
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, DECEMBER 2022 1

Pulsed Electromagnetic Excitation of a Narrow Slot
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Abstract—The transient electromagnetic (EM) excitation of a
narrow slot in a perfectly electrically conducting (PEC) screen
that separates two homogeneous dielectric halfspaces, a simplified
model of a typical feeding structure of leaky lens antennas, is
analyzed numerically in the time domain (TD). The problem
is formulated using the TD reciprocity theorem of the time-
convolution type and subsequently solved with the aid of the
Cagniard-DeHoop method of moments (CdH-MoM). Numerical
results are validated using a general-purpose EM-field solver.

Index Terms—transient electromagnetic (EM) field, slot anten-
nas, Cagniard-DeHoop method of moments (CdH-MoM), time-
domain (TD) analysis.

I. I NTRODUCTION

T HE need for evaluating the electromagnetic (EM) field
radiation from slot antennas or undesired penetration

through a crack in a shielded enclosure has prompted research
into the wave diffraction by an aperture in a conducting plane
(e.g. [1]–[4]). An important contribution to these effortshas
been presented by Galejs [5], who thoroughly analyzed the
frequency-domain (FD) response of an electric-current excited
infinite slot on a lossy dielectric half-space. This model,
originally intended to provide an approximate means for the
performance analysis of island antennas (e.g. [6]), has been
later examined with regard to leaky-wave (LW) phenomena
[7], thereby providing theoretical grounds for designing slot
feeding structures of ultrawideband (UWB) LW lens antennas
[8]–[11].

LW antennas have a demonstrated technological effective-
ness [12], [13]. At this moment, their operating principle and,
as a direct consequence, their design are intrinsically related
to sinusoidally in time varying EM fields, i.e. in FD. But, the
increasingly sophisticated modulations currently employed for
boosting the data-rate in digital transfer inherently squeeze
the interval over which steady-state can be assumed. This
trend justifies the attempt to understand the underlying time-
domain (TD) propagation mechanism of LW antennas, with
an eye on (possibly) inferring bounds for the time harmonic
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analysis/design. As a first step, this paper sets itself the task
to go beyond the existing FD models by analyzing the slot
feeding under the pulsed-field excitation in the TD. With such
a goal in mind, we introduce here a novel, integral-equation
(IE) computational model enabling an efficient TD analysis of
the space-time distribution of magnetic-current surface density
induced over a narrow finite slot in a perfectly electricallycon-
ducting (PEC) screen that separates two dielectric halfspaces.

The presented (full-wave) 3-D computational model is based
on the Cagniard-DeHoop method of moments (CdH-MoM), a
TD-IE technique that has recently been applied to analyzing
metasurfaces [14], [15], and other basic EM radiation and scat-
tering problems [16]–[21]. All such numerical solutions rely
essentially on two basic ingredients: (a) the TD EM reciprocity
theorem of the time-convolution type [22, Sec. 28.2]; (b) a
version of the CdH joint-transform technique [23]. To that
extent, the current work bears some similarities to the previous
studies on the subject. In the computational model as proposed
in this paper, however, we put forward several conceptual
innovations. Indeed, papers [14], [18], [19] are limited to
2-D problem configurations only. Furthermore, the transient
analysis of wire antennas [20], as well as its transmission-
line approximation incorporating the effect of finite ground
conductivity [17], are based on the thin-wire approximation.
Therefore, the pertaining computational models do incorporate
the (1-D) spatial variation of the filamentary current only,
which implies a TD impedance array that is not directly ap-
plicable to the modeling of (surface) currents distributedover
planar (2-D) domains. Moreover, an initial study presented
in [21] is concerned with the EM plane-wave transmission
through a relatively small hole in a perfectly conducting sheet,
which makes it impossible to apply the pertaining (simple)
model to a lumped-source excited, finite-length slot located
in the plane of separation between two dielectric media – the
(relatively complex) 3-D EM problem analyzed in the present
paper.

