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Convex Optimization of Wideband
Monopulse Arrays

Henrik Frid, Harald Hultin , and B. L. G. Jonsson

Abstract— A convex optimization program is presented for
wideband arrays. Constraints are imposed on the frequency
variation of excitation coefficients to ensure that the optimal
solution can be realized in a wideband active electronically
scanned array (AESA). AESA implementation with true time
delays (TTDs) and phase shifters are handled separately. We also
discuss the general case of combining TTDs and phase shifters.
Contrary to single-frequency optimization, the wideband opti-
mization method presented here ensures that the computed
excitation is optimal over a specified bandwidth. It is shown
that there is a tradeoff between instantaneous bandwidth and
sidelobe level. The proposed method works for both narrow and
wideband arrays, as illustrated with examples. In addition to
regular arrays, the method is also applicable to monopulse arrays.
The optimization program is implemented in terms of embedded
element patterns (EEPs) to account for and compensate for
mutual coupling, radome, and platform effects.

Index Terms— Arrays, direction-of-arrival (DoA) estimation,
electronic warfare (EW), optimization methods.

I. INTRODUCTION

THE bandwidths of array antenna products vary signif-
icantly depending on the application. The bandwidths

found in electronic warfare (EW) systems are typically signif-
icantly larger than those used for radar and communications.
The demand for extremely large bandwidths in EW systems
comes from the need to detect multiple emitters without
knowing their operation frequencies beforehand [1]. Electronic
support measures (ESMs) systems, therefore, typically use
wideband active electronically scanned arrays (AESAs) to
cover several radar frequency bands. An important task for an
ESM system is direction-of-arrival (DoA) estimation. In this
article, we will first focus on a four-quadrant monopulse
array with common excitation weights used for DoA estima-
tion, as described in, for example, [2], [3], [4]. While EW
systems have a significantly larger bandwidth than radar or
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communication systems, our method works for arrays with any
bandwidth. We also demonstrate that the presented method is
useful in narrowband arrays used for communications appli-
cations. Improvements beyond single-frequency optimization
are demonstrated.

There are multiple reasons for optimizing AESAs for low
sidelobe levels. Considering airborne EW, this first reduces the
sensitivity to interference and ground or sea clutter outside
the mainlobe. Furthermore, a monopulse array requires a
guard function used to determine whether a specific signal
was received in the sidelobes or the mainlobe [2]. A lower
sidelobe level will make the implementation of the guard
function less challenging, and this is an additional reason for
striving for optimally low sidelobes. Considering radar, lower
sidelobe levels reduce the risk of being detected by an enemy
surveillance system positioned outside the mainlobe.

There are numerous methods for determining optimal exci-
tation weights for array antennas. Most optimization methods
for array antennas are developed for a single frequency, for
example, [4], [5], [6], [7], [8], [9], [10], [11]. One method
of applying a single-frequency optimization method to a
frequency band is to apply the optimization at the center
frequency, with reduced performance in the edges of the
frequency band as a result. This approach may be sufficient
for narrowband communication and radar systems. Due to the
reduced performance at the band edges, such methods are not
suitable for EW AESAs. Another alternative method is to carry
out single-frequency optimization at each frequency sample
within the bandwidth. This approach has been investigated
for endfire arrays, where it was shown to result in a rapidly
fluctuating phase across the frequency band [12]. Without
additional constraints on the frequency variation of the ampli-
tude and phase coefficients, the optimal excitation obtained
with single-frequency methods could, therefore, be difficult to
realize in a practical system.

Fig. 1(a) shows an illustration of an AESA in the receiving
mode. In an AESA, each antenna element is connected to
a transmit/receive module (TRM) with both phase control
and an amplifier unit. We will focus on the monopulse
configuration in the receive mode. Due to the reciprocity of
the array pattern, the convex optimization program presented
here is also applicable to the transmit (Tx) mode. The phase
control is applied using phase shifters and/or TTDs. Ideally,
phase shifters produce a phase shift which is independent
of frequency within the bandwidth, while TTDs produce a
phase shift which is proportional to the frequency. Similarly,
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Fig. 1. (a) Illustration of an AESA with N elements in the receiving (Rx)
mode. Each antenna element has a frequency-dependent gain coefficient αn(ω)

and a frequency-dependent phase coefficient 8n(ω). The phase coefficients
can be applied using phase shifters, true time delays (TTDs), or a combination
of both. The feed network forms the sum and differences of the signals
from the corresponding subarrays. In this figure, two channels (6 and 1) are
received by two analog-to-digital converters (ADCs), although it is possible
to have more channels, in general. (b) Illustration of a digital Rx array, where
each antenna element is connected to an individual ADC.

Fig. 2. (a) Illustration of the four-quadrant monopulse array configuration.
(b) BoR array in the four-quadrant monopulse configuration.

a variable-gain amplifier (VGA) can be designed for a gain that
is ideally independent of frequency within the bandwidth, or to
vary linearly with a specified gain slope. The measured relation
between gain and frequency together with nonlinearities for
a state-of-the-art VGA design is presented in, for example,
[13]. For the optimal excitation to be realizable in a wideband
AESA implemented with VGAs and TTDs, there is, therefore,
a need to introduce constraints that make each frequency
sample dependent on the adjacent frequency samples. This is
here referred to as wideband array optimization, as opposed
to the single-frequency optimization described above.

While the TRM can be modeled as a linear device, it will
have nonlinear characteristics that depend on the power level.
Nonlinearities in the amplifier of the TRM can give rise to
such effects as reduced gain in the mainlobe or sidelobes at
intermodulated frequencies [14]. As we focus on a monopulse
configuration in receive mode, we assume that the signals are
weak and the TRMs operate in the linear region. Therefore,
the modeling of nonlinearities in array antennas is beyond the
scope of this article.

