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Tolerance Analysis of Near-Field Focused Arrays to
Safe-for-Humans Microwave and RF Applications

Giovanni Buonanno , Member, IEEE, and Sandra Costanzo , Senior Member, IEEE

Abstract— A methodology is proposed in this work to char-
acterize the complex vector near-field of focused antenna arrays
with arbitrary geometry, subject to random errors. Starting with
the problem formulation, a proper mathematical relationship for
the actual electric field is established, and a partial statistical
characterization is then performed. Subsequently, the mean
squared errors are computed between the actual and the desired
electric field, and between the actual and the ideal squared
magnitude of the electric field. Finally, a method to determine
the cumulative distribution function (cdf) of the squared magni-
tude of the electric field is discussed for obtaining appropriate
percentile functions. The presented numerical results show the
validity of the proposed technique, which is particularly useful
in those applications, such as the biomedical ones, where high
performance is required to control the electric field values such
to guarantee human safety conditions.

Index Terms— Antenna arrays, antenna focusing, biomedical
applications, health safety, near-field, tolerance analysis.

I. INTRODUCTION

THE theory of near-field focused antenna arrays (NFFAs)
is attracting increasing interest since many years [1],

[2], [3], [4], due to their consolidated high potential for a
number of applications, such as identification systems, indus-
trial microwave applications, microwave power transmissions,
antenna measurements, and biomedical applications [5], [6],
[7], [8]. NFFAs are able to concentrate/receive the field at/from
points located in the near-zone of the array [9]. Therefore,
for such systems, the principle of pattern multiplication, very
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advantageously employed in far-field focused arrays, cannot be
exploited, as it is not possible to identify the array factor and
to isolate a vector field acting as a radiation pattern common to
all the antenna elements. Consequently, the study of NFFAs is
more challenging as compared to antenna arrays for far-field
applications. The above difficulty can be also recognized in
the context of focused aperture antennas [10].

Near-field focused arrays, as well as arrays designed for
far-field applications, suffer from various imperfections that
lead to distortions of the (desired) field. In fact, even if
meticulously designed, antenna arrays have to face both
random uncorrelated and spatially correlated errors that can
be due to manufacturing tolerances, element failures, aging,
finite representation of the magnitudes and phases of the
excitation coefficients, frequency variations, mutual coupling,
perturbations of the control signals in the feeding network [9],
[10], [11], [12]. Usually, spatially correlated errors can be
minimized and, therefore, random uncorrelated errors are
preeminent [12]. As a result, it is advantageous to consider
and properly address the presence of such errors in the design
stage.

To the best of the authors’ knowledge, the analysis and/or
synthesis of antenna arrays in the presence of random errors
(tolerance theory [11]) has been mainly focused on far-field
applications. The first pioneering works in this sense date back
to the 1950s and 60s, due to Ruze [13], [14], Ashmead [15],
Gilbert and Morgan [16], Rondinelli [17], Elliott [18], and
Allen [19]. Interesting results have been presented also by
Hsiao [20], [21] and Kaplan [22]. These authors have studied
the effect of random errors, mainly in relation to:

1) The behavior of the mean of the squared magnitude of
the array factor.

2) The distribution of the squared magnitude of the array
factor.

3) The antenna array gain.
Also, some results have been provided in relation to the dis-

tribution of the peak sidelobe level. The interested reader can
find in-depth discussions of the tolerance theory of far-field
antenna arrays in [11], [12], [23], and [24]. Interesting results
have also been obtained in statistical antenna theory [25].
It is worth highlighting that the problem of random errors
in antenna arrays is still a current problem that needs to be
adequately taken into account [26], [27], [28]. It is also worth
noting that tolerance theory shares strong similarities with
the probabilistic analysis/synthesis of nonuniformly spaced
(far-field) antenna arrays [29], [30], [31], [32], [33], [34], [35]
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and the collaborative beamforming in ad hoc sensor net-
works [36].

A probabilistic study of random uncorrelated errors in
Fresnel-zone focused antenna arrays has recently been pre-
sented in [37]. Such work has adapted tolerance theory
methodologies for far-field focused arrays to the radiative
near-field region, providing a general approach together with
some approximations based on recently introduced results [38]
for estimating the cumulative distribution function (cdf) of a
particular function, which acts, in a sense, as a kind of array
factor. A general model for NFFAs, subject to random errors,
has been recently proposed by Costanzo and Buonanno [39].
Starting from the original development in [39], the present
work aims to generalize the methodology in [37], making no
assumptions about the geometry of NFFAs to be characterized.
Furthermore, the field observation is not restricted to any
specific plane, thus fully considering the vector electric field.
By modeling the random errors as in [37], the first- and
second-order partial statistical functions of the electric field are
first provided. Subsequently, the approach presented in [39] is
strongly extended through the following enhancements.

1) A simple relation for the variance of the squared mag-
nitude of the electric field is introduced.

2) The statistical characterization is performed for the
relation existing between the real and the imaginary
parts of the three scalar components of the electric field,
through the respective covariance functions that form the
covariance matrix.

3) An in-depth discussion is performed regarding some
important properties of the above covariance matrix.

4) The modeling of the joint probability density function of
the real and imaginary parts of the three scalar compo-
nents of the electric field is performed by exploiting the
multivariate Lindeberg–Feller central limit theorem [40].

5) A method is proposed for determining the cdf of the
squared magnitude of the electric field, to introduce
appropriate confidence curves.

To develop this model, appropriate covariance functions are
considered as a first step. Regardless of whether the covariance
matrix related to the aforementioned multidimensional pdf
is singular, it is shown that the distribution of the squared
magnitude of the electric field can be computed efficiently,
by exploiting the spectral decomposition of real and symmetric
matrices.

There are several reasons for this work. By now, vari-
ous applications require very high operating frequencies and
systems of large dimensions in terms of wavelength. Con-
sequently, the near-field region undergoes an extension that
must be addressed in the design stage [25]. In addition,
some applications naturally employ antenna arrays working
in the near-field, such as, for example, some biomedical
applications [7]. Furthermore, it must be considered that the
behavior of the electromagnetic field in the radiative near-field
region of antennas is also crucial for problems related to safety
at radiation exposure [41]. As a result, it is of paramount
importance that the levels of the field are adequately con-
trolled. However, as previously stated, errors affecting the
array could harm generating the desired field. Consequently,

Fig. 1. Representation of a generic array together with the observation
variables.

a methodology that helps take these errors into account and,
therefore, be able to predict their effects may be essential.