First, the TD problem under consideration is formulated
using the TD Lorentz reciprocity theorem [22, Sec. 28.2]
(For the reader’s convenience, the pertaining TD reciprocity
relations are summarized in Appendix A.). In Sec. III, the
starting reciprocity relation is cast into the form of complex-
slowness integrals (see also Appendix A). The thus formulated
problem is further solved numerically in Sec. IV. This section
is supplemented with Appendix B, where it is demonstrated
that (the elements of) the pertaining TD admittance array that
interrelates the unknown voltage at discrete points along the
narrow slot with the exciting current can be, for the piecewise-
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Fig. 1. A narrow slot in a PEC screen at the interface of two dielectric
halfspaces.

linear space-time basis, expressed in closed form via the
“Cartesian version” of the CdH technique [15, Sec. 2.1.2].
Numerical examples demonstrating the validity and efficiency
of the proposed computational model are presented in Sec. V.
Finally, conclusions are drawn in Sec. VI.

II. PROBLEM DEFINITION

The slot antenna under consideration is shown in Fig. 1. In
this problem configuration, the position is specified by the
coordinates{x, y, z} with respect to a Cartesian reference
frame with the originO and the standard base{ix, iy, iz}.
Consequently, the position vector can be expressed asr =
xix+yiy+ziz. The time coordinate is denoted byt. The time-
convolution operator is denoted by∗

t
. The Heaviside unit-step

function isH(t) and the impulsive Dirac-delta distribution is
represented byδ(t).

The slot in the infinite PEC screen occupies a bounded
domainS = {−w/2 ≤ x ≤ w/2,−L/2 ≤ y ≤ L/2, z = 0},
where w > 0 and L > 0 denote its width and length,
respectively. The former dimension is supposed to be relatively
small with respect to the spatial width of the excitation
pulse, i.e. (EM wavespeed× excitation pulse time width).
The conducting screen separates two homogeneous, isotropic
and lossless half-spacesD1 and D2 that occupy z > 0
and z < 0, respectively. Their EM properties are described
by (scalar, real-valued and positive) electric permittivity and
magnetic permeability{ǫ1, µ0} and{ǫ2, µ0}, respectively. The
corresponding EM wave speeds and admittances are given by
c1,2 = (µ0ǫ1,2)

−1/2 > 0 and η1,2 = 1/µ0c1,2 > 0, respec-
tively. The incorporation of losses is, in principle, feasible via
the so-called Schouten-Van der Pol theorem [22, p. 1056], for
instance, but at the expense of an additional integral [24].

Adopting the model introduced in Ref. [5], the excitation is
incorporated via a localized discontinuity of (they-component
of) the total magnetic-field strength across the surface of
slot. Assuming the uniform spatial distribution of the electric-
current source in the transversex-direction, the pertaining
electric-current surface density can be described by

∂Jx(x, y, t) = i(t)Π(x)δ(y − y0) (1)

wherei(t) represents the exciting electric-current pulse (inA),
Π(x) = 1 if x ∈ [−w/2, w/2] andΠ(x) = 0 elsewhere, and

y0 ∈ (−L/2, L/2) denotes the position of the lumped electric-
current source. In order to reduce the computational domain
to the surface of slot, the scattered EM field (denoted bys) is
defined here as the difference between the total fields in the
presence and in the absence of the slot. Hence, associating
the latter scenario with the excitation field (denoted bye), the
scattered electric- and magnetic-field strengths,E

s and H
s,

respectively, can be defined as

{Es,Hs}(r, t) = {E,H}(r, t)− {Ee,He}(r, t). (2)

This definition implies thatiz ×E
s = 0 over the slotted PEC

screen. In fact, the space-time distribution ofEs
x(x, y, 0, t) =

Ex(x, y, 0, t) over the slotS, to be associated with (they-
component of) the equivalent magnetic-current surface density
∂Ks

y(x, y, t) = −Es
x(x, y, 0, t), is the unknown quantity we

seek.