It is interesting to note that the situation for digital array
antennas, as illustrated in Fig. 1(b), is somewhat different
compared to an analog array antenna Fig. 1(a). In a digital
array antenna, the amplitude and phase coefficients are applied

digitally. For purely digital signals, the frequency variation
of the applied coefficient is of less concern and will not
be treated in this article. There are a number of good ref-
erences on the general topic of wideband beamforming, for
example, [15], [16], [17]. Frequency-invariant beamforming
has also been achieved using convex subproblems [18]. The
method presented in this article instead formulates the whole
beamforming problem as one convex problem. Furthermore,
the broadband convex method of [19] has been compared to
a Fourier transform-based method in [20]. Compared to the
method presented in this article, [19] uses a finite impulse
response beamformer with more degrees of freedom than the
TRM used here. The largest bandwidth presented in [19] is
1:2, compared to the 1:5 bandwidth presented in Section IV
of this article.

The convex optimization program presented in this article
can be used for three TRM implementations, here referred to
as Case A, Case B, and Case C, respectively. Case A assumes
that a combination of phase shifters and TTDs are used in each
TRM. Case B assumes that only TTDs but not phase shifters
are used, whereas Case C assumes that phase shifters but not
TTDs are used.

The article is organized as follows. First, Section II-A
introduces the notation that will be used in the remainder
of the article. Thereafter, Sections II-B and II-C present the
constraints on the frequency variation of the amplitude and
phase coefficients for wideband optimization. Section III-A
presents a convex optimization program for optimal wideband
sum patterns with low sidelobes for Cases A and C. The
optimization program is modified for Case B in Section III-B.
Section III-C presents a convex optimization program for
optimal wideband difference patterns with low sidelobes.
Section III-D presents a convex optimization program used for
common excitation weights, that is, to find the tradeoff that
results in simultaneously low sidelobes in sum and difference
patterns that share common excitation weights. Numerical
results are presented in Section IV. We do not present sim-
ulation results for Case C for the sake of brevity. We are
mainly interested in very wideband EW AESAs where the
beam squint inherent in using phase shifters is not acceptable.
Furthermore, the TRM configuration of Case C is compatible
with the program for Case A for which we present results.
Finally, conclusions are presented in Section V.

II. BACKGROUND THEORY

A. Array Pattern as a Sum of EEPs

By formulating the optimization algorithm in terms of
embedded element patterns (EEPs), the effects of mutual
coupling can be taken into account in the optimization [7],
[12]. The advantages of using EEPs in the optimization are
particularly clear for aperiodic arrays [7] and small-array
antennas [4]. For an array of N elements, the EEPs can
be determined from N simulations or measurements, where
one element is excited at a time while the remaining ele-
ments are terminated in matched loads [21]. For each EEP
simulation, the total radiated field is stored together with
the complex power received at each port. Using the power
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received at element m (bm) when the exciting element n with
the excitation coefficient an , the coupling can be found via
the scattering matrix b = Sa. Coupled power also causes
nonexcited elements to radiate, which is included in the EEP.

By including the installation configuration in these simula-
tions, the installed EEPs (IEEPs) are obtained [2]. Depending
on the level of detail, the IEEPs may capture the effects of a
radome as well as reflections in metallic structures on the plat-
form. The optimization algorithm is identical for optimization
using EEPs and IEEPs, and the two approaches only differ
based on which dataset is used as input for the optimization.
By using IEEPs, it is possible to compensate for the phase
shift and reflections in a radome, thereby compensating for
the increased sidelobe level often seen when installing the
radome [4].

The EEP for antenna element n is denoted by f⃗ n(r̂ , ω) =

n̂(co) fn(r̂ , ω) + n̂(cr) f (cr)
n (r̂ , ω), where fn(r̂ , ω) is the copo-

larization component at the angular frequency ω. We have
used Ludwig’s 3rd definition for n̂(co) and n̂(cr) [22] in the
implementation. The relation between the electric far-field
E⃗n(r̂) and the corresponding EEP is [5], [23]

E⃗n
(
r⃗ , ω

)
=

e− jkr

r
Vn f⃗ n

(
r̂ , ω

)
(1)

where k = ω/c is the free-space wavenumber. Follow-
ing [24], it is convenient to choose the following normalization
coefficients:

Vn =

√
ηPn

2π
(2)

where Pn is the stimulated power at antenna port n used in
the simulation or measurement for element n, and η is the
free-space impedance.

The copolarization component of the array far-field, evalu-
ated in the unit direction r̂ , is given by [21]

F
(
r̂ , ω

)
=

N∑
n=1

an(ω) fn
(
r̂ , ω

)
≡ f

(
r̂ , ω

)T
a(ω). (3)

The cross-polarization component is calculated by analogy,
by replacing fn(r̂ , ω) by f (cr)

n (r̂ , ω) in (3). With the notation
on the right-hand side of (3), the N excitation coefficients
are organized in the frequency-dependent column vector a(ω).
We use the following notation:

an(ω) = αn(ω)e j8n(ω) (4)

where αn and 8n are the frequency-dependent real-valued
amplitude and phase coefficients, respectively. Note that all
EEPs are evaluated in the same system of coordinates.
Equation (3) is commonly presented with different phase
reference points for each element, whereby an additional expo-
nential factor appears in (3). With the EEPs f⃗ ′

n(r̂ , ω) evaluated
in the phase reference point r⃗n of element n, the relation is
given by f⃗ n(r̂ , ω) = f⃗ ′

n(r̂ , ω)e jkr⃗n ·r̂ , for example, [5].
Here, it is assumed that the relation between an in (3)

(defined at the antenna port) and the EEP is a good approxi-
mation linear. For this to hold, the antenna must not contain
any nonlinear material, nonlinear active components, or other
sources of nonlinearities. One can also consider an excitation

coefficient a′
n defined at the TRM port. To include the TRM

behavior an additional assumption that an is linearly dependent
on a′

n is needed, which is a good approximation for the
receiving case considered in this article.

With the normalization (2), the realized gain is given by [5]

Gr
(
r̂ , ω

)
=

|F⃗
(
r̂ , ω

)
|
2

||a(ω)||22
(5)

where the norm is defined as [25]

||a(ω)||22 ≡

N∑
n=1

|an(ω)|2. (6)

The directivity and gain are obtained by analogy by replacing
Pn with the radiated or accepted powers, respectively [26].
The partially realized gain is obtained by only including the
copolarization component in (5).

