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Virtual Experiments via LSM for Quantitative 2-D
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Abstract— In this article, we investigate the virtual experiments
(VE) setting by means of analytical solution of the far-field
equation, that is the equation underlying the linear sampling
method. In particular, an analytical expression for the internal
field is derived in case of penetrable circular cylinders, which
provides a straightforward and more comprehensive overview
of the VE settings with particular hints on its reliability and
validity range when applied for quantitative imaging. Numerical
examples are reported to show the analytic findings, also in case
of noncircular targets. The reported analysis can open the way
to new possibilities in VE design for electromagnetic inverse
scattering, microwave imaging, and related focusing problems.

Index Terms— Far-field equation (FFE), field focusing, inverse
scattering, linear sampling method (LSM), microwave imaging,
virtual experiments (VE).

I. INTRODUCTION AND MOTIVATIONS

ELECTROMAGNETIC inverse scattering represents an
open issue in antennas and propagation community since

it entails solution of a nonlinear and ill-posed problem. On the
other hand, it is relevant in several applications, ranging from
medical to subsurface imaging, civil surveillance, and nonde-
structive evaluation [1], which require reliable, computational
efficient, and effective solution approaches. Different strategies
have been proposed over the last years to address such a
problem, mainly concerned with local and global optimization
approaches, quantitative and qualitative strategies [2], and,
lately, artificial intelligence and deep learning [3]. In this
respect, one of the main effort has been devoted to reduce
the so-called “degree of nonlinearity” by means of effective
manipulation and smart rewritings of the basic equations.
Some interesting examples include, but are not limited to, con-
trast source extended born model [4], subspace optimization
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method [5], Y0 model [6], and the family of new integral
scattering equations [7].

Following this way, in a body of papers over the last decade,
a new paradigm for solving the 2-D inverse scattering problem
has been proposed. Such a paradigm stems for recasting
the original scattering experiments into new virtual, software
defined, ones without requiring any additional measurements.
This can be actually pursued by means of a proper design
equation which is able to condition the spatial behavior of the
internal field or of the contrast source (i.e., the considered
auxiliary unknown of the problem). Then, such a relevant
conditioning can be conveniently exploited to introduce new
inversion strategies. Some inversion approaches are discussed
in [8], [9], [10], [11], and [12] and rely on the design of
virtual experiments (VE) enforcing circular symmetric contrast
sources (or total fields) for a set of points, called pivot points,
through the solution of the far-field equation (FFE) [13].
VE-based inversion approaches show a great capability in
imaging targets which do not belong to the so-called weak
scattering approximations based on born approximation (BA)
[14], while addressing the problem in a simple, effective,
and computationally efficient way. On the other hand, their
performance gets worse when targets’ dimension and dielectric
contrast become larger and larger. This circumstance has been
partially analyzed in [15] through a simple numerical analysis,
wherein an applicability range of about three times larger than
BA has been found.

In order to better understand the reasons of the perfor-
mance’s worsening, in this article, we study analytically
the FFE in case of penetrable circular cylinders under the
2-D transverse magnetic (TM) formulation to derive a direct
expression for the internal field (or contrast source). This
analytical expression, which depends on the target’s contrast
and on the considered pivot point, provides straightforward
outcomes which fully agree with results of previous works on
linear sampling method (LSM) and FFE interpretation [16],
[17], [18]. More interestingly, the analytic expression allows
also to understand why the VE-based inversion methods get
worse performance beyond a given range of validity and
may suggest some counteracting strategies to avoid their
performance degradation.

The article is structured as follows. In Section II, the math-
ematical formulations of the problem and the FFE solution
are introduced for the canonical case of a dielectric circular
cylinder. In Section III, the analytic expression of the virtual
total field is derived, while in Section IV, the main outcomes
are discussed. Then, in Section V, a numerical analysis is
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performed to validate the previously derived analytic findings,
while Section VI is instead focused on their exploitation in the
framework of a VE-based linear inverse recovery approach.
Discussion and Conclusions follow. Throughout the paper, the
time harmonic factor exp( jωt) is assumed and dropped.

II. ANALYTIC SOLUTION OF THE FFE FOR CIRCULAR
DIELECTRIC CYLINDER

Let us consider an infinitely long and lossless circular
cylinder of radius a along the z axis with complex relative
permittivity ϵs . A TM incidence by plane waves with incoming
direction θi ∈ [0, 2π ] is assumed for the following analysis.
The corresponding scattered field is collected in the far-field
zone of the cylinder over a circular observation domain of
radius Ro at different angular observation points θo ∈ [0, 2π ].
Under the above assumptions, the scattered field can be
factored as

Es(Ro, θo, θi ) =
e−ȷk0 Ro

√
Ro

E∞

s (θo, θi ) (1)

where E∞
s is the far-field pattern, k0 = ω

√
ϵ0µ0 is the

background wavenumber (free space is assumed herein for
the sake of simplicity), ω is the angular frequency, ϵ0 and
µ0 are the free-space dielectric permittivity and magnetic
permeability, respectively.

