating along the z direction. The
numerical dispersion error of the SBP-SAT FDTD method and
the FDTD method with different time steps are shown in Fig.
5.

As shown in Fig. 5(a), the dispersion error strongly de-
pendents on the spatial sampling rate. It can be noted that
both the FDTD method and the proposed SBP-SAT FDTD

method have relatively large numerical dispersion error when
k0h/2π ≥ 1/10. This is mainly due to insufficient spatial
sampling rate per wavelength. It is known that the FDTD
method requires at least ten cells per wavelength to guarantee
the accuracy [32]. Similarly, the proposed SBP-SAT FDTD
method also require k0h/2π ≤ 1/10 to ensure the accuracy.

Furthermore, it can be found that the dispersion error
in the FDTD method and the SBP-SAT FDTD method is
proportional to k0h/2π when k0h/2π ≤ 1/10. Another point
should be noted is the dispersion error in the SBP-SAT FDTD
with different time steps are almost visibly ignorable, which
implies time steps have small effects upon the dispersion
error. Although the proposed SBP-SAT FDTD method has
larger dispersion error compare with that in the FDTD method,
the total error is near 10−5 with k0h/2π = 10−3, which is
acceptable for simulation.

Moreover, it can be found from Fig. 6 that dispersion
errors in the SBP-SAT FDTD method with different time
steps are overlapped with each other, which indicate small
time steps lead to small accuracy improvement. In the FDTD
method, small time steps lead to the relatively small total
error. However, it seems that the accuracy improvement is
still not significant. In the real-life simulations, the accuracy
improvement through reducing time steps is impractical, while
the accuracy can be significantly improved by reducing mesh
sizes.

The dissipation errors in the SBP-SAT FDTD method with
different time steps and the dissipation error in the FDTD
method as shown in Fig. 5(b). It can be found that from Fig.
5(b) the dissipation error in both methods is much smaller
than the dispersion error, which implies that they show no
dissipations. Since the dissipation error in both methods can
be almost negligible, the global error as shown in Fig. 5(c)
mainly are dominated by the dispersion error.

In order to investigate the anisotropy of the proposed SBP-
SAT FDTD method, a plane wave obliquely impinges, and
the dispersion error was calculated at different azimuths. In
this scenario, the phase shift e−jαx , e−jαy , and e−jαz in the
x, y, and z directions must be considered. k0x, k0y, k0z can
be calculated as k0x = k0sinθcosφ, k0y = k0sinθsinφ,
k0z = k0cosθ, where θ and φ are the azimuth and zenith
angles, respectively. ∆t = 0.99∆tmax, where tmax is the
maximum time step limited by the Courant-Friedrichs-Levy
(CFL) condition, and the mesh size of λ/20 are used. The
numerical error in the FDTD method and the SBP-SAT FDTD
method verse θ and φ are shown in Fig. 6. For better
visualization, one eighth of the spherical shell in the first
quadrant with the maximum value as the radius is drawn in
Fig. 6, which is shown as the light gray shell.

It can be found that the numerical error in both methods
have similar patterns, such as the largest error along the x, y,
and z directions, respectively, the minimum dispersion error at
θ = φ = 45o. Therefore, they share the same error pattern as
shown in Fig. 6. Since the dissipation error in both methods
is negligible, the global errors are mainly dominated by the
dispersion error. Although the numerical dispersion error of
the proposed SBP-SAT FDTD method is slightly larger than
that of the FDTD method, they have the same level of accuracy
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Fig. 5. The numerical error in the SBP-SAT FDTD method and the FDTD method with θ = 0: (a) the dispersion error, (b) the dissipation error, (c) the
global error.
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Fig. 6. The numerical dispersion error of the SBP-SAT FDTD method and the FDTD method verse θ and φ: (a) the dispersion error in the FDTD method,
(b) the global error in the FDTD method, (c) the dispersion error in the SBP-SAT FDTD method, (d) the global error in the SBP-SAT FDTD method.

in the practical simulations as shown in our numerical results.
Therefore, the global errors in the SBP-SAT FDTD method is
acceptable for real-life simulations.