B. Constraints on Phase Coefficients 8n

The maximum of the array factor will be steered to r̂0 when
the frequency-dependent phase shifts

8n(ω) = −τnω (7)

are applied, where ω = 2π f is the angular frequency and τn

are the time delays given by [5]

τn = r⃗n · r̂0/c. (8)

A beam squint effect will occur if the frequency dependence
does not correspond to (7), which is the case for regular
phase shifters, even in the ideal case. Wideband AESAs
are, therefore, typically constructed with TTDs, which ideally
satisfy (7). In general, a phase-shifting device can be designed
to generate a phase shift according to

8n(ω) = −τn(ω − ωc) + φ(c)
n (9)

where ωc is an arbitrarily chosen frequency reference point
within the bandwidth. In (9), the frequency-dependent term is
generated by a TTD, while the frequency-independent term
φ(c)

n + τnωc is generated by a phase shifter. The phase is thus
described by the two parameters τn and φ(c)

n for each antenna
element.

Based on implementation with (9), the following optimiza-
tion cases are of interest. The first case is the most general,
with τn and φn to be determined from optimization. This
corresponds to TRMs implemented with a combination of
TTDs and phase shifters. This general optimization problem
is, however, not convex since (3) is not a convex function
of τn . This article will focus on convex optimization, and
the nonconvex case will, therefore, not be considered for the
simulation results presented here. The following three cases
can be solved by convex optimization.

Case A: By taking advantage of (8), τn can be considered
to be known, while φ(c)

n is determined from optimization.
This formulation will result in the correct scan direction
and eliminate beam squint. The corresponding TRMs are
implemented with a combination of TTDs and phase shifters.
Since optimizing directly for φ(c)

n does not result in a convex
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problem, we instead optimize for the real and imaginary parts
of an which then turns out as a convex problem. Thereafter,
φ(c)

n is calculated as the angle of an in the complex plane.
This means that the optimization variables are ℜ(an) and ℑ(an)

rather than φ(c)
n and αn . For further details, see the optimization

over complex-valued excitation coefficients in (25).
Case B: The optimization problem with τn determined

using (8) and φ(c)
n = ωc = 0 is a convex problem which

corresponds TRMs implemented with TTDs, but with no phase
shifters, that is, the most common hardware implementation
for wideband AESAs. Since the phase is assumed to be
known for this case, this optimization problem is used only to
determine optimal amplitude tapering.

Case C: The optimization problem with τn = 0 and φ(c)
n to

be determined from optimization is a convex problem (using
the trick in Case A) which corresponds to TRMs implemented
with phase shifters, but no TTDs, that is, the most common
hardware implementation for narrowband AESAs. This means
that the phase is set to be a constant function of frequency.

C. Constraints on Amplitude Coefficients αn

The amplitude coefficients αn are realized using VGAs.
In the same way that a rapidly fluctuating phase is difficult to
realize using phase shifters or TTDs, it is difficult to realize an
amplification that varies rapidly with frequency. A commonly
used relation between gain and frequency for an amplifier
within a specified bandwidth is (in decibel scale)

α(d B)
n (ω) = Gn,center + κ(ω − ωc) (10)

where Gn,center is the amplitude at the center frequency, at the
antenna port of the nth VGA and κ is the gain slope coefficient.
By introducing the notation Gn,center = 20 log10 βn and κ =

20s, this is conveniently expressed in linear scale as

αn(ω) = βn10s(ω−ωc). (11)

The gain slope coefficient κ can be either positive or negative
depending on the AESA system specification. As an example,
a positive gain slope can be used to compensate for losses
in long RF cables that have a negative gain slope, thereby
resulting in a flat frequency gain on a system level. The
same gain slope coefficient is applied to all TRMs, since
allowing individual variations would significantly increase the
complexity and cost. Hence

||a(ω)||22 = 102s(ω−ωc)||β||
2
2. (12)

By using the normalization ||β||
2
2 = 1 with (2), and insert-

ing (12) into (5), we obtain

Gr
(
r̂ , ω

)
=

∣∣∣∣∣
N∑

n=1

βne j8n(ω) f⃗ n
(
r̂ , ω

)∣∣∣∣∣
2

. (13)

Note that the realized gain (13) is independent of the gain slope
coefficient κ . The gain slope coefficient is, therefore, arbitrary
and can be specified based on other considerations rather than
being determined by the optimization. By comparing (13)
to (3), we note that the realized gain can be evaluated as
|F⃗(r̂ , ω)|2 with

αn(ω) = βn (14)

that is, an amplitude excitation which is constant in frequency.
As demonstrated above, (14) is applicable for calculating the
realized gain for an arbitrary gain slope under the assumption
that the same gain slope is used for all antenna elements.

III. WIDEBAND OPTIMIZATION ALGORITHM

The optimization program is derived by considering the
excitation coefficients an as unknown at the reference fre-
quency ωc, and extending the frequency dependence to
the specified bandwidth using (4) with (9) and (14).
A phase–frequency relation similar to (9) was used in the
optimization program for endfire arrays presented in [12],
although the realization with TTDs or phase shifters was
not discussed. The optimization program presented below is
implemented to optimize the realized gain. The advantage
of optimizing the realized gain rather than the directivity is
that the mismatch is taken into account in the optimization.
This will result in a tradeoff where the total active reflection
coefficient (TARC) is taken into account in the optimization
implicitly through the realized gain. While the TARC is taken
into account implicitly, it can be found using the S matrix
introduced in Section II-A.

The array is optimized for a bandwidth BWopt. Meanwhile,
the array is used in a bandwidth BWuti, which may be
greater than BWopt. The narrowband approach described in the
introduction, where a single-frequency optimization is carried
out at the center frequency, corresponds to BWopt = 0% and
BWuti > BWopt.

Let the bandwidth be sampled at M sample points ωm

ωm = ω1 + B̃W opt
m − 1

M
. (15)

In this equation, B̃W opt is the absolute bandwidth expressed
in the unit 1 Hz, and BWopt is the corresponding relative
bandwidth, described as a percentage. The EEPs are assumed
to be known from measurement or simulation at these sample
points. By using (4) with (9) and (14), the array gain can be
evaluated at all the M frequency samples, with only the N
complex-valued an(ωc) to be determined from optimization.
The extension from ωc to the remaining frequency samples
can then be expressed as a matrix multiplication

a(ω) = B(ω)a(ωc) (16)

where B(ω) is a diagonal N × N matrix defined by

Bnn(ω) = e− j(ω−ωc)τn . (17)

Cases A, B, and C are all implemented with (17). For Case A,
τn in (17) is determined by (8). For Case C, B(ω) is an identity
matrix since τn = 0. Case B is implemented with ωc = 0.