II. PROBLEM FORMULATION

Let us consider a generic array composed by N radiators
which is immersed into a lossless free space-like medium (as
an example, in Fig. 1 a periodic planar array is reported). The
electric field at the generic point P ≡ (x, y, z) belonging to
the near-field region of the array, but located in the far-zone
of each radiator, can be written as [42]

Eid(P) = K
N∑

n=1

In
e− jk Rn

Rn
hn(P) (1)

where K = ( jkη)/(4π), k is the wavenumber in the propa-
gation medium, η is the medium impedance, In = An e jαn is
the complex feeding current (An ∈ [0,+∞], αn ∈ [0, 2π ]),
Rn =

√
(x − xn)2 + (y − yn)2 + (z − zn)2 is the distance

between the phase center of the nth element and the point

P , (xn, yn, zn) is the position of the phase center of the nth
element, and hn(P) is the effective length of the nth element
evaluated at point P . It is worth highlighting that, even if
in Fig. 1 the radiators are assumed to be equally oriented in
space, this condition is not mandatory for the purposes of the
discussed methodology. In fact, the spherical coordinates Rn ,
θn , and φn are defined with respect to the reference system
of the specific radiator. Furthermore, arrays of any geometry
can be analyzed. Moreover, the (ideal) phases of the excitation
coefficients are determined by exploiting the conjugate-phase
method [7]

αn = k Rn f = k
√(

x f − xn
)2

+
(
y f − yn

)2
+

(
z f − zn

)2 (2)

where (x f , y f , z f ) is the position of the so-called focal point.
Of course, the present methodology is also valid for near-field
multifocused arrays. The conjugate phase method is probably
the most used approach, as it is also the simplest one, to realize
the focusing condition. However, it does not allow to con-
sider the mutual couplings between the antenna elements [43].

In light of the above, to somehow take into account the
effect of mutual couplings between antenna elements [11],
while also considering the effects of possible fluctuations in
the feeding network, component tolerances, antenna elements
faults, and other possible causes of error, it is assumed that as
follows [37].
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1) The magnitudes and the phases of the excitation coeffi-
cients are subject to random additive errors.

2) The actual magnitudes of the excitation coefficients are
multiplied by suitable coefficients.

Consequently, the actual electric field can be modeled as
follows:

E(P) = K
N∑

n=1

Fn(An + δAn) e j(αn+δαn)
e− jk Rn

Rn
hn(P)

= K
N∑

n=1

Cn hnx (P)x̂+

N∑
n=1

Cn hny (P)ŷ+

N∑
n=1

Cn hnz(P)ẑ

= Ex (P)x̂ + Ey(P)ŷ + Ez(P)ẑ (3)

with the function Cn given by

Cn = Fn(An + δAn) e j(αn+δαn)
e− jk Rn

Rn
(4)

and where Fn ∈ {0, 1} is a binary random variable that
indicates whether the nth element is faulty or turned on, such
that Pr {Fn = 1} = 1 − Pr {Fn = 0} = Fn = mn , while δAn

and δαn are zero-mean continuous random variables. More
precisely, {δαn}

N
n=1 are zero-mean Gaussian random variables,

while for amplitude errors, there is generally no particular
assumption [11], [12]. Moreover, all random variables are
independent of each other. It is worth highlighting that the
considered errors are the most common ones encountered in
antenna arrays [12]. As a further important aspect, the mutual
couplings effects are assumed to be sufficiently weak so that
no influence is reflected on the shape of the current densities.
They are simply modeled by including them into amplitude
and phase errors related to the excitation coefficients [11].
From a practical point of view, arrays with sufficiently spaced
radiators are considered, so to avoid strong mutual couplings.
Anyway, another alternative approach could be to exploit the
active-element pattern method including the mutual couplings
as incorporated within the active element patterns [12]. In this
case, the function hn(P) would be linked to the active element
pattern of the nth radiator.

As for the active element pattern method, some clarifi-
cations may be useful. In particular, for small to medium
sized arrays, the characterization of active element patterns
can be very demanding from a computational point of view.
Instead, such a technique can be advantageous for large
arrays, as in this case, it is possible to use the central
element pattern method, in which the active element pattern
of one of the most central elements of the array is repre-
sentative of all the other elements [9]. In the case of small
to medium sized arrays, it may be more useful to exploit
appropriate mutual coupling compensation schemes [44], [45].
For the sake of completeness, it is worth mentioning that
technological solutions have also been introduced for the min-
imization of mutual couplings, such as the adoption of EBG
structures [9], [46].

In summary, as previously stated, this article is based on the
same philosophy exposed in [11], which states that regardless
of which phenomena (including mutual couplings) are respon-
sible for errors, their effect is to modify the magnitudes and

phases of the excitation coefficients. This point of view is
compatible with the modeling of mutual couplings by means of
the isolated-element pattern approach [44], in which all mutual
coupling effects are included in the excitation coefficients.
Anyway, further studies are currently devoted by the authors
to investigate error characterization methods in which mutual
couplings can be explicitly included. The results coming from
the above studies will be presented in a future work.

Since the functions {Cn}
N
n=1 are stochastic processes, it fol-

lows that E(P) is a random vector field, which must be
studied by exploiting the theory of probability. Moreover, the
three complex components of the electric field are mutually
dependent. The mean and the variance of the actual electric
field can be written as follows (the upper bar denotes the
operation of statistical mean):

µ(P) = E(P) = K
N∑

n=1

Cn hn(P)

= Ex (P) x̂ + Ey(P) ŷ + Ez(P) ẑ
= µx (P) x̂ + µy(P) ŷ + µz(P) ẑ (5)

σ 2(P) = |E(P)− µ(P)|2

= |Ex (P)− µx (P)|2 +
∣∣Ey(P)− µy(P)

∣∣2

+ |Ez(P)− µz(P)|2

= σ 2
x (P)+ σ 2

y (P)+ σ 2
z (P) (6)

where µν(P) and σ 2
ν (P) are the mean and the variance of the

scalar component Eν(P) (for ν = x, y, z) of the electric field,
respectively. The mean µν(P) and the variance σ 2

ν (P) can be
expressed as follows (for ν = x, y, z):

µν(P) = K
N∑

n=1

mn An e jαn e−
σ2
δαn
2

e− jk Rn

Rn
hnν (P) (7)

σ 2
ν (P) = |Eν(P)− µν(P)|2 = |Eν(P)|2 − |µν(P)|2

= |K |
2

N∑
n=1

mn

(
A2

n − mn A2
n e−σ 2

δαn + σ 2
δAn

)
R2

n

∣∣hnν (P)
∣∣2

(8)

and, as it can be seen, the amplitude errors, {δAn}
N
n=1, do not

affect the mean of the electric field, while the other two types
of errors cause the field levels to decrease. As regarding the
variance of the electric field, it is affected by all three types
of errors and, obviously, in the absence of these, it is equal to
zero, just as the mean of the electric field coincides with the
ideal electric field.