III. T RANSFORM-DOMAIN REPRESENTATION

The presented solution strategy is based on the CdH joint-
transform technique [23] that combines a one-sided time
Laplace transformation with the Fourier-type slowness rep-
resentation in the plane parallel to the interface. To show
the notation, thes-domain expressions are given for the
x-component of the electric-field strength. Accordingly, the
Laplace transform is defined via

Êx(x, y, z, s) =

∫ ∞

t=0

exp(−st)Ex(x, y, z, t)dt (3)

for {s ∈ R; s > 0}, and the corresponding slowness represen-
tation reads

Êx(x, y, z, s) = (s/2πi)2
∫ i∞

κ=−i∞

dκ

×
∫ i∞

σ=−i∞

exp[−s(κx+ σy)]Ẽx(κ, σ, z, s)dσ, (4)

where κ and σ are slowness parameters in thex- and y-
direction, respectively. Through the use of (3) and (4) in the
TD reciprocity relation (21) (see Appendix A), we may find its
equivalent expressed in terms of complex-slowness integrals

(s/2πi)2
∫ i∞

κ=−i∞

dκ

∫ i∞

σ=−i∞

∂K̃s
y(−κ,−σ, s)

×
[

H̃B
y (κ, σ, 0

+, s)− H̃B
y (κ, σ, 0

−, s)
]

dσ

= −(s/2πi)2
∫ i∞

κ=−i∞

dκ

∫ i∞

σ=−i∞

∂J̃x(κ, σ, s)

× ∂K̃B
y (−κ,−σ, s)dσ. (5)

To determine the relation between the testing source and fields,
we may employ the (transform-domain) source-type EM-field
representations [22, Eqs. (26.4-7) and (26.4-8)] suppliedwith
the pertaining excitation conditions

ẼB
x (κ, σ, 0

±, s) = −∂K̃B
y (κ, σ, s), (6)
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as approaching the slot fromD1,2, respectively. The differ-
ence of the thus excited magnetic testing fields can then be
expressed in the transform domain as

H̃B
y (κ, σ, 0

+, s)− H̃B
y (κ, σ, 0

−, s) =

−
[

η1
c21Ω

2
1(σ)

c1Γ1(κ, σ)
+ η2

c22Ω
2
2(σ)

c2Γ2(κ, σ)

]

∂K̃B
y (κ, σ, s), (7)

where

Γ1,2(κ, σ) = (1/c21,2 − κ2 − σ2)1/2 with Re(Γ1,2) ≥ 0 (8)

and Ω2
1,2(σ) = 1/c21,2 − σ2, respectively. Since the left-

hand side of (7) can be associated with the testing electric-
current surface density, the expression in the brackets canbe
interpreted as the (transform-domain) aperture admittance. The
reciprocity relation (5) with (7) is the point of departure for
the numerical solution presented in the following section.

IV. N UMERICAL SOLUTION

The first step in the numerical solution, is the discretization
of the space-time solution domain. First, the spatial discretiza-
tion points along the narrow slot are chosen to be uniformly
distributed along∆S = {x = 0, yn = −L/2 + n∆y, z = 0}
for n = {1, · · · , N}, whereN denotes the number of inner
nodes and∆y = L/(N + 1) is the spatial step. Second, in a
similar fashion, the time axis is discretized astk = k∆t for
k = {1, · · · ,M}, with ∆t > 0 being the time step. It is noted
that the uniform discretization is not mandatory and is chosen
here for the sake of simplicity.

Once the solution domain is discretized, the unknown
magnetic-current surface density can be expanded in terms
basis functions. To that end, we use the piecewise-linear space-
time expansion

∂Ks
y(x, y, t) ≃

1

w

N
∑

n=1

M
∑

k=1

v
[n]
k Π(x)Λ[n](y)Λk(t), (9)

wherev[n]k represents the (unknown) voltage coefficient per-
taining to point(yn, tk), and

Λ[n](y) =

{

1 + (y − yn)/∆y if y ∈ [yn −∆y, yn]

1− (y − yn)/∆y if y ∈ [yn, yn +∆y].
(10)

In a similar manner, the temporal triangle function can be
expressed via

Λk(t) =

{

1 + (t− tk)/∆t if t ∈ [tk−1, tk]

1− (t− tk)/∆t if t ∈ [tk, tk+1].
(11)

Furthermore, the testing source-distribution is chosen tohave
the following form

∂KB
y (x, y, t) = δ(x)Π[q](y)δ(t), (12)

where the rectangular function,Π[q](y), is defined for allq =
{1, · · · , N} asΠ[q](y) = 1 for y ∈ [yq −∆y/2, yq +∆y/2],
while Π[q](y) = 0 elsewhere.