According to [19], the scattered field pattern E∞
s and the

transmitted field Et , outside and inside the cylinder, respec-
tively, can be analytically expressed through the following
modal expansions

E∞

s (θo, θi ) =

√
2 j
πk0

+∞∑
n=−∞

cne jn(θo−θi ) (2)

Et
(
r , θi

)
=

+∞∑
n=−∞

an Jn(ksr)e jn(θr −θi ) (3)

wherein r = (r cos θr , r sin θr ) is the position vector, and the
expansion coefficients are given by

cn =
J ′

n(k0a)Jn(ksa) −
√

ϵs Jn(k0a)J ′
n(ksa)

√
ϵs J ′

n(ksa)H (2)
n (k0a) − Jn(ksa)H ′(2)

n (k0a)
(4)

and

an = j−n Jn(k0a)H
′(2)
n (k0a) − J ′

n(k0a)H (2)
n (k0a)

Jn(ksa)H
′(2)
n (k0a) −

√
ϵs J ′

n(ksa)H
′(2)
n (k0a)

. (5)

In the expressions (4) and (5), ks = ω
√

ϵsϵ0µ0 = k0
√

ϵs =

k0
√

1 + χ , being χ the contrast function defined as the differ-
ence between the complex relative permittivity of the cylinder
and the one of the background medium [2]. Moreover, H (2)

n
is the nth-order second kind Hankel function, Jn is the Bessel
functions of nth-order and first kind, and the superscript ′

denotes the derivative with respect to the argument. It is
important to note that, as only a finite number of terms in (2)
and (3) plays a role in the composition of the total field,
the series can be truncated according to the rule of thumb
N0 ≈ k0a for (2) and Ns ≈ ksa for (3), respectively.

In this framework, the LSM amounts to sense the inves-
tigation domain by sampling it into a set of points r s =

(rs cos φs, rs sin φs) and by solving the following equation

F
[
ι̇
(
θi , r s

)]
= f

(
θo, r s

)
(6)

wherein F[·] is the so-called far-field operator, ι̇(θi , ·) the
problem unknown, and f (θo, r s) the far-field pattern of a line
source placed in the sampling points r s . The far-field operator
is the angular pattern of the scattered field when collected
under a multiview-multistatic configuration as defined in (2),
while the right-hand side of (6) reads as

f
(
θo, r s

)
=

√
2 j
πk0

e jk0rs cos(θo−θs ). (7)

Since F is a compact operator, solution of (6) must be pursued
by means of a proper regularization strategy [13]. In this
respect, singular value decomposition (SVD) and Tikhonov
regularization can be exploited to get stable and reliable
results [8]. Then, the support of the scatterer can be effectively
retrieved by associating to the target’s support those sampling
points wherein the solution norm ||ι̇||L2 attains the lowest
values with respect to its overall dynamic in the investigated
region [13].

On the other hand, in case of circular cylinder, an analytical
solution of the FFE can be achieved expanding the problem
unknown in Fourier series. By doing so, as shown in [20], the
latter can be expressed as

ι̇
(
θi , r s

)
=

+∞∑
n=−∞

ι̇n
(
r s

)
e jnθi

=

+∞∑
n=−∞

[
1

2π

1
cn

jn Jn(k0rs)e− jnθs

]
e jnθi . (8)

In [13], solution (8) has been proposed to solve the inverse
obstacle problem since its energy, when plotted over the
sampled domain, is able to image the scatterer’s support.

III. ANALYTIC EXPRESSION OF THE VIRTUAL
TRANSMITTED FIELD

The VE paradigm is based on the simple observation that,
for a fixed contrast function, the relationship between the total
field transmitted into the target and the incident field holds
linear. This circumstance entails that the original scattering
experiments can be rearranged in a possibly more convenient
form by means of a linear superposition of the incident
fields [8], [9], [10], [11]. As a result, properly designed VE
can give rise to total fields (or induced currents) exhibiting
some useful properties which can be conveniently exploited
in the recovery stage. In particular, the idea to design-specific
VE enforcing total fields which are focused or exhibit a
circular symmetry in the neighborhood of a “pivot” point has
paved the way to a number of effective solution approaches
for quantitative inverse scattering [8], [9], [10], [11]. It is
also worth to underline that some other possibilities can be
exploited to design VE, such as, for example, the factorization
method (FM) [21] and the orthogonality sampling method
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(OSM) [22], but these latter are out of the scope of the present
paper.