III. PARTIAL CHARACTERIZATION OF THE SQUARED
MAGNITUDE OF THE ELECTRIC FIELD

In several applications, it is essential to properly control the
squared magnitude of the electric field, as it is related to the
power density. In the present work, the squared magnitude
of the electric field is a random function, and therefore it
needs to be adequately (probabilistically) characterized. In this
section, a partial characterization of |E(P)|2 is performed,
while, in the following, a more specific characterization is
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discussed, by exploiting a particular assumption between all
the real and the imaginary parts of the components of the
electric field. The mean of the squared magnitude of the
electric field is related to the mean and the variance of
the electric field as reported below

µ|E|
2(P)

= |E(P)|2 = |µ(P)|2 + σ 2(P)

= |K |
2

N∑
n=1

mn
(

A2
n + σ 2

δAn

)
R2

n
|hn(P)|2

+ |K |
2

N∑
n=1

N∑
q=1,q ̸=n

{
mn mq An Aq e j(αn−αq) e−

σ2
δαn

+σ2
δαq

2

×
e− jk(Rn−Rq)

Rn Rq
hn(P) · h∗

q(P)

}

= |Eid(P)|2 + |K |
2

N∑
n=1

(
mn A2

n + mn σ
2
δAn

− A2
n

)
R2

n
|hn(P)|2

+ |K |
2

N∑
n=1

N∑
q=1,q ̸=n

mnmq An Aqe−
σ2
δαn

+σ2
δαn

2 − An Aq

Rn Rq
e j(αn−αq)

× e− jk(Rn−Rq)hn(P) · h∗

q(P)

 (9)

where the symbol ∗ denotes the complex conjugate
operation. As it can be easily verified, in the absence of
errors, µ|E|2(P) = |Eid(P)|2. It is worth noting that
the squared magnitude of the electric field represents a
quadratic form. In fact, considering the multivariate random
(algebraic) column vector X(P) = [Exℜ

(P), Exℑ
(P),

Eyℜ
(P), Eyℑ

(P), Ezℜ
(P), Ezℑ

(P)]T , with Eνℜ(P) (resp.
Eνℑ(P)) being the real (resp. imaginary) part of Eν(P) (for
ν = x, y, z), it can be written that [47]

µ|E|
2(P) = tr

{
K (P)

}
+ µT (P) · µ(P) (10)

where

µ(P)=
[
µxℜ

(P), µxℑ
(P), µyℜ

(P), µyℑ
(P), µzℜ

(P), µzℑ
(P)

]T

(11)

and (with P implied)

K (P) =



σ 2
xℜ

Kxℜxℑ
Kxℜ yℜ

Kxℜ yℑ
Kxℜzℜ

Kxℜzℑ

Kxℜxℑ
σ 2

xℑ
Kxℑ yℜ

Kxℑ yℑ
Kxℑzℜ

Kxℑzℑ

Kxℜ yℜ
Kxℑ yℜ

σ 2
yℜ

Kyℜ yℑ
Kyℜzℜ

Kyℜzℑ

Kxℜ yℑ
Kxℑ yℑ

Kyℜ yℑ
σ 2

yℑ
Kyℑzℜ

Kyℑzℑ

Kxℜzℜ
Kxℑzℜ

Kyℜzℜ
Kyℑzℜ

σ 2
zℜ

Kzℜzℑ

Kxℜzℑ
Kxℑzℑ

Kyℜzℑ
Kyℑzℑ

Kzℜzℑ
σ 2

zℑ


(12)

with µνℜ(P) (resp. µνℑ(P)) and σ 2
νℜ
(P) (resp. σ 2

νℑ
(P)) being

the mean and variance of Eνℜ(P) (resp. Eνℑ(P)) (for ν =

x, y, z), K (P) being the covariance matrix associated with the
random vector X(P), and tr{K (P)} being the trace of K (P).

The following covariance function Kνℜξℜ(P) (for ν = x, y, z
and ξ = x, y, z):

Kνℜξℜ(P)= Eνℜ Eξℜ − Eνℜ Eξℜ

= |K |
2

N∑
n=1

{
pn

(
A2

n + σ 2
δAn

)
R2

n

∣∣hnν

∣∣∣∣hnξ

∣∣
×

[
1
2

cos
(̸

hnξ − ̸ hnν

)
+

1
2

e−2σ 2
δαn cos

(
2k Rn − 2αn − 2̸ K

−̸ hnν − ̸ hnξ

)]}

− |K |
2

N∑
n=1

{
p2

n A2
n

R2
n

∣∣hnν

∣∣∣∣hnξ

∣∣e−σ 2
δαn

× cos
(
k Rn − αn − ̸ K − ̸ hnν

)
× cos

(
k Rn −αn − ̸ K − ̸ hnξ

)}
(13)

allows to compute σ 2
xℜ
(P), σ 2

yℜ
(P), σ 2

zℜ
(P), Kxℜ yℜ

(P),
Kxℜzℜ

(P), and Kyℜzℜ
(P). Instead, the following covariance

function Kνℜξℑ(P) (for ν = x, y, z and ξ = x, y, z):