Upon substituting the transform-domain counterparts of
Eqs. (9)–(12) with (1) in the reciprocity relation (5) we end
up with a system of equations in thes-domain, constituents of

which can be transformed to the TD analytically with the aid
of the CdH technique. Pursuing this approach, we end up with
the following system of equations of the time-convolution type

m
∑

k=1

(

Y m−k+1 − 2Y m−k + Y m−k−1

) · V k = Im, (13)

where the total TD admittance array,Y , consists of two
admittance arrays, sayY [1] andY [2], pertaining to halfspaces
D1 andD2, respectively, viz

Y = Y [1] + Y [2] (14)

In our notation,Y k represents a 2-D[N × N ] admittance
array att = tk, the elements of which are expressed in closed
form in Appendix B. Furthermore,V k is a 1-D [N × 1] array
of unknown voltage coefficientsv[n]k (see Eq. (9)). Finally,
the elements of the 1-D[N × 1] excitation array,Im, for the
electric-current source (1) can be expressed as

I [q]m = −i(tm)
[

H(y0 − yq +∆y/2)

−H(y0 − yq −∆y/2)
]

(15)

for all q = {1, · · · , N}. Once both admittance and excitation
arrays are fully specified, the system of equations (13) can be
solved for the voltage coefficients. This can be done via the
following marching-on-in-time (MOT) scheme

V m = Y
−1
1 ·

[

Im

−
m−1
∑

k=1

(

Y m−k+1 − 2Y m−k + Y m−k−1

) · V k

]

(16)

for all m = {1, · · · ,M}. Once the iterative procedure (16)
is executed, the resulting voltage coefficients can be used
in Eq. (9) to determine the desired magnetic-current space-
time distribution overS and in the chosen time window of
observation. Since the elements of the admittance array are
derived analytically, its filling is fast and the MOT procedure
is stable.

V. I LLUSTRATIVE NUMERICAL RESULTS

In this section, we shall employ the iterative solution (16)
to calculate the TD voltage induced across a narrow slot
of dimensionsw = 1.0mm and L = 50mm. The TD
responses are observed in the time window{0 ≤ c0t ≤ 10L}.
Throughout the examples, the lower halfspace,D2, is supposed
to be vacuum, so thatǫ2 = ǫ0, while the upper halfspace,
D1, is filled by a dielectric medium withǫ1 = ǫrǫ0, where
ǫr > 1 denotes its relative permittivity. Consequently, the EM
wavespeeds inD2 and D1 are c2 = c0 and c1 = c0/

√
ǫr,

respectively.
In the first example, the narrow slot on a dielectric half-

space of relative permittivityǫr = 8.0 is excited at the central
point, y0 = 0, by an electric-current pulse of the bipolar-
triangle shape, i.e.

i(t) = (2im/tw)
[

tH(t)− 2
(

t− tw/2
)

H
(

t− tw/2
)

+ 2
(

t− 3tw/2
)

H
(

t− 3tw/2
)

− (t− 2tw)H(t− 2tw)
]

(17)
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Fig. 2. Excitation electric-current pulse shapes. (a) Bipolar triangle pulse; (b)
Time-differentiated power-exponential pulse.