V. PRACTICAL IMPLEMENTATION AND EFFICIENCY
COMPARISON

After the central finite-difference scheme is used in the
temporal domain, the leapfrog time-marching formulations can
be obtained. As shown in Section III, several matrices are used
in the semi-discrete formulations. It should be noted those
matrices do not exist in the practical implementations. The
time-marching procedure can be done in a matrix-free manner,
which is similar to that in the FDTD mehtod. To make this
point clear, Ex and Hx are used as examples to demonstrate
the efficiency and the practical implementations of the SBP-
SAT FDTD method.

Let’s consider a rectangular cavity with PEC walls. It is dis-
cretized as Nx×Ny×Nz cells, where Nx, Ny , and Nz are the
overall cell numbers in the x, y, and z directions, respectively.
In the SBP-SAT FDTD method, Ex is stored using an array
with dimension of (Nx + 2) × (Ny + 1) × (Nz + 1), and an
array with dimension of (Nx + 1)× (Ny + 2)× (Nz + 2) for
Hx is required. In the FDTD method, Ex and Hx are stored
in the arrays with dimension of Nx × (Ny + 1) × (Nz + 1),
(Nx + 1)×Ny×Nz . It is obvious that the overhead of memory
usage is (Ny + 1) × (Nz + 1) for Ex, and 2 (Nx + 1) ×
(Ny +Nz + 2) for Hx. Compared with the overall memory
usage to store the three-dimensional electromagnetic fields,

those overheads to store extra nodes on the boundaries of com-
putational domain are negligible. Therefore, memory usage of
the SBP-SAT FDTD method is almost the same as that of the
FDTD method.

Since the second-order central finite-difference scheme is
considered in our implementation, the first and last two rows
of DzHy

have only three non-zero entities as shown in (43), and
other rows have two non-zero values. Therefore, the elemental
time-marching formulation for Ex in the z direction can be
expressed as

Ex|n+1
i,j,k =



Ex|ni,j,k −∆t
3∑

m=1
dkm Hy|ni,j,m ,

k = 1, 2,

Ex|ni,j,k −∆t
k+1∑
m=k

dkm Hy|ni,j,m ,

k = 3, · · · , Nz − 1,

Ex|ni,j,k −∆t
Nz+2∑
m=Nz

dkm Hy|ni,j,m ,

k = Nz, Nz + 1,

(37)

where dkm is the entity in the kth row and the mth column
of DzHy

.
To further demonstrate the time-marching procedure, Ex in

the z direction is calculated through Algorithm 1. It can be
found that the SBP-SAT FDTD method needs to add two ad-
ditional Ex components in the x direction. Therefore, it needs
to carry out two more surface component calculations and
to perform special treatment in the time-marching procedure
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Algorithm 1 Calculate Ex in the z direction
Input: Ex, Hy

Output: Ex
1: for i = 1 : Nx + 2 do
2: for j = 1 : Ny + 1 do
3: Ex|i,j,1 = Boundary-difference(Hy)
4: Ex|i,j,2 = Boundary-difference(Hy)
5: for k = 3 : Nz − 1 do
6: Ex|i,j,k = Finite-difference(Hy)
7: end for
8: Ex|i,j,Nz = Boundary-difference(Hy)
9: Ex|i,j,Nz+1 = Boundary-difference(Hy)

10: end for
11: end for

on the boundaries. However, the overall count only slightly
increase compared with that of the FDTD method. Therefore,
the efficiency of the proposed SBP-SAT FDTD method is
almost the same as that of the FDTD method.

Algorithm 2 Calculate Hx in the z direction
Input: Hx, Ey
Output: Hx

1: for i = 1 : Nx + 1 do
2: for j = 1 : Ny + 2 do
3: Hx|i,j,1 = Boundary-difference(Ey)
4: Hx|i,j,2 = Boundary-difference(Ey)
5: Hx|i,j,3 = Boundary-difference(Ey)
6: for k = 4 : Nz − 1 do
7: Hx|i,j,k = Finite-difference(Ey)
8: end for
9: Hx|i,j,Nz = Boundary-difference(Ey)

10: Hx|i,j,Nz+1 = Boundary-difference(Ey)
11: Hx|i,j,Nz+2 = Boundary-difference(Ey)
12: end for
13: end for
14: for i = 1 : Nx + 1 do
15: for j = 1 : Ny + 2 do
16: Hx|i,j,1 = SAT-boundary(Ey|i,j,1)
17: Hx|i,j,Nz+2 = SAT-boundary(Ey|i,j,Nz+1)
18: end for
19: end for

Similarly, Hx in the z direction is calculated through
Algorithm 2. Since the SATs are added on magnetic fields
for PEC boundary conditions, extra operations are required
to handle them on the boundaries of computational domain.
When Hx is calculated in the z direction, it should be corrected
by electric fields on the two xoy planes additionally to satisfy
the PEC boundary conditions. Since the overall count of nodes
on the boundaries is relatively small compared with the overall
number of spatial components, the overhead of runtime is
negligible, especially for the large-scale problems.