Kνℜξℑ(P)= Eνℜ Eξℑ − Eνℜ Eξℑ

= −|K |
2

N∑
n=1

{
pn

(
A2

n + σ 2
δAn

)
R2

n

∣∣hnν

∣∣∣∣hnξ

∣∣
×

[
1
2

sin
(̸

hnν − ̸ hnξ

)
+

1
2

e−2σ 2
δαn sin

(
2k Rn −2αn −2̸ K

−̸ hnν − ̸ hnξ

)]}

+|K |
2

N∑
n=1

{
p2

n A2
n

R2
n

∣∣hnν

∣∣∣∣hnξ

∣∣e−σ 2
δαn

× cos
(
k Rn − αn − ̸ K − ̸ hnν

)
× sin

(
k Rn −αn − ̸ K − ̸ hnξ

)}
(14)

allows to compute Kxℜxℑ
(P), Kxℜ yℑ

(P), Kxℜzℑ
(P), Kyℜxℑ

(P),
Kyℜ yℑ

(P), Kzℜxℑ
(P), Kyℜzℑ

(P), Kzℜ yℑ
(P), and Kzℜzℑ

(P).
Finally, the following covariance function Kνℑξℑ(P) (for ν =

x, y, z and ξ = x, y, z):

Kνℑξℑ(P) = Eνℑ Eξℑ − Eνℑ Eξℑ

= |K |
2

N∑
n=1

{
pn

(
A2

n + σ 2
δAn

)
R2

n

∣∣hnν

∣∣∣∣hnξ

∣∣
×

[
1
2

cos
(̸

hnξ − ̸ hnν

)
−

1
2

e−2σ 2
δαn cos

(
2k Rn − 2αn − 2 ̸ K

−̸ hnν − ̸ hnξ

)]}
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− |K |
2

N∑
n=1

{
p2

n A2
n

R2
n

∣∣hnν

∣∣∣∣hnξ

∣∣e−σ 2
δαn

× sin
(
k Rn − αn − ̸ K − ̸ hnν

)
× sin

(
k Rn −αn − ̸ K − ̸ hnξ

)}
(15)

allows to compute σ 2
xℑ
(P), σ 2

yℑ
(P), σ 2

zℑ
(P), Kxℑ yℑ

(P),
Kxℑzℑ

(P), and Kyℑzℑ
(P). As it can be seen, for the determina-

tion of the mean of the squared magnitude of the electric field,
no assumption is made on the relationship existing between the
components of the random vector X(P). Following a similar
approach would be more tedious for determining the variance
of |E|

2(P). Instead, it can be obtained quite easily if assuming
that the components of X(P) are jointly Gaussian at the
generic observation point P , i.e., X(P) ∼ N (µ(P),K (P)).
This assumption can be justified by exploiting the multivariate
form of the central limit theorem [40] when the number of
antenna elements is large enough. Consequently, provided
that this assumption is verified, the variance of the squared
magnitude of the electric field can be written as follows [47]:

σ 2
|E|

2(P) = 2 tr
{
K (P) · K (P)

}
+ 4µT (P) · K (P) · µ(P).

(16)

Although the mean and the variance of |E(P)|2 already pro-
vide some interesting information, they may also be exploited
to obtain the following bounds for the cdf of |E(P)|2 by means
of the Cantelli’s inequality [38] (with τ being a real number):

Pr

{
|E(P)|2 ≤|E(P)|2+τ

}
≤

σ 2
|E|

2(P)

σ 2
|E|

2(P)+ τ 2
, if τ < 0

Pr

{
|E(P)|2 ≤|E(P)|2+τ

}
≥1−

σ 2
|E|

2(P)

σ 2
|E|

2(P)+ τ 2
, if τ ≥ 0

(17)

where Pr {·} is the probability measure. However, Cantelli’s
inequality provides only partial information on the effective
distribution of the squared magnitude of the electric field. For
this reason, a more in-depth characterization of |E(P)|2 is
performed below to increase the information content.

A. Generalized Variance, Generalized Distance, and Possible
Singularities of the Covariance Matrix

In this section, some crucial metrics related to the squared
magnitude of the electric field are discussed. In particular, the
discussion is relatively general here since the assumption of
Gaussianity is not used for the components of X(P). In the
following, some helpful concepts to support the results of
the other sections are reported. The first useful quantity to
consider is the generalized variance, which coincides with the
determinant of the covariance matrix [47]

GV (P) =

∣∣∣K (P)
∣∣∣ =

6∏
i=1

η2
i (P) (18)

where {η2
i (P)}

6
i=1 are the eigenvalues of K (P). To generalize

beyond the 1-D case, as the values of GV (P) increase, the dis-
persion of X(P) with respect to its mean µ(P) also increases.

Another important metric is the standardized distance of X(P)
to µ(P) [47]

SD(P) =

[
X(P)− µ(P)

]T
· K −1(P) ·

[
X(P)− µ(P)

]
= Z T (P) · Z(P) (19)

where the components of the random vector Z(P) have zero
means, unit variances, and they are also uncorrelated. The
following deterministic version of SD(P):

sd(P) =

[
x − µ(P)

]T
· K −1(P) ·

[
x − µ(P)

]
(20)

represents the distance of a generic (deterministic) point x of
the multivariate distribution of X(P) with respect to µ(P),
the latter representing the centroid of the multivariate distri-
bution. The square root of sd(P) is also called Mahalanobis
distance [48]. If some components of X(P) can be “deter-
ministically” derived from the other components, then the
covariance matrix is singular, and the above definitions must
be modified. In this case, the generalized variance can coincide
with |K (P)|+ (pseudo-determinant), which is the product
of all the positive eigenvalues of K (P). As regarding the
generalized distance, it is obtained from (20) by considering
K +(P) (Moore–Penrose inverse) in place of K −1(P).

Equation (18) plays a key role in the analysis methodology
being discussed. In fact, as well known, the variance is
an important dispersion metric for a random variable. For
n-dimensional random variables (random vectors), although
it is possible to define the variance for each individual com-
ponent, it is also necessary to have a metric that provides
information on the dispersion, in the n-dimensional space, that
random vectors present with respect to their mean. For this
purpose, the determinant of the covariance matrix is used as
a generalization of the variance to the n-dimensional case.
In particular, (18) is based on the spectral decomposition
of symmetric matrices, through which it is possible to cal-
culate the determinant of the latter as the product of their
eigenvalues [48].