A. Optimal Sum Pattern With Low Sidelobes, Cases A and C

Similar to [4] and [6], the goal of the optimization method
presented here is to minimize the sidelobe level in predefined
sidelobe regions. Therefore, the far-field amplitude is sampled
at sample points r̂ i , i = 1, 2, . . . , Q, in the sidelobe regions
�, by using the summation (3), that is,

F
(
r̂ i , ω

)
= f

(
r̂ i , ω

)T
B(ω)a(ωc). (18)



4250 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 5, MAY 2024

The sampled copolarized sidelobe level costs are collected in
a vector of length Q

s(ω) = A(ω)B(ω)a(ωc) (19)

where A is a Q × N complex-valued matrix according to

A(ω) =


p1(ω) f

(
r̂1, ω

)T

p2(ω) f
(
r̂2, ω

)T

...

pQ(ω) f
(
r̂ Q, ω

)T

. (20)

The cross-polarization sidelobe samples are evaluated by
analogy by replacing f (r̂ i , ω) by f (cr)(r̂ i , ω) in (20). The
coefficients p1, p2, . . . , pQ are penalty coefficients used
to apply varying sidelobe penalties at various regions.

A condition is needed to reject the trivial solution a = 0,
which would result in a zero sidelobe-level cost. This can be
implemented as

f
(
r̂0, ωc

)T
a(ωc) = 1 (21)

which corresponds to unity amplitude and zero phase in the
scan direction. The condition (21) is widely used in array
antenna optimization, for example, Capton’s single-frequency
beamformer [27]. In addition to rejecting the trivial solu-
tion, (21) can be considered to be a normalization of the
vector a(ωc) to set the renormalized realized gain in the
scan direction to 0 dB at the center frequency. Note that
the normalization ||a(ω)||22 = 1 used for the realized gain
above is a quadratic form, that is, a nonconvex constraint [28].
It is, therefore, practical to use (21) during the optimiza-
tion, and thereafter renormalize a(ω) to plot the realized
gain. Another advantage with the normalization (21) is that
| f (r̂ i , ωc)

T a(ωc)|
2 can be interpreted as the sidelobe level

for a direction r̂ i when ω = ωc. For ω ̸= ωc, the situation
is slightly different since the sum-pattern gain varies with
frequency. One method to take this into account is to consider
that the gain scales as G = 4πϵeff A/λ2

∝ ω2 [5], where
A is the aperture area and ϵeff is the aperture efficiency.
We have, therefore, used the following penalty coefficients in
the implementation:

pi (ω) = ωc/ω. (22)

It is possible to modify (22) for obtaining a higher sidelobe
penalty at the corresponding sample point r̂ i , or stricter
sidelobe constraints at certain frequencies.

In the next step, we collect the Q sidelobe samples at the
M frequencies in a matrix of dimensions (QM) × 2

E =
(
Ca(ωc), C (cr)a(ωc)

)
(23)

where the first column of E contains the copolarized
sidelobe-level costs and the second column contains the cross-
polarized sidelobe-level costs. The matrices C and C (cr) are
of dimension (QM) × N

C =


A(ω1)B(ω1)

A(ω2)B(ω2)
...

A(ωM)B(ωM)

 (24)

and C (cr) is defined by analogy. The sidelobe-level cost for
each sample can, therefore, be evaluated as the norm of the
corresponding row in E .

In conclusion, we have the following convex optimization
problem for Cases A and C:

min
a(ωc)∈CN

max ||
(
Ca(ωc), C (cr)a(ωc)

)
||2

s. t. f
(
r̂0, ωc

)T
a(ωc) = 1. (25)

The norm operation || · ||2 in (25) is applied to each row in
the matrix E , and CN is the set of complex-valued vectors
of length N . With this formulation, the optimization problem
can be directly implemented in a convex optimization tool such
as CVX [29]. This optimization problem is used to compute
the N unknowns a(ωc) which are optimal for the specified
bandwidth, BWopt.

In summary, the optimization algorithm needs the following
input: First, the N EEPs sampled at M frequencies ωm in the
bandwidth are used as input. The antenna locations r⃗n are
also needed as input in the computation of B(ω). A scan
direction r̂0 and sidelobe regions � need to be specified.
As demonstrated in [4], it is possible to control the shape of
the beam to make the beam more narrow or wide depending
on the specified sidelobe regions.

B. Optimal Sum Pattern With Low Sidelobes, Case B

Some modification is needed for the optimization pro-
gram (25) for Case B where only the amplitude coefficients
are determined from optimization. This program can be
implemented as an optimization over the set of real-valued
nonnegative coefficients β. For Case B, ωc = 0 and (8)
are specified in (17). Consider the constraint (21), which
is used to reject the trivial solution. With φ(c)

n = 0, (21)
is reformulated as f (r̂0, ωc)

T B(ωc)β = 1. This constraint
specifies the imaginary part to be zero, which cannot be
satisfied, in general, with nonnegative real-valued coefficients
β. An alternative constraint is, therefore, used to reject the
trivial solution

min β ≥ γ. (26)

The parameter γ > 0 controls the normalization, which can be
considered arbitrary since the results will be renormalized to
present realized gain. This constraint also differs from (21) in
the sense that it prohibits setting any excitation coefficients
equal to zero. This is not considered to be a restriction,
since setting some coefficients equal to zero would result in a
reduced aperture efficiency.

In conclusion, we have the following optimization problem:

min
β∈RN

max ||
(
Cβ, C (cr)β

)
||2

s. t. min β ≥ 1 (27)

where RN is the set real numbers in vectors of length N .