From a mathematical point of view, a virtual incident field
Ei can be simply obtained through a linear superposition of the
original incident fields Ei through the FFE solution evaluated
in a pivot point r p belonging to the support of the target, i.e.,

Ei
(
r , r p

)
=

∫ π

−π

ι̇
(
θi , r p

)
Ei

(
r , θi

)
dθi . (9)

Then, the virtual total field Et transmitted inside the cylinder
can be expressed as superposition of the original ones Et by
means of the same coefficients ι̇(θi , r p), i.e.,

Et
(
r , r p

)
=

∫ π

−π

ι̇
(
θi , r p

)
Et

(
r , θi

)
dθi . (10)

In order to investigate the expression of the virtual total
field, let us substitute ι̇(θi , r p) given by (8) into (10). Then,
by changing the order of the integral and the sum, and
substituting the expression of the original total field in (3),
one gets

Et
(
r , r p

)
=

+∞∑
m=−∞

am Jm(ksr)e jmθr

+∞∑
n=−∞

ι̇n
(
r s

)∫ π

−π

e− j(m−n)θi dθi . (11)

Finally, by exploiting the orthogonality relation between the
above exponential functions, the following expression can be
obtained

Et
(
r , r p

)
=

+∞∑
m=−∞

bm Jm(ksr)Jm
(
k0rp

)
e jm(θr −θp) (12)

wherein bm = (am/cm).
Interestingly, when r p = (0, 0), the only term which

survives in the expression (12) is the one for m = 0 as the
Jm(0) = 0 for m ̸= 0. Then, the VE total field induced in the
cylinder is exactly a Bessel function of zero order apart from
the constant b0.

On the other hand, when r p ̸= (0, 0), one has to consider
the behavior of the expansion coefficients. In particular, if the
coefficients bm are constant with respect to the order m (at least
for the first relevant terms in the sum), the above expression
can be further simplified by exploiting the Graf’s addition
theorem for the Bessel functions [23], i.e.,

Et
(
r , r p

)
≈ b0

+∞∑
m=−∞

Jm(ksr)Jm
(
k0rp

)
e jm(θr −θp)

= b0 J0

(
ks

∣∣∣∣r −
r p

√
1 + χ

∣∣∣∣). (13)

The above expression states that the virtual total field can
be approximated (apart from an unessential constant factor)
by a 0th-order Bessel function. Then, the virtual total field
exhibits a circular symmetry and is also focused, but not
simply with respect to the pivot point r p, as one would expect
from the cylindrical pattern enforced by the right-hand-term
of the FFE. Indeed, a rigid translation of the focusing point,
i.e., the point where the 0th-order Bessel function attains its
maximum, is introduced due to the scale factor (

√
1 + χ)−1.

Fig. 1. Plots of coefficients (A.3) for different cylinder radii and different
values of ϵs in the range [1.5–3.5]. (a) 0.25λb . (b) 0.5λb . (c) 0.75λb . (d) 1λb .
The solid line corresponds to ϵs = 1.5, dashed line ϵs = 2, dotted line
ϵs = 2.5, dashed-dotted line ϵs = 3, and circular markers solid line ϵs = 3.5.

TABLE I
SYNTHETIC PARAMETER symcirc AS A FUNCTION OF RELATIVE

PERMITTIVITY ϵs IN CASE OF r p = (0.125λb, 0.216λb)

Finally, if the coefficients bm are not constant with respect
to the order m (at least for the first relevant terms of the sum),
a total field distribution resembling a Bessel function is not
guaranteed, as it will be shown in Sections IV and V.

IV. EXPECTED PROPERTIES OF THE VIRTUAL
TRANSMITTED FIELD

The approximation (13) derived in the previous section
allows to gain a deep understanding of the expected spatial
distribution of the virtual transmitted field.