where we take the unit amplitudeim = 1.0A and c0tw = L
(see Fig. 2a). Consequently,w/c0tw = 1/50, which implies
that the slot is relatively narrow. The resulting TD voltage
responses as induced along the slot aty = 0, y = L/5 and
y = 2L/5 are shown in Figs. 3a, 3b and 3c, respectively.
The space-time solution domain of the CdH-MoM model was
discretized inN = 49 spatial inner nodes, while the time
step was chosen to be a tenth of slot’s width, which leads
to M = 5001 temporal points. The total computational time
of a non-optimized MATLABr code was about200 s, out
of which approximately25% being spent for filling the TD
admittance array and75% for the MOT scheme (16). For
the sake of comparison, the corresponding feeding structure
has also been analyzed using the finite-integration technique
(FIT) as implemented in CST Studio Suiter. As can be
seen in Fig. 3, the pulse shapes do correlate very well. But,
owing to its volumetric mesh, the FIT model consists of
about 2 millions of meshcells and the corresponding total
computational time, while using 4 CPU threads, was about
30 minutes. All simulations were conducted on a standard
laptop with Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz
and16GB RAM.

In the second example, the narrow slot is activated aty0 =
2L/5 by an electric-current pulse of the time-differentiated
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Fig. 3. Induced voltage pulse shapes due to the triangular electric-current
pulse (see Fig. 2a) applied aty0 = 0. Observation points are at (a)y = 0;
(b) y = L/5; (c) y = 2L/5.

power-exponential (PE) shape [25]

i(t) = imN(ν/t0x)(1− t/t0x)(t/t0x)
ν−1

× exp[−ν(t/t0x − 1)]H(t) (18)

in which N = (t0x/ν
1/2)[ν1/2/(ν1/2 − 1)]ν−1 exp(−ν1/2)

is a normalization factor,ν > 1 denotes the rising power
and t0x represents the zero-crossing time. As the latter can
be associated with the pulse rise time of the corresponding
unipolar PE pulse,tw, we havetw = t0xΓ(ν+1) exp(ν)/νν+1,
whereΓ(x) is the Euler gamma function. In our examples,
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we take im = 1.0A and c0tw = L, again, with ν = 3.
Consequently,c0t0x ≃ 0.672L (see Fig. 2b).

The resulting voltage signals as calculated through both
CdH-MoM and FIT models aty = {0, L/5, 2L/5} are
given in Figs. 4a–c, respectively. The agreement between the
results is satisfactory, again. The computational requirements
to calculate the results presented in Fig. 4 are similar to the
ones indicated in the previous example, i.e. the use of CdH-
MoM model reduces (a) the computational time about ten
times (using the non-optimized MATLABr code), and (b)
the solution space (with accompanying memory requirements)
by several orders of magnitude with respect to the general-
purpose 3-D EM solver. On the other hand, standard 3-D EM
solvers based on the finite-difference/element TD techniques
are generally more versatile, thus enabling numerical solutions
of EM problems of higher complexity.

The presented computational model can be easily general-
ized to incorporate multiple slots and their mutual coupling.
This can be briefly demonstrated by calculating the transient
voltage as induced in the second identical slot that extends
alongR = {−w/2 ≤ x − x0 ≤ w/2,−L/2 ≤ y ≤ L/2, z =
0}, where |x0| > 0 has the meaning of the spatial offset in
the x-direction with respect to the excited slotS. Assuming
the triangular-pulse excited slot from the first example, the TD
voltage responses at the centre ofR are shown in Fig. 5 for
x0 = L/10. To illustrate the effect of the relative permittivity,
ǫr = ǫ1/ǫ0, the pulse shape is evaluated forǫr = 8 and
ǫr = 16. It is observed that the pulse shapes do correlate
well again with the ones achieved using the FIT model. While
the computational efficiency of the CdH-MoM approach is
virtually independent of the halfspace permittivity, the number
of meshcells of the FIT model may be exceedingly high for a
high-dielectric medium.