C. Optimal Difference Patterns

The monopulse method relies on three simultaneous signals
to estimate the DoA: the sum signal, the azimuth differ-
ence signal, and the elevation difference signal. The DoA
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is estimated from the ratios of difference and sum signals
by an estimation algorithm [2], [3]. These three signals are
received by the monopulse array in the corresponding sum and
difference radiation patterns, referred to using the short-hand
notation 6, 1a, and 1e, respectively. There are multiple
array configurations used for obtaining simultaneous sum and
difference patterns, for example, [3], [30]. One of the most
commonly used subarray configurations is the four-quadrant
monopulse array presented in Fig. 2. This section presents a
convex optimization program for optimal difference patterns
with low sidelobes. Following Section III-A, we will start by
considering Cases A and C. A common design of analog feed
networks for the four-quadrant monopulse array results in the
common excitation weight vector a(ω) being used for all three
patterns 6, 1a, and 1e. The tradeoff needed to obtain small
sidelobes in all three patterns when sharing common excitation
weights will be considered in Section III-D.

While sum patterns are computed using (3), difference
patterns are computed by

F1x
(
r̂ , ω

)
= f

(
r̂ , ω

)T
Sx a(ω) (28)

where Sx is a diagonal matrix [4]. The diagonal elements of
Sx are either +1 or −1, depending on which subarray the
corresponding array element belongs to. For the four-quadrant
configuration, we use Sa to denote the matrix used for com-
puting the azimuth difference pattern F1a , and Se to denote
the matrix used for computing the elevation difference pattern
F1e. The method presented here is not restricted to the four-
quadrant configuration, since any subarray configuration can
be considered simply by modifying Sx . The cross-polarization
component is computed by analogy by replacing f (r̂ , ω) by
f (cr)(r̂ , ω) in (28).

One of the properties of DoA estimation with the monopulse
method is that the direction to the target is approximately pro-
portional to the target’s displacement from the scan direction
r̂0 [2]. Therefore, the difference signal is ideally zero when
the target is located in r̂0. To prevent the zero in the difference
pattern from drifting away from r̂0 as a result of the chosen
excitation, we use the following convex constraint:

| f
(
r̂0, ωm

)T
Sx a(ωm)| ≤ δ m = 1, . . . , M (29)

where δ is a small tolerance number.
Similar to the optimization of sum patterns described in

Section III-B, the difference patterns are also sampled in
both polarizations in predefined sidelobe regions by (28).
In conclusion, optimal difference patterns for Case A can be
computed using the following convex optimization program
for Cases A and C:

min
a(ωc)∈CN

max ||
(
C1a(ωc), C (cr)

1 a(ωc)
)
||2

s. t. f
(
r̂0, ωc

)T
a(ωc) = 1,

| f
(
r̂0, ωm

)T
Sa(ωm)| ≤ δ m = 1, . . . , M (30)

where C1 is calculated according to (24) with the inclusion
of the matrix Sx (i.e., Se or Sa).

The modification of (30), for Case B follows Section III-B.
This modification is presented explicitly in Section III-D for
the case of common excitation weights.

D. Monopulse Patterns With Common Excitation Weights

At each frequency sample, there are three specified sidelobe
regions: �6 , �1e, and �1a for the sum pattern and the
elevation and azimuth difference patterns. Six matrices, that is,
C , C (cr), C1e, C (cr)

1e , C1a , and C (cr)
1a , are calculated according

to (24) with the inclusion of the matrices Se and Sa in the
evaluation of the difference patterns. As an example, C1e is
calculated by (24) with A(ω) replaced by A1e(ω)Se, where
A1e is sampled in �1e. We define D as

D =

 C
leC1e

laC1a

 (31)

with D(cr) calculated analogously. The parameters le and la are
penalty coefficients, which can be used, for example, to allow
a larger sidelobe level in the difference patterns compared to
the sum pattern. In conclusion, we have the following convex
optimization program for Cases A and C:

min
a(ωc)∈CN

max ||
(
Da(ωc), D(cr)a(ωc)

)
||2

s. t. f
(
r̂0, ωc

)T
a(ωc) = 1

| f
(
r̂0, ωm

)T
Sa B(ωm)a(ωc)| ≤ δ, m = 1, . . . , M

| f
(
r̂0, ωm

)T
Se B(ωm)a(ωc)| ≤ δ, m = 1, . . . , M.

(32)

Compared to the optimization problem in Section III-A,
this optimization problem contains 2M additional constraints,
in addition to sidelobe samples also in the difference patterns.

Following Section III-B, (32) can be modified for Case B
according to:

min
β∈R+N

max ||
(
Dβ, D(cr)β

)
||2

s. t. min β ≥ 1

| f
(
r̂0, ωm

)T
Sa B(ωm)β| ≤ δ, m = 1, . . . , M

| f
(
r̂0, ωm

)T
Se B(ωm)β| ≤ δ, m = 1, . . . , M.

(33)

Due to the difference in normalization by using (26) instead
of (21), the parameter δ should be set to a larger value in (33)
compared to (32).

IV. RESULTS

We first consider a linear array of ideal elements for
Case A in Section IV-A. We, thereafter, proceed to investi-
gate a BoR array antenna in Sections IV-B and IV-C, with
results for Case A and a comparison to Case B. Lastly,
the tradeoff between bandwidth and SLL is investigated in
Sections IV-D and IV-E. Section IV-E also shows the useful-
ness of the method for a more narrowband array.

A. Optimal Wideband Sum Pattern for Ideal Linear Array

Consider a linear array of N = 40 idealized elements
distributed with an interelement spacing d along the x-axis.
The ideal element patterns are modeled in the φ = 0◦ cut by

fn(θ, ω) =

√
πdω

πc
sin

(
ωd
2c sin θ

)
ωd
2c sin θ

e j(nωd/c) sin θ . (34)
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Fig. 3. Optimal far-field gain for a linear array of N = 40 elements,
optimized for the bandwidth 5–25 GHz and Case A. The boundaries of
the sidelobe regions specified for the optimization are indicated with the
vertical lines for 5 GHz (solid) and 25 GHz (dashed). The normalized
gain |(ωc/ω)F |

2, subject to the normalization constraint (21) is presented,
to compare the sidelobe level between the different frequency samples.