First of all, the larger the contrast, the larger the shift of the
actual focusing point from the relevant pivot point r p. This
implies that the use of the FFE to design circularly symmetric
VE is expected to work worsen and worsen for increasing
optical density of the target. In particular, for any arbitrary
contrast value and electrical dimension of the scatterer, the
VE internal fields corresponding to the outermost pivot points
are affected by a larger shift than the internal ones. This entails
that, for low contrast extended targets, the shift of the focusing
point is also expected to be larger and larger for the outermost
pivot points. Conversely, there are only two circumstances for
which the shift is irrelevant. For χ = 0 the shift would be
exactly null, however, this circumstance is not in order since
the scattered field would be null. Instead, more interestingly,
the shift is null also for the pivot point pertaining to the
cylinder’s center.
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Fig. 2. Numerical analysis in case of r p = (0.125λ0, 0.216λ0). (a)–(c) LSM spatial indicators with superimposed the contour of the target support. Subplots
(d)–(f) show amplitudes of the normalized VE total fields induced within the circular targets; subplots (g)–(i) show the pertaining Bessel functions J0 focused
in the considered pivot point. This latter is superimposed as red asterisk, while the actual focusing point, shifted according to (13), is shown with a black
cross.

Another important role for the internal field behavior is
played by the expansion coefficients bm . Indeed, as mentioned
above, if the coefficients bm are constant with respect to m,
the Graf’s theorem can be invoked and the internal field would
be exactly a Bessel function given by (13). By relaxing such
an hypothesis, even when the coefficients bm are all almost
constant with m (at least up to the truncation index in the
relevant series), the sum gives rise to a total field that can
be approximated by (13) (within a given error). On the other
hand, when the coefficients differ too much one from each
other, the recombined total field will not resemble the Bessel
function stated by the Graf’s theorem.

In order to study the behavior of the expansion coefficients
with respect to the dimension and dielectric constant of
the cylinder, and their impact on the circular symmetry of
the virtual internal field, we derive an explicit expression
of such coefficients, which is reported in Appendix, see
eqs. (A.1)–(A.3). Then, we plot the coefficients for different
radius a and dielectric constant ϵs . As it can be seen in

Fig. 1, the coefficients exhibit a finite value up to a given
order m, which corresponds to the last relevant term in (12),
while they grow to infinity beyond a given order m, that is
when the integral in (A.3) goes to zero. For example, for the
radius 0.25λb, only the first two coefficients are relevant in
series (12) and are almost equal one each other, even in case
of largest contrast, see Fig. 1(a). When the radius increases,
the dependence of the coefficients as a function of m becomes
more complex for increasing values of the dielectric constant,
see Fig. 1(b)–(d). Such an analysis suggests that for increasing
value of the product ksa of the cylinder, the internal field
cannot show a perfect circular symmetry with respect to the
considered pivot point since its expression differs from the
0th-order Bessel function stated by the Graf’s theorem.

V. NUMERICAL ASSESSMENT

In this section, we show some numerical tests to better
understand and discuss the findings of the previous Section.
In particular, the main aim is to compare the actual VE
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Fig. 3. Numerical analysis for ring target. (a), (e), (i) LSM spatial indicators with superimposed the contour of the target support. The subplots (b)–(d),
(f)–(h), and (j)–(l) show the amplitudes of the normalized VE total fields induced within the circular target for different pivot points. The considered pivot
points are superimposed as red asterisks, while the actual focusing points, shifted according to (13), are shown with black crosses.

transmitted field (12) and the Bessel function J0, when both
defined with respect to the same pivot point r p. The benchmark
scenario consists of a lossless circle of radius a = 0.5λ0 and
different dielectric constants ϵs , embedded in free space within
a square domain of side L = 2.2λ0, which is discretized
into 80 × 80 cells. Without loss of generality, we assume
θm = θi . According to the Nyquist criterion underlying the
degrees of freedom of scattered field suggested in [24], N =

M = 16 incident directions and measurements have been
considered. The scattered field data has been generated by
means of analytical formulas given in [19]. Fig. 2 shows the
amplitudes of the normalized virtual transmitted field designed
by means (12) and the related Bessel function J0, respectively.
As it can be seen, the larger the relative permittivity ϵs , the
larger the shift of the total field with respect to the pivot point
r p and the larger the deformation of the cylindrical wavefront
for the internal field. Even, for ϵs = 3.5 an undesired
sidelobe appears in the internal field destroying completely
the well-focused and cylindrical symmetry of the field pattern.
This circumstance does not hold true when the pivot point is
located at the center of the cylinder as analytically derived in
the previous Section. Indeed, when the r p = 0 no shift of the
field’s maximum is observed, neither wavefront deformation,
but a perfect circularity of the field distribution is ensured

(the relevant plots are not shown for the sake of brevity).
To quantitatively appraise the difference in term of circular
pattern of the internal field, a synthetic parameter has been
adopted. It is defined as the L2-norm of the angular derivative
∂φr of the virtual total field, that is

symcirc
(
r p

)
=

∥∥∂φr

[
Et

(
r , r p

)]
5

(
r , r p

)∥∥2
2

(14)

wherein φr is the angular coordinate of a local polar reference
system centered in r p and 5(r , r p) identifies the minimum
circle centered on r p inscribed in the target. The larger the
value of symcirc, the worse the circular symmetry around
the considered pivot point. As it can be seen from Table I, the
higher the relative permittivity ϵs , the worse the cylindrical
symmetry of the field in terms of the adopted metric. Only in
case of ϵs = 1.5, the symcirc of the virtual field is comparable
to the one of the Bessel function.