Although the SATs impose a small overhead on runtime
and memory usage, they can provide extra flexibility and
some attractive properties to the proposed method. It pro-
vides many possibilities for the FDTD methods, such as

the theoretically stable subgridding FDTD method, the hp-
refinement techniques, and the energy stable hybrid time-
domain method. Another follow-up article will report results
upon the theoretically stable subgridding method based on the
proposed three-dimensional SBP-SAT FDTD method.

VI. NUMERICAL EXAMPLES

In this section, four numerical examples are carried out to
validate the effectiveness of the proposed three-dimensional
SAT-SBP FDTD method, which include a cavity with PEC
boundary conditions, a dielectric rod (DR) resonator, an iris
filter and the specific absorption rate (SAR) calculation of
a human head model. The in-house solvers based on the
proposed SBP-SAT FDTD method and the FDTD method
were developed in C++. All examples in this section were run
through a single thread for fair comparison, and was completed
on a workstation with an Intel i7-7700 3.6 GHz CPU and 256
GB memory.

A. A Cavity with PEC Boundary Condition

A three-dimensional cavity with PEC walls is first used to
verify the long-time stability and the accuracy of the proposed
method. The cavity is filled with air and its dimension is
1 m × 1 m × 1 m. A Gaussian pulse with the bandwidth
of 2 GHz at the center of the cavity is used as the excitation
source. Uniform meshes with ∆ = 4 × 10−2 m are used to
discretize the cavity. The total physical time is 1 × 10−4 s,
and ∆t = 76.98 ps is the maximum time step under the CFL
condition, which is exactly the same as that of the FDTD
method. The probe used to record electric fields is placed at
(0.4,0.4,0.4)[m].

The resonant frequencies calculated by the SBP-SAT FDTD
method and the FDTD method are shown in Fig. 7, and are
compared with analytical solutions. It can be found that the
resonant frequencies obtained from the FDTD method agree
well with the analytical solutions in the whole frequency range.
As for the proposed SBP-SAT FDTD method, results also
show excellent agreement with the analytical solutions and
those obtained from the FDTD method, as shown in Fig. 7,
which confirms our previous analysis that the proposed SBP-
SAT FDTD method has the same level of accuracy of the
FDTD method.

Fig. 8 shows Ez at (0.4,0.4,0.4)[m] obtained from the
proposed FDTD method and the proposed SBP-SAT FDTD
method. It can be found that those results agree well with
each other, and no signs of instability for the proposed FDTD
method occurs. In addition, the energy in the computational
domain is also calculated to further investigate the stability. As
shown in Fig. 9, after one million time steps, the energy of
the cavity is not divergent, which indicates that the proposed
SBP-SAT FDTD method is long-time stable in the three-
dimensional space. In addition, we added an observation point
in the center of the cavity and recorded Ez as shown in Fig.
10. A line current source along the z direction with 2 GHz
Gaussian pulse is used as the excitation. It can be found that
Ez is still stable after 1,298,139 time steps.
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Fig. 7. Resonant frequencies calculated from the SBP-SAT FDTD method,
the FDTD method and the analytical solution: (a) results in the frequency
range 200 MHz to 400 MHz, (b) the zoom-in view of (a) in the range 209
MHz to 215 MHz.

B. A DR Resonator

A DR resonator is then considered to verify the accuracy of
the proposed method. The geometrical configuration of the DR
resonator is shown in Fig. 11, which can also be found in [33]
[34]. The dimension of the cavity is a = b = 2.5362 cm, l =
2.5718 cm. Two dielectric cylinders are placed in the cavity.
Their dimensions are 2R = 1.7551 cm with t = 0.5893 cm
and 2R = 1.9228 cm with t = 0.6426 cm. The height of the
small cylinder is h = 0.6985 cm. The constant parameter of
the large cylinder is εr = 38, and the other is εr = 1.