VI. CONCLUSION

An efficient TD computational model for analyzing a typical
feeding structure of UWB leaky lens antennas was proposed.
The problem of calculating the space-time distribution of
the equivalent magnetic-current surface density due to an
impulsive electric-current source in the slot was approached
via the CdH-MoM – a TD-IE technique based on Lorentz’s
reciprocity theorem and the CdH technique. It was shown
that this approach leads to a time-convolution type system
of equations that can be solved using a step-by-step MOT
procedure. Since the elements of the pertaining TD admit-
tance array were derived analytically in terms of elementary
functions, their evaluation is computationally effortless and the
MOT procedure is stable. Finally, it was demonstrated that
the use of a general 3-D EM numerical tool leads to virtually
equivalent results, but at the expense of significantly higher
computational requirements compared to our dedicated CdH-
MoM computational model. Since, in addition, the proposed
TD model is easy-to-implement, it can be readily incorporated
in antenna design and optimization procedures.
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Fig. 4. Induced voltage pulse shapes due to the time-differentiated power-
exponential pulse (see Fig. 2b) applied aty0 = 2L/5. Observation points are
at (a)y = 0; (b) y = L/5; (c) y = 2L/5.

APPENDIX A
RECIPROCITYRELATIONS

The problem under consideration is formulated via the
TD EM reciprocity theorem of the time-convolution type
[22, Sec. 28.2]. To that end, the theorem is applied to the
scattered field and to the testing field (denoted byB) that is
causally related to the testing magnetic-current surface density,
∂KB

y (x, y, t), distributed alongS. Accounting for the explicit-
type boundary condition on the slotted screen as well as the
causality condition at infinity [22, Sec. 28.4], the difference
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Fig. 5. Voltage pulse shapes induced in the second slotR due to the triangular
electric-current pulse (see Fig. 2a) applied aty0 = 0 of the excited slotS. The
relative permittivity of the upper halfspace is (a)ǫ1/ǫ0 = 8; (b) ǫ1/ǫ0 = 16.

of reciprocity relations pertaining toD1 andD2 leads to
∫

S

∂Ks
y(x, y, t) ∗t

[

HB
y (x, y, 0

+, t)−HB
y (x, y, 0

−, t)
]

dA

=

∫

S

[

Hs
y(x, y, 0

+, t)−Hs
y(x, y, 0

−, t)
]

∗
t
∂KB

y (x, y, t)dA.

(19)

In line with Eq. (2), the scattered magnetic field on the right-
hand side of Eq. (19) is further written asHs

y = Hy − He
y,

which yields
∫

S

∂Ks
y(x, y, t) ∗t

[

HB
y (x, y, 0

+, t)−HB
y (x, y, 0

−, t)
]

dA

=

∫

S

∂Je
x(x, y, t) ∗t

∂KB
y (x, y, t)dA

−
∫

S

∂Jx(x, y, t) ∗t
∂KB

y (x, y, t)dA, (20)

where we expressed the jump discontinuities of the magnetic-
field strength using the pertaining electric-current surface
densities. As a matter of fact,∂Je

x can be associated with the
“total surface current induced on the short-circuited aperture”
[26, Sec. 9.6] that is useful, in particular, for the evaluation of
EM field penetration through apertures. The second interaction
integral on the right-hand side of Eq. (20) then represents
the action of∂Jx(x, y, t) through which one may incorporate

an electric-current source. Accounting for the latter excitation
mechanism only, we take∂Je

x = 0 and end up with
∫

S

∂Ks
y(x, y, t) ∗t

[

HB
y (x, y, 0

+, t)−HB
y (x, y, 0

−, t)
]

dA

= −
∫

S

∂Jx(x, y, t) ∗t
∂KB

y (x, y, t)dA. (21)

Recall that∂Ks
y(x, y, t) represents the (unknown) magnetic-

current surface density induced in the slot and∂Jx(x, y, t)
is the excitation electric-current surface density that for the
lumped electric-current source takes the form of Eq. (1).
The relation between the testing source,KB

y (x, y, t), and
the limiting values of the testing fields,HB

y (x, y, 0
±, t) is

determined in the transform domain in Sec. III. In this respect,
it is next demonstrated that the TD reciprocity relation (21)
can be cast into the form of complex slowness integrals
(see Eq. (5)). Considering its right-hand side, for example,
application of the Laplace transform (3) allows to write