IV. MEAN SQUARED ERRORS

On the basis of the results obtained in the previous section,
it is possible to define some error functions aimed at charac-
terizing the distance between the actual electric field and the
ideal one, and between the actual squared magnitude of the
electric field and the desired one. It is worth highlighting that
the variance of E(P) characterizes the dispersion of the actual
electric field with respect to its mean, this latter being different
from the ideal electric field. For this reason, by considering
the random error function ϵ(P) = E(P)−Eid(P), the mean of
the squared magnitude of this function can be assumed as first
metric, which coincides with the mean squared error between
the actual electric field and the ideal one, namely

M SE(P) = |ϵ(P)|2 = σ 2(P)+ |Eid(P)− µ(P)|2. (21)

In the absence of errors, the variance of the electric field is
equal to zero, the mean of the actual electric field coincides
with E(P), and, consequently, the function M SE(P) function
equals zero. The function M SE(P) can also be normalized
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with respect to |Eid(P)|2, to obtain a sort of relative mean
squared error between E(P) and Eid(P). However, strictly
speaking, this normalization is more suitable if the mean
squared error between |E(P)|2 and |Eid(P)|2 is considered,
namely

M SE|E|
2(P) =

{
|E(P)|2 − |Eid(P)|2

}2

= |E(P)|4 + |Eid(P)|4 − 2µ|E|
2(P) |Eid(P)|2

= µ2
|E|

2(P)+ σ 2
|E|

2(P)+ |Eid(P)|4

− 2µ|E|
2(P) |Eid(P)|2. (22)

In this case, the function M SE|E|2(P)/|Eid(P)|4 coincides
precisely with the relative mean squared error between
|E(P)|2 and |Eid(P)|2.

V. MULTIVARIATE CHARACTERIZATION OF THE SQUARED
MAGNITUDE OF THE ELECTRIC FIELD AND A

COMPUTATION OF ITS DISTRIBUTION

This section discusses the characterization of the squared
magnitude of the electric field by exploiting the joint prob-
ability density function of the real and the imaginary parts
of the components of the electric field. To this end, let us
assume that the number of antenna elements is high enough
to model, by exploiting a multivariate form of the central limit
theorem [40], X(P) as a multivariate Gaussian random vector.
Let us also assume, for the moment, that the covariance matrix
is nonsingular. Consequently, at the generic point P , the joint
probability density function of the components of X(P) can
be written as follows (with x ∈ R6):

f
(
x; P

)
=

1√
(2π)N

∣∣∣K (P)
∣∣∣ e−

1
2

[
x−µ(P)

]T
· K −1(P)·

[
x−µ(P)

]

(23)

where |K (P)| is the determinant of the covariance matrix.
The following expression (with r ∈ R constant):[

x − µ(P)
]T

· K −1(P) ·

[
x − µ(P)

]
= r2 (24)

represents the equation of a multidimensional ellipsoid, where
the vector with variable components x belongs to the following
locus of points [49]:

x = µ(P)+ r M(P) · v (25)

and v is a vector with variable components such that vT
· v =

1 and K (P) = M(P)·MT (P) is the Cholesky decomposition
of the covariance matrix. Consequently, taking into account
that, in this multivariate Gaussian case, the following random
generalized distance:[

X(P)− µ(P)
]T

· K −1(P) ·

[
X(P)− µ(P)

]
= R2(P)

(26)

is a χ2 random variable with six degrees of freedom, it is
relatively easy to determine the confidence regions for the

random vector X(P). Indeed, it could be written that (with
η being a real number)

Pr
{

R2(P) ≤ η
}

=
γ (3, η/2)
0(3)

(27)

where γ (s, t) is the lower incomplete gamma function, and
0(s) is the gamma function [50]. Consequently, it could be
set Pr {R2(P) ≤ ηq(P)} = q% (with 0 ≤ q ≤ 100 and
n = 6), ηq(P) being the qth percentile of R2(P), and then
the qth n-dimensional ellipsoid, associated with f (x, P), can
be determined by previously setting r =

√
ηq and computing

all the values of x satisfying (25). Once the vector with the
highest Euclidean norm and satisfying (25) is identified, the
approach in [37] can be generalized to the n-dimensional case.
In fact, here, q% is the probability that X(P) lies inside the
aforementioned ellipsoid. This is less than the probability that
the same X(P) lies inside an n-dimensional sphere, centered
at the origin, and having the above norm as radius. In case the
covariance matrix is singular, the expressions (23)–(27) cannot
be held valid. In fact, in (23) the pseudodeterminant |K (P)|+
and the Moore–Penrose pseudoinverse K +(P) must be con-
sidered, instead of |K (P)| and K −1(P), respectively [48].
Consequently, when the covariance matrix is singular, the
treatment through the multidimensional pd f may become
more complicated. However, it is worth noting that the pre-
vious discussion based on f (x, P) represents an important
conceptual basis for the sequel, as it provides important
information on the (spatial) distribution of the realizations of
X(P) in the multidimensional space and, coherently to what
stated above, it would lead to find a lower bound for the
distribution of the squared magnitude of the actual electric
field.

At this point, a more general methodology needs to be
found which allows to directly overcome the problem of
possible singularities of the covariance matrix, and to more
easily find an estimate of the distribution of |E(P)|2. To this
end, a particular representation of X(P) is exploited in the
following to achieve the above goal. In this framework, the
spectral decomposition of the covariance matrix can be written
as follows [48]:

K (P) =

6∑
i=1

η2
i (P) ui (P) · uT

i (P) (28)

where {η2
i (P)}

6
i=1 and {ui (P)}

6
i=1 are the eigenvalues and

eigenvectors of K (P), respectively, with η2
1(P) ≥ η2

2(P) ≥

· · · ≥ η2
6(P) ≥ 0. The above eigenvectors form an orthonormal

basis for R6, and thus the vector X(P) − µ(P) can be
represented as follows [48]:

X(P)− µ(P) =

6∑
i=1

wi (P) ui (P) (29)

where {wi (P) = [X(P)−µ(P)]T
· ui (P)}

6
i=1 are independent

Gaussian random variables. In particular, wi (P) is a Gaussian
random variable with mean equal to zero and variance equal to
η2

i (P). Therefore, the squared magnitude of the electric field
can be written as follows:

|E(P)|2 = X T (P) · X(P)
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=

6∑
i=1

w2
i (P)+ 2

6∑
i=1

µ̃i (P) wi (P)+

6∑
i=1

µ̃i
2(P)

=

6∑
i=1

η2
i (P)

[
wi (P)
ηi (P)

]2

+ 2
6∑

i=1

µ̃i (P)ηi (P)
[
wi (P)
ηi (P)

]

+

6∑
i=1

µ̃i
2(P) (30)

with [wi (P)/ηi (P)]2 and [wi (P)/ηi (P)] being a χ2 random
variable with one degree of freedom and a standard nor-
mal random variable (with mean equal to zero and unitary
variance), respectively, while the generic µ̃i (P) is equal to
µT (P)·ui (P). Consequently, the cdf of the squared magnitude
of the electric field coincides with the cdf of a generalized χ2

random variable [51]. It is worth emphasizing that, through the
described (decomposition) approach, any singularities of the
covariance matrix are naturally taken into consideration, since
in this case, there are some coefficients wi being identically
zero, and therefore the summation in (30) is simply composed
of a number of terms less than six.