Two different grids are used to complete the simulation to
verify the accuracy of the proposed method, which are 26 ×
26×26 and 20×20×20, respectively. The total count of time
steps in our simulation is 35,000. The Gaussian pulse f (t) =
e−4π(t−t0)2/t2w , where tw = 0.35 ns and t0 = 0.28 ns, is
used as the excitation source. We take the resonant frequencies
calculated by the FDTD method and measurement results from
[33] as reference.

Table II lists the resonant frequencies calculated by the
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Fig. 8. Ez verse time steps obtained from the SBP-SAT FDTD method and
the FDTD method.

Fig. 9. The energy verse time obtained from the SBP-SAT FDTD method.

FDTD method, the proposed method and measured results. For
26×26×26 meshes, the resonant frequency calculated by the
FDTD method and the proposed method are both 4.121 GHz.
To quantitatively measure the accuracy, the relative error (RE)
is defined as |fc−fm|/fm, where fc is the calculated resonant
frequency, and fm is the measured value. Compared with the
measured result 4.136 GHz, the RE of the FDTD method and
the proposed method are both 0.36%. The two methods show
excellent performance in terms of accuracy. As for 20×20×20
meshes, the resonant frequency calculated by two methods is
3.675 GHz, and the measured result is 3.760 GHz. Therefore,
the RE is 2.26%. Since relatively coarse meshes are used,
which leads to large staircase errors, a slightly large RE is
obtained compared with the first case.

To sum up, the proposed SBP-SAT FDTD method can effec-
tively calculate the resonant frequencies of the DR resonator,
and show the same level of accuracy as that of the FDTD
method.
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Fig. 11. The geometrical configuration and the constant parameters of the
DR resonator.

C. A 5-Pole H-Plane Iris Filter

To further verify the accuracy and efficiency of the pro-
posed SBP-SAT FDTD method, a 5-pole H-plane iris filter is
considered. Fig. 12(a) shows the geometrical configurations
of the cross-sectional view in the middle of side walls of the
filter. Its width and height are 7.1 mm, 3.6 mm, respectively.
The thicknesses of filter walls and six irises are 0.2 mm. The
filter is completely symmetric with respect to the plane in the
middle of filter along the longitude direction. The length of
those irises are 1.9 mm, 2.5 mm, 2.6 mm, 2.6 mm, 2.5 mm,
and 1.9 mm, respectively. The distances between two irises
are 4.3 mm, 4.7 mm, 4.9 mm, 4.7 mm, and 4.3 mm, respec-
tively. The length and width of the computational domain are
50 mm and 7.1 mm, respectively. We used the PEC boundary
condition to simulate the filter walls.

To calculate its S-parameter, a modulated Gaussian pulse
f (t) = sin(2πft)e−4π(t−t0)2/tw

2

, where tw = 0.11 ns,
t0 = 0.85 ns, f = 36.0 GHz, is applied at source plane
to generated the TE10 mode. The excitation wave is gen-
erated from another computational domain with exactly the
same cross section and without irises. Then, it is introduced

TABLE II
COMPARISION OF RESONANT FREQUENCIES OBTAINED FROM THE FDTD

METHOD AND THE PROPOSED SBP-SAT FDTD METHOD WITH
MEASURED RESULTS

Method Meshes Simulation [GHz] Measured [GHz] Relative error

FDTD
26× 26× 26

4.121
4.136

0.36%

PROPOSED 4.121 0.36%

FDTD
20× 20× 20

3.675
3.760

2.26%

PROPOSED 3.675 2.26%

into simulations through the total-field/scattered-field (TF/SF)
boundary conditions [35], which is set 15 mm away from
the boundaries of the computational domain in Fig. 12(b).
The 10-layer convolutional perfectly matched layers (CPMLs)
[36] are used in both the excitation domain and the simu-
lation domain to truncate the computational domain. Three
observation planes are used to record fields, as shown in
Fig. 12(b). One of observation planes is located at 0.5 mm
from the TF/SF boundary, which is used in the excitation
domain. The remaining two observation planes are applied in
the computational domain. One is located in the scattered field
area to record the reflected wave, and the other is placed at the
other end to record the transmitted wave. The total physical
time is 4 ns.
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Fig. 12. (a) The cross-sectional view in the middle plane of the filter, (b) the
configures in the simulations.