Equation (34) is derived from [26] to include the
frequency-dependent properties of the antenna elements.
As frequency increases, the beamwidth of the ideal element
pattern decreases, and the gain increases accordingly. The
interelement spacing d was set to λ/2 at the upper frequency.
A 1 : 5 bandwidth from 5 to 25 GHz was used to define
BWopt here. The sidelobe regions were specified as −90◦

≤

θ ≤ θ1 and θ2 ≤ θ ≤ 90◦. Note that the beamwidth scales
as θw = κwλ/(Nd) [5], where κw is a frequency-independent
parameter which depends on the tapering [31]. We, therefore,
specify the sidelobe region with θ1 = θ0 − θwωc/ω and
θ2 = θ0 + θwωc/ω. A scan angle of θ0 = 20◦ was used. In the
presented example, we used κw = 1.3 rad, which results in a
sidelobe level better than −25.5 dB for the entire frequency
band for Case A. It is a well-known tradeoff that a more
narrow beam will result in a higher sidelobe level [5]. The
optimal far-field results are presented at 5, 10, and 25 GHz
in Fig. 3. The normalized gain |F(θ, ω)(ωc/ω)|2, subject to
the normalization constraint (21), is presented, to compare
the sidelobe level between the different frequency samples.
As expected, there is no notable beam squint in the figure.
Furthermore, the normalized maximum gain is close to 0 dB
for all frequency samples, indicating that the gain is increasing
with frequency proportionally to ω2, which is expected based
on the discussion above. This demonstrates that this optimiza-
tion method can be used to obtain low sidelobes over a very
large bandwidth. It is interesting to note that for ideal antenna
elements, increasing the bandwidth does not seem to result in
a tradeoff with respect to sidelobe level.

B. Optimal Wideband Sum Pattern for Airborne EW Array

The body of revolution (BoR) array [32] illustrated in Fig. 2
and partially in Fig. 4 is an array antenna type which is well
suited for airborne EW. For a single-polarized array, the BoR
array can be considered similar to a tapered slot array [33],

Fig. 4. (a) Dual-polarized BoR array of 4 × 4 BoR elements. (b) Discrete
ports for feeding 3 × 3 horizontal antenna elements (solid red, numbering
1–19) and discrete ports for feeding 3×3 vertical antenna elements (red with
white stripe, numbering 49–67 ). Note that the dual-polarized BoR array is
not symmetrical. The antenna element numbering corresponds to an array of
6×8 antenna elements for each polarization, as used for the simulation results.

[34]. For dual-polarization, on the other hand, the BoR array
has some mechanical and fabrication advantages compared to
the dual-polarized Vivaldi array, as described in [32]. Note that
the dual-polarized BoR array antenna has asymmetrical edges,
as illustrated in Fig. 4. The considered BoR array prototype has
Nx = 8 columns along the x-axis and Ny = 6 rows along the
y-axis. This array, therefore, consists of a total of 96 antenna
elements, with N = Nx Ny = 48 elements per polarization.
We consider an implementation with switches between the
two polarization modes, and we, therefore, only consider one
polarization at a time for the optimization. While we only
use 48 elements at a time, it is interesting to note that it is
in principle possible to compensate for the cross-polarization
of the array by using all 96 elements. Compensation of
cross-polarization using the information in the EEPs can be
relevant for achieving deep nulls for interference nulling [35].
With only 48 elements used at a time, this is a relatively small
array antenna with a wide beamwidth, particularly at the lower
frequencies. Being this small, there are also quite significant
mutual coupling effects due to the edge truncation.

The unit cell dimension of 6 mm was chosen as half
wavelength of the upper frequency 25 GHz. The unit cell
was optimized for minimizing the active reflection coefficient
in the frequency band 10–25 GHz, by frequency-domain unit
cell analysis in CST Microwave Studio. Thereafter, the EEPs
for the finite array were computed using the finite integration
technique (FIT) implemented in CST Microwave Studio.

The example of a sum pattern presented in Fig. 5 was
computed with a scan direction of θ0 = 20◦, φ = 0◦, for
the specified bandwidth 10–25 GHz and Case A. Similar to
Section IV-A, the sidelobe regions used for the optimization
were frequency-dependent to allow the beam to widen toward
the lower frequencies. The first null of the pattern for uniform
amplitude excitation, with a progressive phase shift to steer
the main beam to the desired scan angle, was used when
specifying the sidelobe regions. Therefore, the optimal far-field
pattern has a null–null beamwidth which is comparable to that
of a uniformly excited array. To obtain a low sidelobe level,
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Fig. 5. (a) Optimal sum pattern for the BoR array scanned to θ0 = 20◦,
optimized for the bandwidth 10–25 GHz and Case A. The realized gain,
renormalized according to |(ωc/ω)F⃗ |

2 subject to (21), is presented to compare
the sidelobe level between the different frequency samples. (b) Sidelobe level
as a function of frequency. (c) Realized gain as a function of frequency,
showing the aperture efficiency compared to a uniformly excited array.

Fig. 6. Optimal excitation coefficients corresponding to Fig. 5 evaluated at
the reference frequency point ωc in both amplitude (left) and phase (right).
The phase is close to the progressive phase shift expected for steering the
main beam to θ0 = 20◦, φ0 = 0◦.

it is necessary to modify the sidelobe regions to allow the
beam to widen further, due to the well-known tradeoff between
sidelobe level and beamwidth.

There is no notable beam squint shown in Fig. 5(a). The
sidelobe level shown in Fig. 5(b) is better than −21 dB for
all frequency samples in the band. It is well known that
tapering used to reduce the sidelobe level will also contribute
to widening the beam and lowering the gain [5]. The difference
in the gain compared to a uniformly excited array is typically
presented as a gain reduction (in decibels) or an aperture

efficiency (in percentage). As shown in Fig. 5(c), the gain
reduction is smaller than 1.8 dB within the bandwidth.

The optimal amplitude and phase excitation coefficients
for this example are shown in Fig. 6. First, it is interesting
to note the optimal phase is close to the ideal progressive
phase shift which is required for steering the beam to r̂0. The
amplitude tapering has some tapering toward the array edges,
as usually seen for low sidelobes. Since the array antenna
is small with significant mutual coupling effects, the optimal
amplitude excitation varies rapidly from element to element
[see Fig. 6(a)]. Furthermore, since the array is subject to
asymmetrical edges, as illustrated in Fig. 4, we do not expect
the optimal amplitude excitation to be symmetrical.