To the best of the authors’ knowledge, there is no
closed-form for the distribution of a generalized χ2 random
variable. However, it is worth highlighting that the squared
magnitude of the electric field is now described in terms of a
linear combination of six independent χ2 random variables
with one degree of freedom, plus a linear combination of
six independent normal random variables, plus a deterministic
term. Consequently, since the number of terms in (30) is suf-
ficiently low, the Monte Carlo method can be advantageously
exploited to determine the distribution of |E(P)|2. It is also
worth specifying that, in practice, the linear combination of
the χ2 random variables cannot be generated independently
of the linear combination of normal random variables, i.e.,
to determine the realizations of |E(P)|2 using the Monte
Carlo method, only numerous different sets {wi (P)}6

i=1 are
generated and subsequently the relation (30) is implemented.
More advantageously, it is sufficient to generate a large number
of standard normal random variables once at all, in such a way
to exploit them for all the generic observation points at which
the distribution of the squared magnitude of the electric field
must be determined. As it can be seen in the sequel, there is an
excellent matching between the empirical and the theoretical
distribution. Once the distribution of |E(P)|2 is estimated, the
related qth percentile function, eq(P), can be determined as
before, namely (with 0 ≤ q ≤ 100)

Pr
{
|E(P)|2 ≤ eq(P)

}
= q% (31)

where eq(P) coincides precisely with the qth percentile of the
random variable |E(P)|2.

Now, an important aspect is worth highlighting. The
expressions (28)–(30) hold even when X(P) is not a mul-
tidimensional normal random vector. However, in the general
case, although the coefficients {wi }

6
i=1 are still uncorrelated

with each other, since the eigenvectors of K (P) are an
orthonormal system [48], it cannot be asserted that these
coefficients are also independent nor that they are normal
random variables. However, as shown in the following section,

even when the number of radiators is relatively small, the
present methodology proves to be effective.

VI. NUMERICAL RESULTS

In this section, suitable numerical results are discussed to
show the validity of the proposed methodology. Elementary
dipoles are assumed as radiators [42], taking into account
that the antenna element does not strongly affect the intrinsic
performance of the array [52]. Consequently, the expression
for the actual total electric field can be written as follows:

E(P) = K1z
N∑

n=1

{
Fn(An + δAn) e j(αn+δαn)

e− jk Rn

Rn

×

[
(x − xn)(z − zn)

R2
n

x̂ +
y(z − zn)

R2
n

ŷ

−
(x − xn)

2
+ y2

R2
n

ẑ

]}
(32)

where 1z ≪ λ is the dipole length, λ is the wavelength in the
propagation medium, and, as before, the operator × denotes
the scalar multiplication. In particular, the dipole length is set
equal to 1z = λ/50, although the present methodology does
not depend on its actual value. For each n, it results: An = 1 A,
σδAn = 0.2 A, σδαn = 0.2 rad, mn = 0.97. As a first case, a
N = Nx × Nz = 11 × 11 = 121 periodic planar array
is considered in which both the spacings along x and z are
equal to λ , with Nx and Nz being the number of antenna
elements along the x- and z-axis, respectively, (see Fig. 1).
Subsequently, the case where N = Nx × Nz = 6 × 6 = 36 is
also considered, in order to show that the theoretical results can
be exploited even when the total number of antenna elements
is relatively low. For the examples below, the focal point is
at (x f , y f , z f ) = (0, 20 λ , 0) for the first case (N = 121),
while it is at (x f , y f , z f ) = (0, 10 λ , 0) for the second case
(N = 36).

Fig. 2 shows the comparison between the normalized
square magnitude of the ideal electric field [Fig. 2(a)], the
normalized square magnitude of the mean of the actual
electric field [Fig. 2(b)], the normalized mean squared
magnitude of the electric field [Fig. 2(c)], and a realiza-
tion of the squared magnitude of the actual electric field
[Fig. 2(d)] in the plane of focus. As can be seen, the func-
tions |Eid(P)|2/max{|Eid(P)|2} and |µ(P)|2/max{|µ(P)|2}
exhibit almost the same behavior; instead, the normalized
mean squared magnitude of the electric field presents a behav-
ior similar to the first two functions in the cuts x/λ = 0 and
z/λ = 0, while, as compared to these, it shows significantly
higher secondary lobes (relative with respect to the maximum
value). This is consistent with the tolerance theory of far-field
arrays, where the mean square magnitude of the array factor
has a dominant term proportional to the squared magnitude
of the ideal array factor, plus an additive error term which
leads to a rise in the secondary lobe levels. The average
behavior of the actual squared magnitude of the electric field is
obviously also reflected in the realizations (sample paths) of
|E(P)|2. Actually, observing Fig. 2(d), it can be recognized
that the errors induce not only an elevation of the relative



4058 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 5, MAY 2024

Fig. 2. Comparison, in the focal plane, between (a) normalized squared magnitude of the ideal electric field, (b) normalized squared magnitude of the mean
of the actual electric field, (c) normalized mean of the squared magnitude of the actual electric field, and (d) normalized sample path of the squared magnitude
of the actual electric field. The number of antenna elements is N = Nx × Nz = 11 × 11.