By recording fields in observation planes, the power P (w)
in the frequency domain passing through the observation plane
is calculated by

P (w) =

n∑
i=1

F (Ei(t))×F(Hi(t))
∗
∆Si (38)
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where F (·) is the Fourier transform operator. Ei(t), Hi(t)
are electric field and magnetic fields of the ith cell in the
temporal domain, and ∆Si is the area of the ith cell on the
observation plane. The operator (·)∗ denotes the conjugate of
a complex number. Therefore, the amplitude of S-parameters
can be calculated by

|S11(w)|2 =

∣∣∣∣Pr(w)

Pi(w)

∣∣∣∣, (39)

|S21(w)|2 =

∣∣∣∣Pt(w)

Pi(w)

∣∣∣∣, (40)

where Pi(w), Pr(w), Pt(w) are the power of the incident
wave, the reflected wave, and the transmitted wave, respec-
tively. Since magnetic and electric fields in the FDTD method
and the SBP-SAT FDTD method are not co-located, and
magnetic fields are one half time step offset from electric
fields, the linear interpolation is used to average magnetic
fields in the spatial and temporal domain to get correct values.
S11 and S21 are calculated by the FDTD method and the

SBP-SAT FDTD method. For references, it is also simulated
by CST [37] with two wave ports for reference. S11 and S21

are shown in Fig. 13(a) and (b). It can be found that the pass
band is around in frequency range 35.0 GHz to 37.0 GHz.
S11 and S21 obtained from three methods show good

agreement with each other. S21 in the frequency range 25.0
GHz to 32.0 GHz show slight differences between results from
CST and the FDTD method. The reason for the differences
may by the different implementations of excitations. In CST,
the characteristic modes are solved through an eigensolver,
and then are used in the wave port. In our implementation,
the TE10 mode is calculated by another FDTD simulation,
as shown in Fig. 12(b). It is interesting to note that S21

obtained from the SBP-SAT FDTD method show slightly
better agreement with that from CST compared with results
from the FDTD method.

TABLE III
COMPARISON OF MEMORY USAGE AND RUNTIME OF THE FILTER IN THE

FDTD METHOD AND THE PROPOSED SBP-SAT FDTD METHOD

Method Memory (MB) Time (s)

FDTD 331.3 6, 478.7

Proposed 338.7 6, 588.2

In this simulation, 331.3 MB memory and 6, 478.7 s are
used by the FDTD method. As for the proposed SBP-SAT
FDTD method, 338.7 MB memory and 6, 588.2 s are used as
shown in Table III. Therefore, compared with the performance
in terms of accuracy, memory consumption, and runtime of the
FDTD method, the SBP-SAT FDTD method shows a good
performance with a negligible overhead compared with that
of the FDTD method.

Fig. 14 shows |Ez| excited by the incident waves at f =26.0
GHz, 32.2 GHz and 44.0 GHz, respectively, which are excited
by a sinusoidal current source in the excitation domain. The
discontinuity at x = 15 mm in Fig. 14 is the TF/SF boundary
. The reflected fields by the filter are on the left of the TF/SF
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Fig. 13. The S-parameter of the iris filter: (a) S11 and (b) S21 in the frequency
range 25.0 GHz to 45.0 GHz.

boundary. It can be found that Ez attenuates and eventually
vanishes at f = 26.0 GHz and 44.0 GHz since they are in the
stop band. However, Ez can pass through the filter at f=32.2
GHz in the pass band.

D. The SAR Calculation of A Human Head Model

To demonstrate the capability of the proposed SAT-SBP
FDTD method to solve complex electromagnetic problems,
a human head model [38] illuminated by a plane wave is
considered. The plane wave impinges from the −x direction.
The human head model with voxels is shown in Fig. 11, which
can be decomposed into 117 tissues, and 27 of them are shown
for a better visualization including brain stem, white matters,
the gray matters, nerve, blood vein, cerebrospinal fluid, eyes,
tongue, ears, gland, skull, cartilage, spinal, dermis, adipose
tissue, and muscle.