Fig. 5 was computed for Case A. It is interesting that the
sidelobe level obtained for Case B, which uses only TTDs and
not phase shifters is 1.53 dB higher. This indicates that some
performance improvement can be achieved by combining
phase shifters and TTDs, compared to only using TTDs.

C. Optimal Wideband Monopulse Patterns With Common
Excitation Weights

The BoR array far-field data described in the previous
section was used for computation of optimal monopulse exci-
tation, using the convex optimization program (32). The same
sidelobe regions and scan direction described in Section IV-B
were used for the sum pattern with a beam widening factor
of 10%. The beam widening factor is introduced due to the
observation that the tradeoff required for low sidelobes with
common excitation weights requires some beam widening
to achieve low sidelobe levels. The sidelobe regions for the
difference patterns were determined from the sum pattern
sidelobe regions, with a 20% increase in width compared to the
sum pattern. The optimization parameters δ = 10−2, le = la =

1 [see (31) and (32)] were used, giving the same penalty for
sidelobes in the sum pattern or either of the difference patterns.
The optimal far-field patterns are shown in Fig. 7 for a number
of frequency samples within a 4.9-GHz bandwidth, defining
BWopt as in (15). The maximum sidelobe level occurring
within the bandwidth in all three patterns is −18.6 dB. Similar
to the sum pattern example in Section IV-B, there is no notable
beam squint. Furthermore, a sharp null is produced in the
difference patterns. Due to the absence of beam squint, the null
is not moving when sweeping the frequency. The maximum
sum pattern gain reduction in the band is 1.95 dB compared
to a uniform excitation.

Interestingly, the optimal excitation for Case B as computed
by the optimization problem (33) is similar to the uniform
excitation. The maximum sidelobe level within the 4.9-GHz
bandwidth for the optimal excitation with (33) is −12.4 dB,
whereas the sidelobe level for uniform excitation is −10.8 dB.
These results indicate that the phase variation plays an impor-
tant role in minimizing sidelobe levels for common excitation
weights.

D. Tradeoff Between the Sidelobe Level and Bandwidth for a
Wideband Monopulse Array

It is a common practice to use switched or tunable filters
to adjust the instantaneous bandwidth to a specific band to
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Fig. 7. Sum pattern (solid) and corresponding difference pattern (dashed),
steered to θ0 = 20◦. The renormalized gain |(ωc/ω)F⃗ |

2, subject to the
normalization constraint (21) is presented, to compare the sidelobe level
between the different frequency samples.

Fig. 8. Tradeoff relation between the maximum sidelobe level and BWopt.
Simulation results for a BoR array of 6 × 8 elements, for the scan direction
θ0 = 20◦, φ = 0◦, optimized for Case A.

reduce the noise level and to filter unwanted signals, for
example, [36]. In this section, we investigate the relation
between optimal sidelobe level and instantaneous bandwidth
for the monopulse array in Fig. 2 by varying BWopt.

The relation between BWopt and maximum sidelobe level
is shown in Fig. 8. That is, BWopt = BWuti in Fig. 8,
which was computed with the upper frequency 25 GHz
fixed, and sweeping the lower frequency. As described in
Sections IV-A–IV-C, the sidelobe regions used for optimiza-
tion are frequency-dependent to allow the beam to widen at
the lower frequencies. If the same sidelobe regions had been
used for all frequency samples, then the slope in Fig. 8 would
be more significant, since this would force a more narrow
beam and thus higher sidelobe levels at the lower frequencies.
By allowing the beam to widen as the frequency is decreased,
the slope in Fig. 8 is instead determined by other factors,
as described below.

For realistic (i.e.,, nonideal) antennas, it is expected that the
sidelobe level will increase as BWopt increases, even if this is
not caused by the beamwidth described above. This is due to
the sample matrices C and D containing additional frequency
information, which directly affects the tradeoff determined
by optimization. This optimization formulation allows the
excitation to compensate for some nonideal properties of the
EEPs, and this will be more challenging the larger BWopt is.

Fig. 9. 10 × 10 bowtie array that is used for the narrowband investigation.
At the center frequency, the elements are 1/3λ×1/3λ and spaced 0.5λ apart,
center to center. The elements lie 0.27λ over a ground plane, which extends
out 0.42λ past the edge elements.

Based on the above, the slope in Fig. 8 can be attributed to the
nonideal properties of the EEPs in relation to the constraints
on the frequency variation of the excitation coefficients.

The monopulse optimization with common excitation
weights finds a tradeoff for simultaneously small sidelobes in
three patterns (i.e., 6, 1e, and 1a). It is, therefore, expected
that the sidelobe level will be higher for monopulse excitation
with common excitation weights compared to only the sum
pattern.

E. Tradeoff Between the Sidelobe Level and Bandwidth for a
Narrowband Array

Although the optimization method was developed for wide-
band arrays, we here illustrate the method’s behavior and
applicability to a comparatively more narrowband array.
We will here investigate cases where BWopt ranges from 0% to
30%, varying symmetrically around the center frequency, for
a bowtie array designed for BWuti = 30% shown in shown
in Fig. 9. The optimization is run for Case A, for example,
optimization problem (25) with a far-field sampling of 2◦ in
both azimuth and elevation. The far-field sampling is increased
to 0.5◦ at the border between the mainlobe and the sidelobe
region.

The same definition for the sidelobe region as in
Section IV-B was used for this investigation. The beamwidth
of an array with uniform excitation scales with frequency. It is
important that the angular sampling is fine enough to capture
this scaling to obtain a low sidelobe-level growth.

The resulting maximum SLL within BWuti is shown in
Fig. 10. Each trace represents one optimization bandwidth
BWopt with a varying BWuti. The point at which BWuti
becomes larger than BWopt is highlighted by a circle. It is
clear that the SLL degrades as BWuti > BWopt, which is
shown in a rapid increase in this outer region, as indicated
by dashed lines. Consider, for example, the single-frequency
optimization, that is, BWopt = 0%, which achieves −28.1 dB
SLL. If BWuti = 5%, the 0% optimization instead gives an
SLL of −24.1 dB.