∫

S

∂Ĵx(x, y, s) ∂K̂
B
y (x, y, s)dA, (22)

where we used the standard convolution (faltung) theorem [27,
29.2.8]. In the following step, the Fourier representation(4) is
used to express the electric-current surface density as

∂Ĵx(x, y, s) = (s/2πi)2
∫ i∞

κ=−i∞

dκ

×
∫ i∞

σ=−i∞

exp[−s(κx+ σy)]∂J̃x(κ, σ, s)dσ. (23)

Substituting next Eq. (23) in (22) and changing the order of the
integrations, we finally end up with an equivalent expression
for the interaction surface integral, viz

( s

2πi

)2
∫ i∞

κ=−i∞

dκ

∫ i∞

σ=−i∞

∂J̃x(κ, σ, s)∂K̃
B
y (−κ,−σ, s)dσ.

(24)

Equation (24) is used in the main text to express the right-
hand side of the reciprocity relation (5). Its left-hand side can
be rewritten by following the same lines of reasoning.

APPENDIX B
TIME-DOMAIN ADMITTANCE ARRAY

The elements of the TD admittance arrays as defined via
Eq. (14) can be expressed as

Y
[q,n]
[1,2] (t) =

2η1,2
w∆yc1,2∆t

[

Φ1,2(yq − yn + 3∆y/2, t)

− 3Φ1,2(yq − yn +∆y/2, t) + 3Φ1,2(yq − yn −∆y/2, t)

− Φ1,2(yq − yn − 3∆y/2, t)
]

, (25)

respectively, for allq = {1, · · · , N}, n = {1, · · · , N} and
t > 0, where

Φ1,2(y, t) = Υ1,2(y, w/2, t)−Υ1,2(y,−w/2, t) (26)

respectively, where the TD functionsΥ1,2(y, x, t) are closely
related to the generic integral function analyzed in [16,
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Sec. G.1]. Indeed, it is noted that their slowness integral
representations have the following form

Υ̂1,2(y, x, s) =
c21,2
8π2

∫

σ∈S0

exp(sσy)

s3σ3
Ω2

1,2(σ)dσ

×
∫

κ∈K0

exp(sκx)

sκ

dκ

Γ1,2(κ, σ)
(27)

for {s ∈ R; s > 0}, {x ∈ R;x 6= 0}, {y ∈ R; y 6= 0} and
the integration contours in the complexσ- and κ-planes,S0
andK0, respectively, follow the imaginary axes except for the
origins, where they are indented to the right by circular arcs
of vanishingly small radii (see Fig. 6). The transformationof
Eq. (27) back to the TD can be performed with the help of
the “Cartesian version” of the CdH technique [15, Sec. 2.1.2].

Starting with the inner integral in the complexκ-plane,
the integration path,K0, is by virtue of Jordan’s lemma
and Cauchy’s theorem [22, p. 1054] replaced byC ∪ C∗

with C = {κ(u) = −uΩ1,2(σ)sgn(x) + i0; 1 ≤ u < ∞},
thus representing a loop around the horizontal branch cut
{|Ω1,2(σ)| ≤ Re(κ) < ∞, Im(κ) = 0} (see Fig. 6a). Owing
to the chosen indentation, the contribution of simple pole at
κ = 0 must be incorporated forx > 0. The thus transformed
inner integral is subsequently substituted back in Eq. (27),
where we interchange the order of the integrations with respect
to σ and u. In the subsequent step, we proceed in a similar
fashion in the complexσ-plane. Accordingly, the integration
contour,S0, is first deformed into the hyperbolic CdH path,
sayG ∪ G∗, along which−σy + u|x|Ω1,2(σ) = τ is satisfied,
where{r(u)/c1,2 ≤ τ <∞} with r(u) = (u2x2+y2)1/2 > 0
represents the real-valued and positive (time) parameter (see
Fig. 6b). In addition, the contribution of the pole atσ = 0 is
for y > 0 accounted for. Once we then change the variable of
integration fromσ to τ , we arrive at a double integral with
respect tou andτ . In this result, we further change the order of
the integrations and end up with the integral expression whose
form resembles the one of Laplace-transform integral (3).
Since the Laplace-transform parameter,s, is kept real-valued
and positive throughout the analysis, Lerch’s uniqueness the-
orem [28, Appendix] ensures the existence of the unique TD
original function. The latter can be finally expressed as follows
[16, cf. Eqs. (G.24), (G.25) and (G.30)]