The point SAR is calculated by the SAT-SBP FDTD method
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(a)

(b)

(c)

Fig. 14. |Ez | of the iris filter at (a) 26.0 GHz, (b) 32.2 GHz and (c) 44.0
GHz.

and the FDTD method, which is given by

SAR =
σ|E|2max

2ρ
, (41)

where σ, ρ are the conductivity and density of the correspond-
ing tissues. |E|max denotes the maximum value of electric
fields during the whole simulation. In the Cartesian coordinate
system, the point SAR in each cell can be calculated by

SAR =
σ
∣∣E2

x + E2
y + E2

z

∣∣
max

2ρ
. (42)

In our implementation, Ex, Ey and Ez are averaged electric
fields value at the center of each cell in the x, y and z
directions, respectively.

The human head model is discretized with meshes of cell
size 1 mm. The computational domain is discretized as 300×
300 × 235 cells in x, y and z directions, respectively. 21.15
million cells in total are used in the computational domain.
Fig. 16 shows the mesh configuration in our simulation. For a
better visualization of meshes in our simulation, only one line
is drawn every five mesh lines, which implies that each cell
represents 125 adjacent ones in the computational domain. The
computational domain is truncated by the PEC at the outermost
boundaries. The CPML and the TF/SF boundary near the PEC
are used to truncate the computational domain and excite the
plane wave. The TF/SF boundary is 5 cells away from the
CPML. The plane wave with f = 900.0 MHz and 2.4 GHz is
considered, and it impinges from the −x direction. The total
physical time is 10 ns.

Fig. 17(a) and (b) show the permittivity and conductivity of
the human head model at 900.0 MHz in the cross section of
x = 170 mm, y = 108 mm and z = 118 mm, and (c), (d)
show the permittivity and the conductivity at 2.4 GHz in the
same cross section.

The SAR calculated by the FDTD method and the proposed
SBP-SAT FDTD method are shown in Fig. 18. Among these
results, Fig. 18(a), (b) show the SAR at 900.0 MHz and (c),
(d) show the SAR at 2.4 GHz. It can be found that the SAR
calculated by the SBP-SAT FDTD method agrees well with
those from the FDTD method in Fig. 18(a) and (b). The
patterns of two methods are almost identical to each other.
Since the plane wave impinges from the −x direction, the
SAR is larger at the front side of the human head than that
in other regions, as shown in Fig. 18(a) and (b). In addition,
those tissues, such as the cerebrospinal fluid in the brain, have
a large electrical conductivity. Therefore, those regions show
large SAR values. Another point should be noted that the
brainstem of the human head absorbs more electromagnetic
energy than the white and gray matter. Comparing Fig. 18(a)
and (b) with (c) and (d), it can be found that the SAR of the
brainstem at f = 2.4 GHz is significantly reduced compared
with that at f = 900.0 MHz. The SAR in the surface layer
of the human head increases to some extent. It is caused by
the pronounced skin effect at high frequencies. Moreover, the
liquid parts with the high electrical conductivity, such as the
cerebrospinal fluid and blood vessels, also have large SAR
values at f = 2.4 GHz.

In order to compare results calculated by these two methods
more clearly, the SAR in the x direction at y = 150 mm and
z = 0.118 mm in Fig. 19 and Fig. 20 at 900.0 MHz and 2.4
GHz, respectively. The reason why SAR = 0 is the existence
of trachea in the model, and its conductivity is 0 S/m, which
indicates electromagnetic waves are not absorbed in those
regions. In Fig. 19 and Fig. 20, it can be found that the SAR
is larger near the skin and smaller inside the head at 2.4 GHz
due to strong absorption in the high frequency. It can be found
that two curves obtained from two methods are completely
overlapped in Fig. 19 and Fig. 20, which demonstrates that
the proposed SBP-SAT FDTD method has the same level of
accuracy compared with that of the FDTD method.

The memory usage and runtime of two methods are listed
in Table IV. It can be found that memory usage of the SBP-
SAT FDTD method only increases by 1.09% compared with
that of the FDTD method, and runtime only increases by only
0.13%. Since only the SATs in (9)-(14) are required to be
calculated on the boundaries, the negligible overhead in terms
of memory usage and runtime is expected. This trend will
become even more obvious when large-scale simulations are
involved. In general, the proposed SBP-SAT FDTD method
shows good accuracy and imposes a very slight overhead in
terms of memory usage and runtime.