Similar to the results in Fig. 8, Fig. 10 shows an increase in
SLL with increasing BWopt. It can also be seen that as long as
BWuti is smaller than BWopt (solid-colored lines), maximum
SLL is essentially constant.

Compared to the single-frequency example, running the
optimization over the full 5% instead gives −26.9 dB SLL
over BWuti. Thus, optimizing for the desired BWuti improves
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Fig. 10. Peak sidelobe level within a utilized bandwidth BWuti. Plotted for
a set of optimization bandwidths BWopt. The edge of the optimization band-
width is highlighted by a circle, with the realized SLL for bandwidths outside
BWopt marked with a dashed line. Simulation results for a 10 × 10 bowtie
array, for the scan direction θ0 = 30◦, φ = 0◦, optimized for Case A. .

the SLL by 2.8 dB. Similar improvements can be seen for all
combinations of BWuti and BWopt. Another observation from
Fig. 10 is that any increase in BWopt, up until it reaches BWuti,
lowers the maximum SLL in BWuti.

Note that optimizing over a bandwidth comes with an
increased computational cost, both in terms of storing more
far-field data and in time. For a single frequency, the
single-frequency optimization takes 95 s compared to 550 s
for the 5% bandwidth. These timings were obtained using an
Intel Xeon Gold 5217 with 192 GB RAM. This hardware
is not a requirement for the program, and some of the
results presented here were computed using a regular laptop
with 16 GB RAM.

V. DISCUSSION AND CONCLUSION

This article presents a convex optimization program applied
to wideband EW AESAs. The optimization is carried out
for a specified bandwidth rather than a single frequency.
This eliminates the degradation in performance close to the
band edges typically found when a single-frequency opti-
mization is used at the center frequency. This applies to
degraded performance caused by using an optimization that
is only optimal at the center frequency, and suboptimal at
the band edges as seen in Fig. 10. Degradation can also
occur at the band edges due to the limited bandwidth of the
antenna elements and the radome. The convex optimization
program presented here will find a tradeoff to compensate
for these effects based on the EEPs data, to obtain the best
performance for the specified bandwidth. Thanks to the imple-
mentation in terms of EEPs, the effects of mutual coupling
and installation (e.g., radome effects [4]) can be compensated
for, to some extent, using the optimization program. This
introduction of wideband optimization is a significant improve-
ment to the narrowband, single-frequency optimization
program in [4].

The presented method has been developed for EW arrays
of moderate size. With M = 50, N = 48, and using a far-field

sample spacing of 0.5◦ in both azimuth and elevation, the
EEP dataset is 50 GB. This demonstrates that the size of the
problem is moderate for small-array antennas, but the size of
the problem is growing as the number of antenna elements
or the number of frequency samples increases. For a radar
array with M = 15 and N = 1000, 313 GB of EEP data
would be needed. While possible to optimize, the simulations
required to find the EEPs would be inefficient using a full wave
solver. EW arrays can be small compared to radar arrays as a
wider lobe is desired for a higher probability of intercept [37].
Based on the above, the method presented is deemed to be
mainly useful for small- and mid-sized array antennas, such
as those used in EW and communications. Approximations
may be needed to efficiently model very large-array antennas
used in, for example, some radar applications.

The presented convex optimization program fixes the vari-
ation of both amplitude and phase coefficients with frequency
to a predefined function. The rapid phase variations typically
seen when carrying out a single-frequency optimization at
every frequency sample in the bandwidth [12] are, therefore,
eliminated. The predefined functions are directly compatible
with the typical AESA construction shown in Fig. 1(a).
Furthermore, the amplitude coefficients can have an arbi-
trary gain slope, but the same gain slope is used for
each TRM. As demonstrated above, the gain slope coef-
ficient does not influence the array realized gain pattern,
and it can, therefore, be chosen freely based on other
considerations.

It should be noted that the TRM model is assumed to be
linear, that is, all components operate within the linear power
region. While this may be sufficient for some applications,
nonlinearities may be unavoidable in others. These nonlin-
earities will perturb the optimal solution and cause undesired
effects, such as a higher SLL or lower gain [14]. Overtones
due to stimulation in the lower part of the frequency band
may be radiated if the bandwidth is sufficiently large. These
undesired effects could cause sidelobes which are not modeled
in this article, as this article mainly focuses on an EW array
receiving weak signals.

Constraints were introduced on the frequency variation of
the amplitude and phase coefficients, to make it possible to
determine realizable, optimized excitation coefficients in an
AESA. The numerical results indicate that this optimization
program performs well in determining optimal wideband exci-
tation for low sidelobe levels. The implementation with TTDs
prevents beam squint, which is demonstrated in the presented
results. It was shown that there is a tradeoff relation where
the sidelobe level increases as the instantaneous bandwidth is
increased.

There are three implementation variations of interest for
the presented program, referred to as Case A, Case B, and
Case C, respectively. Numerical results are not presented here
for Case C, since we are mainly interested in wideband EW
arrays where the beam squint inherent in using phase shifters
instead of TTDs is not acceptable. That being said, we expect
that Case C will be a useful tool for arrays of a smaller band-
width, particularly for certain radar and communication arrays.
A more narrowband system also benefits from this wideband
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optimization approach, which eliminates the degradation of
SLL at the band edges. Even at a 5% bandwidth, significant
improvements to SLL are shown.

In addition to Cases A, B and C, the presented program
can be implemented for various types of patterns. We have
presented the implementation for optimal sum patterns with
small sidelobes, in addition to the implementation for optimal
difference patterns with low sidelobes. Furthermore, the imple-
mentation of common excitation weights is used to compute
the optimal tradeoff which results in low sidelobes in one sum
pattern and two difference patterns, which all share common
excitation weights. An interesting observation is that Case B
applied to common excitation weights results in an amplitude
tapering close to the uniform excitation. These results indicate
that the optimal phase variation plays an important role in the
low sidelobe levels obtained for common excitation weights
with Case A.

The presented convex program assumes that the time delays
are known from (8). This approach enables the problem to be
solved by a convex program and results in good performance
for wide and narrow bandwidths. For future work, it is of
interest to investigate if the performance can be increased
further by using the general, nonconvex method, where time
delays are also determined from optimization.
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