Fig. 3. Comparison, in the focal plane, between (a) empirical and (b) theoretical standard deviation of the squared magnitude of the electric field. The
number of antenna elements is N = Nx × Nz = 11 × 11 and the values are in linear scale.

levels of the secondary lobes, but also a distortion to the
structure of the |E(P)|2. This confirms that it is important to
consider the errors effect in near-field focused arrays, mainly
if employed in high-performance scenarios. Fig. 3 compares
the empirical standard deviation of the squared magnitude of
the electric field, coinciding with the experimental variance
of 2000 realizations of |E(P)|2, and the theoretical variance
obtained by implementing (16). Observing the two figures,
it can be noticed that (16) provides an excellent estimate of
the variance of |E(P)|2.

Now, let us evaluate the validity of the methodology pro-
posed in Section V. Fig. 4 compares, at the focal point, the
empirical and the theoretical cdfs of the squared magnitude of
the actual electric field. The empirical distribution is obtained
through 2000 realizations of the random variable |E(P)|2
(ψ denoting the values assumed by |E(P)|2, i.e., F(ψ) =

Pr {|E(P)|2 ≤ ψ}), the latter obtained from the squared mag-
nitude of (3). Instead, the theoretical distribution is obtained by
means of (28)–(30). Furthermore, the behaviors of the second

Fig. 4. Empirical (blue line) and theoretical (red line) cdf of the squared
magnitude of the electric field at the focal point, together with the second
members of the expressions related to Cantelli’s inequality (orange line for
τ < 0, green line for τ ≥ 0). The number of antenna elements is N = Nx ×

Nz = 11 × 11. The values of ψ are in linear scale.

members of the expressions related to Cantelli’s inequality are
also shown. In particular, the orange line shows the behavior
of σ 2

|E|2
(P)/[σ 2

|E|2
(P) + τ 2

], the green curve is related to
1 − {σ 2

|E|2
(P)/[σ 2

|E|2
(P) + τ 2

]}, and the vertical dotted purple
line crosses the abscissa axis at the mean of |E(P)|2. As it
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Fig. 5. Squared magnitude of the ideal electric field (blue solid line), 99th
percentile function of the squared magnitude of the actual electric field (solid
red line), first percentile function of the squared magnitude of the actual
electric field (solid orange line), and various sample paths of the squared
magnitude of the actual electric field (dashed lines) along the axis parallel to
the x-axis and intersecting the y-axis at the focal point. The values on the
abscissa axis are in linear scale, while those on the ordinate axis are in dB.
The number of radiators is N = Nx × Nz = 11 × 11.

Fig. 6. Squared magnitude of the ideal electric field (blue solid line),
99th percentile function of the squared magnitude of the actual electric
field (solid red line), first percentile function of the squared magnitude of
the actual electric field (solid purple line), and various sample paths of the
squared magnitude of the actual electric field (dashed lines) along the axis
perpendicular to the array aperture and containing the focal point. The values
on the abscissa axis are in logarithmic scale, while those on the ordinate axis
are in dB. The number of radiators is N = Nx × Nz = 11 × 11.

can be seen, Cantelli’s inequality provides bounds relatively far
away from the actual distribution of |E(P)|2, if compared to
the theoretical distribution obtained by the procedure described
in Section V.

To further confirm the validity of the proposed methodology,
in Fig. 5, it is illustrated the behavior of the field along the axis
parallel to the x-axis and passing through the focal point, while
in Fig. 6, the behavior of the field along y-axis, containing the
focal point, is reported (L =

√
L2

x + L2
z , with L x and Lz being

the lengths of the sides of the array). In particular, the above
figures report the squared magnitude of the ideal electric field
(blue solid line), the 99th percentile function (solid red line),
the first percentile function (solid purple line), and different
realizations of |E(P)|2 (dashed lines). By observing both
figures, the percentile functions represent good estimates for
the boundaries of the region encompassing most of the values
of the squared magnitude of the electric field. In this way,
it can provide important information on electric field levels
for applications where high reliability is required. Of course,
other percentile functions can be considered, depending on the
safety margins needed.

Now, to test the impact that errors have on the performance
of NFFAs when the number of radiators is relatively small and
to verify whether the proposed methodology is valid even in
this case, some results are shown for N = Nx × Nz = 6 × 6.

Fig. 7 compares the functions |Eid(P)|2/max{|Eid(P)|2},
|µ(P)|2/max{|µ(P)|2}, µ|E|2(P)/max{µ|E|2(P)} and a real-
ization of |E|

2(P)/max{|E|
2(P)}. As before, the squared

magnitude of the (ideal) electric field and the squared magni-
tude of the mean of the electric field have the same behavior in
terms of focal spot shape and sidelobes structure; instead, the
mean of the squared magnitude of the electric field has a higher
relative sidelobe level, which is reflected in the realization of
the squared magnitude of the electric field. Fig. 8 compares the
empirical and the theoretical distributions of |E(P)|2, together
with the function σ 2

|E|2
(P)/[σ 2

|E|2
(P)+ τ 2

], the green curve is
related to 1 −{σ 2

|E|2
(P)/[σ 2

|E|2
(P)+ τ 2

]} related to (17), at the
focal point. As before, the vertical purple dashed line crosses
the abscissa axis at the mean of the squared magnitude of
the electric field. Also in this case, the theoretical estimate
of the distribution of |E(P)|2 obtained through the procedure
described in Section V is satisfactory, while the bounds given
by Cantelli’s inequality are far from the actual values. Finally,
Figs. 9 and 10 compare the squared magnitude of the ideal
electric field, the 99th percentile function, the first percentile
function, and different realizations of |E(P)|2 (dashed lines),
as in Figs. 5 and 6. Again, the considered percentile functions
provide a good delimitation of the region containing most
of the values of |E(P)|2.

The results shown in this section have been considered
the most significant for the purpose of sufficient validation
of the proposed statistical analysis methodology. However,
a numerical study based on the approach performed in [53]
could also be conducted for a more in-depth analysis of
the impact that errors exert on the performance of near-field
focused arrays.