Υ1,2(y, x, t) =
sgn(x)sgn(y)

12π

∫ c1,2t

ξ=r

(c1,2t− ξ)3ψ(y, x, ξ)dξ

+
sgn(x)H(y)

4π

{

|x|
(

c21,2t
2 − y2 +

x2

3

)

cosh−1

(

c1,2t

|x|

)

− α tan−1
(

βx
)

− 7c1,2tx
2βx/6

}

H(c1,2t− |x|)

+
sgn(y)H(x)

4π

{

|y|
(

c21,2t
2 − y2

6

)

cosh−1

(

c1,2t

|y|

)

− α tan−1
(

βy
)

− 5c1,2ty
2βy/3

}

H(c1,2t− |y|)

+ αH(x)H(y)H(t)/4, (28)

0

Re(κ)

Im(κ)

κ-planeK0
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C
∗Ω1,2(σ)

(a)

0
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Im(σ)

σ-planeS0

1/c1,2

G

G
∗

(b)

Fig. 6. Complex planes with their integration paths. (a)κ-plane with the CdH
pathC ∪ C∗ for x < 0; (b) σ-plane with the CdH pathG ∪ G∗ for y < 0.

respectively, wherer = (x2 + y2)1/2 > 0, and

α = c1,2t
(

c21,2t
2/6− y2

)

(29)

βς =
(

c21,2t
2/ς2 − 1

)1/2
for ς = {x, y}. (30)

Furthermore, we used

ψ(y, x, ξ) =
(

1/ξx + 1/ξy
)

/2ξ

− 1

16

x4

y2ξ3
1

ξ5x

[

3
ξ8

x8
+ 6

ξ6

x6

(

y2

x2
− 1

)

+
ξ4

x4

(

15
y4

x4
− 10

y2

x2
+ 3

)

+ 4
ξ2

x2
y2

x2

(

1− 5
y2

x2

)

+ 8
y4

x4

]

− 1

2

y2

ξ3
1

ξy
− 3

16

ξ

y2
1

ξ5x

[

3
ξ4

x4
+ 2

ξ2

x2

(

y2

x2
− 3

)

+
y2

x2

(

3
y2

x2
− 2

)

+ 3

]

+
3

4

ξ

y2
1

ξ3x

(

ξ2

x2
+
y2

x2
− 1

)

. (31)

with

ξς =
(

ξ2/ς2 − 1
)1/2

for ς = {x, y}. (32)

As the closed-form expression (28) can be easily implemented
in any computing platform such as MATLABr, the evaluation
of the TD admittance arrays through (25) and (26) is compu-
tationally (almost) effortless. The most expensive task inthis
respect could be the time-convolution integral in Eq. (28).As
its integrand does not exhibit any nonintegrable singularities, it
can be readily carried out via a standard Gaussian quadrature
or using the recursive convolution technique [15, Appendix
L]. Yet more efficient approach is to handle the integration
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analytically via a multiple application of integration by parts.
Following this strategy, we may write

∫ ct

ξ=r

(ct− ξ)3ψ(y, x, ξ)dξ = −(ct− r)3∂−1
ξ ψ(y, x, r)

− 3(ct− r)2∂−2
ξ ψ(y, x, r)− 6 (ct− r)∂−3

ξ ψ(y, x, r)

− 6 ∂−4
ξ ψ(y, x, r) + 6 ∂−4

ξ ψ(y, x, ct), (33)

where∂−n
ξ denotes thenth integration with respect toξ. Since

ψ(y, x, ξ) is available in closed form via (31), the integrals
on the right-hand side of Eq. (33) are attainable analytically.
Consequently, the elements of the TD admittance array can
be expressed solely in terms of elementary functions, which
enables its fast evaluation.
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