TABLE IV
COMPARISON OF MEMORY USAGE AND RUNTIME OF THE HEAD IN THE

FDTD METHOD AND THE PROPOSED SBP-SAT FDTD METHOD

Method Memory (MB) Time (s)

FDTD 973.5 36, 138.0

Proposed 984.1 36, 187.0
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Fig. 15. The human head model: (a) brain stem, (b) the white matters, (c) nerve, (d) the gray matters, (e) blood vein, (f) tongue, (g) cerebrospinal fluid, (h)
ears, (i) glands, (j) eyes, (k) skull, (l) cartilage, (m) spinal, (n) adipose tissue (o) muscle, (p) dermis.

CPML

TF/SF 
Boundary

Air

Head 
Model

PEC

Fig. 16. The mesh configuration of the human head model in our simulation.

VII. CONCLUSION

A three-dimensional SBP-SAT FDTD method is proposed
in this article, which has the same level of accuracy compared
to that of the FDTD method with a very small overhead.
The special emphasis is placed on the fundamental theoret-
ical aspects of the three-dimensional SBP-SAT method and
numerical validation. Our theoretical analysis shows that the
proposed three-dimensional SBP-SAT FDTD method is long-
time stable and have the same level of accuracy as that of the
FDTD method.

Since the boundary conditions are weakly enforced through
the SAT techniques, which is similar to the numerical flux in
discontinuous galerkin finite element method (DG-FEM) [39],
the proposed SBP-SAT FDTD method is extremely flexible
compared with the FDTD method. It is well-known that the
central numerical flux would lead to spurious modes in the
DG-FEM [40]. In the proposed SBP-SAT FDTD method, the

SAT technique used in our implementation would not suffer
from such issues. As our numerical examples, including the
simple cavity, the iris filter, and the SAR calculation from
a human head model, shown, the SBP-SAT FDTD method
only uses slightly 1.09% more memory and 0.13% runtime
compared with that of the FDTD method.

The proposed SBP-SAT FDTD method has similar perfor-
mance compared whit that of the FDTD method. However,
it provides many possibilities in the FDTD society, such as
the theoretically stable subgridding FDTD method, the hp-
refinement techniques, and the energy stable hybrid time-
domain method. It should be noted that the proposed method
can be provably stable, especially for multiple mesh blocks
with different sizes.

This article aims at addressing theoretical aspects of the
SBP-SAT FDTD method. Another follow-up article upon
the subgridding technique based on the proposed three-
dimensional SBP-SAT FDTD method and its application
to solving the challenging electromagnetic problems is in
progress, which is the second part of this topic.
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APPENDIX

The entities of D+, D−, P+, P−, Q+ and Q− are listed as
follows.

D+ =
1

ε∆



−1 1
2

1
2

− 1
2 − 1

4
3
4
−1 1

. . . . . .
−1 1
− 3

4
1
4

1
2

− 1
2 − 1

2 1


, (43)

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2022.3230553

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 15
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Fig. 17. The relative permittivity (a) at 900.0 MHz, (b) at 2.4 GHz, and the conductivity (c) at 900.0 MHz (d) at 2.4 GHz.
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Fig. 18. The SAR calculated by (a) the FDTD method at 900.0 MHz, (b) the SBP-SAT FDTD method at 900.0 MHz, (c)the FDTD method at 2.4 GHz, and
(d)the SBP-SAT FDTD method at 2.4 GHz.
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Fig. 19. The SAR obtained from the FDTD method and the proposed SBP-
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= 118 mm.
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P+, P−, Q+ and Q− are given by
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Fig. 20. The SAR obtained from the FDTD method and the proposed SBP-
SAT FDTD method at 2.4 GHz in the x direction at y = 150 mm and z =
118 mm.
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4 − 1

4
1
2


, (45)

P+ = diag

(
ε∆

[
1

2
, 1, 1, ..., 1,

1

2

])
, (46)

P− = diag

(
µ∆

[
1

2
,

1

4
,

5

4
, 1, ..., 1,

5

4
,

1

4
,

1

2

])
, (47)
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Q− =



− 1
2

1
2

− 1
4

1
4

− 1
4 − 3

4 1
−1 1

. . . . . .
−1 1

−1 3
4

1
4

− 1
4

1
4

− 1
2

1
2


. (48)
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