Before moving to the next section, it is worth asking
whether the assumptions of Section II about mutual couplings
can be justified. As an example, let us consider results
obtained from full-wave simulations of a planar array of
half-wavelength cylindrical dipoles (i.e., with noninfinitesimal
diameters comparable to the lengths). As before, the dipoles
are placed in the xz plane, and they are oriented along the z-
axis. The focus point coincides with the point (x f , y f , z f ) =

(0, 6.8854 λ , 0), and the nominal excitation coefficients all
have the same magnitude. Fig. 11 shows the (normalized)
squared magnitude of the electric field generated by the
array at the focusing plane. In particular, Fig. 11(a) shows
the theoretical squared magnitude of the electric field (i.e.,
dipoles with infinitesimal diameters) in which neither errors
nor mutual coupling effects are considered. Fig. 11(b) shows
the same quantity, but in the presence of only random errors
(also in this case dipoles have infinitesimal diameters). As it
can be seen, the presence of errors produces a distortion
in the field structure, also causing an increase of the field
level in the region of the secondary lobes. Fig. 11(c) and (d)
shows the squared magnitude of the electric field obtained
from full-wave simulations of the array, in the absence of
errors, with dipoles having diameters equal to λ/50 and λ/10,
respectively. Dipoles of this type can be considered broadband
as compared to standard thin dipoles [9]. As it can be seen,
in this case, the field distortion due to mutual couplings shows
a smaller entity as compared to that caused by random errors.
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Fig. 7. Comparison, in the focal plane, between (a) normalized squared magnitude of the ideal electric field, (b) normalized squared magnitude of the mean
of the actual electric field, (c) normalized mean of the squared magnitude of the actual electric field, and (d) normalized sample path of the squared magnitude
of the actual electric field. The number of antenna elements is N = Nx × Nz = 6 × 6.

Fig. 8. Empirical (blue line) and theoretical (red line) cdf of the squared
magnitude of the electric field at the focal point, together with the second
members of the expressions related to Cantelli’s inequality (orange line for
τ < 0, green line for τ ≥ 0). The number of antenna elements is N = Nx ×

Nz = 6 × 6. The values of ψ are in linear scale.

Fig. 9. Squared magnitude of the ideal electric field (blue solid line), 99th
percentile function of the squared magnitude of the actual electric field (solid
red line), first percentile function of the squared magnitude of the actual
electric field (solid purple line), and various sample paths of the squared
magnitude of the actual electric field (dashed lines) along the axis parallel to
the x-axis and intersecting the y-axis at the focal point. The values on the
abscissa axis are in linear scale, while those on the ordinate axis are in dB.
The number of radiators is N = Nx × Nz = 6 × 6.

Consequently, in such situations where errors predominate
over mutual couplings (since the latter can be neglected or
adequately compensated), the proposed methodology can be

Fig. 10. Squared magnitude of the ideal electric field (blue solid line),
99th percentile function of the squared magnitude of the actual electric
field (solid red line), first percentile function of the squared magnitude of
the actual electric field (solid purple line), and various sample paths of the
squared magnitude of the actual electric field (dashed lines) along the axis
perpendicular to the array aperture and containing the focal point. The values
on the abscissa axis are in logarithmic scale, while those on the ordinate axis
are in dB. The number of radiators is N = Nx × Nz = 6 × 6.

useful to have a more realistic characterization of near-field
focused arrays.

VII. EXPERIMENTAL RESULTS

In the present section, some experimental results are dis-
cussed to show the impact of errors on actual practical fields,
as well as to highlight a possible link between the array tol-
erance theory and the array diagnostics [54]. Concerning this
last aspect, in both cases, faults can be modeled through binary
quantities multiplying the excitation coefficients. In principle,
the array tolerance theory and the array diagnostics can be
seen as different ways of dealing with the same problem, the
first one being useful to obtain a priori information on the
difference between the actual field and the nominal one, and
the second one being useful to achieve a posteriori information
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Fig. 11. Normalized squared magnitude of the electric field (in dB), at the focusing plane, for a planar array of 16 half-wavelength dipoles with uniform
0.6 λ spacing in both directions. (a) Theoretical (ideal) case. (b) Theoretical case in the presence of random errors. (c) Full-wave simulation with dipoles
diameter equal to λ/50. (d) Full-wave simulation with dipoles diameter equal to λ/10.

Fig. 12. Measurement setup into ERMIAS Laboratory at University of
Calabria.

Fig. 13. Normalized amplitude of the measured near-field in the absence of
errors (the values are in linear scale).

on the actual field with the aim to identify faulty array
elements.

In Fig. 12, the measurement setup equipped into ERMIAS
Laboratory at University of Calabria is illustrated. It includes a

Fig. 14. Normalized amplitude of the measured near-field in the presence
of errors (the values are in linear scale).

L-band planar array of microstrip rectangular patches, having
an interelement spacing approximately equal to 0.6 λ , which is
assumed as antenna under test (AUT). A standard rectangular
waveguide working in the same frequency range is adopted as
probe to perform the planar near-field measurements on a grid
of 25 × 17 points along x and y directions, respectively, with a
sampling step 1x = 1y = λ/4 at an operating frequency f =

1.685 GHz. In this experimental test case, the array is far-field
focused in the direction perpendicular to the array aperture, but
field measurements are performed in the Fresnel zone. It is
worth highlighting that the characterization of random errors
does not depend on whether the arrays are focused in the near
zone or in the far zone. For comparison purposes, to highlight
the field distortion effects of errors, in Figs. 13 and 14, the
normalized squared magnitude of the measured electric field
in the absence of errors and in the presence of element failures
are reported, respectively.
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VIII. CONCLUSION

A new methodology implementing a useful tolerance the-
ory for near-field focused arrays has been proposed in this
work, to characterize the statistical behavior of the full vector
electric field in the presence of random errors affecting the
performance of antenna arrays with arbitrary geometry. As a
preliminary operation, a first- and second-order partial statis-
tical characterization of the electric field has been performed.
Subsequently, the mean squared errors between the actual and
the desired electric field, and between the actual and the ideal
squared magnitude of the electric field have been considered.
Finally, the efficient computation of the cdf of the squared
magnitude of the electric field is performed by considering
the vector including both the real and the imaginary parts of
the three complex scalar components modeled in terms of a
multivariate Gaussian vector. Following the above procedure,
suitable confidence regions for the electric field magnitude
have been identified through proper percentile functions. In the
present work, mutual couplings have been assumed to be
weak enough so to avoid any influence on the vector structure
of the electric or magnetic current densities. However, as a
future goal, a procedure will be developed to consider the
actual effective lengths, thus leading to include also the mutual
coupling effects, so obtaining a more accurate analysis of the
random errors impact on NFFAs. The proposed approach can
be usefully adopted to guarantee human safety in all those
microwave and RF applications adopting NFFAs.
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