In order to show that the above findings hold true also
for targets other than the circular ones, a kite and a ring
shaped targets have been considered. The targets are embedded
in a square domain with size of 2λ , discretized with 80 ×

80 number of cells. The leading dimension of both targets is
1λ . To probe the targets, 21 plane waves and 21 measurement
points are considered, the latter located uniformly over the
circle with radius R = 10λ . The synthetic scattered fields
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Fig. 4. Numerical analysis for kyte target. (a), (e), (i) LSM spatial indicators with superimposed the contour of the target support. The subplots (b)–(d),
(f)–(h), and (j)–(l) show the amplitudes of the normalized VE total fields induced within the circular target for different pivot points. The considered pivot
points are superimposed as red asterisks, while the actual focusing points, shifted according to (13), are shown with black crosses.

TABLE II
PERFORMANCE INDICATOR TO EVALUATE THE BEHAVIOR

OF THE EXPANSION COEFFICIENTS (A.3)

have been numerically evaluated by using a full-wave forward
solver based on the method of moments [25] and organized
into a complex matrix (with size of 21 × 21), while the
FFE equation has been solved numerically by adopting the
Tikhonov regularization [8]. Results are shown in Figs. 3
and 4. Even if the targets are not circular cylinders and some
possible deformations of the internal fields can be due to the
geometrical shape, the trend observed in Fig. 2 for the circular
cylinder is still confirmed.

VI. EXPLOITATION OF THE OUTCOMES THROUGH A
LINEAR INVERSION APPROACH

In this section, the inversion results within the framework of
a VE based linear inversion approach [8] are reported in order

to assess the outcomes of the derived analysis. The recon-
structions of the cylinder and kite targets are discussed and
shown with and without the shift compensation of the pivot
points foreseen by (13). Of course, it is possible to compensate
this shift when the target contrast ϵs is approximately known.
In the following, ϵs is assumed known, in order to check
if the shift compensation can have an impact on the final
reconstruction.

The region of interest has been probed by means of
N = 19 angular equally spaced plane waves and the scattered
field is collected at M = 19 points all around the investigation
domain at a distance of 4λ from the center of the reference
system. Finally, the scattered field has been corrupted by
additive white Gaussian noise with a SNR = 25 dB. The reader
is referred to [8] for details about the linear reconstruction
approach. A standard truncated SVD has been selected to
solve the relevant ill-posed linear problem, wherein the cutoff
value in the reconstruction formula is chosen according to the
Picard’s plot [26].

The first test bench is a perfect lossless cylindrical target
with radius 0.6λ and dielectric constant 1.75, see Fig. 5(a).
In Fig. 5(b)–(e), the set of pivot points without and with shift
compensation and the relevant reconstruction of the target are
reported, respectively. For the sake of brevity, the imaginary
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Fig. 5. Reconstruction of a cylinder with radius 0.6λ and dielectric constant
1.75. (a) Ground truth. (b) LSM map with superimposed the original pivot
points. (c) TSVD reconstruction with pivot points shown in (b), the NMSE is
err = 27%. (d) LSM map with superimposed the compensated pivot points
shifted according to (13), (e) TSVD reconstruction with shift compensantion,
the NMSE is err = 9%.

part is not reported being negligible with respect to the real
one. As it can be seen, the reconstruction achieved by shift
compensation is more accurate and the normalized mean
square error (NMSE) attains lower values (see details in the
figure’s caption).

The second example is a noncircular scatterer, i.e., the kite
with a leading dimension of 1λ . Also in this case, the shift
compensation of the pivot points allows to achieve a better
reconstruction, without holes in the central part of the scatterer
and a lower reconstruction error, see Fig. 6. In this case, it is
worth to notice that some pivot points are not taken exactly
within the scatterer’s support because the LSM map does not
exactly resemble the actual target’s shape due to concavity
of the kite [27]. Anyway, the reconstruction is quantitative
although slightly underestimates the actual dimension of the
target.

As a final comment, it is worth to underline that the
developed analysis is only a proof of concept as the exact
shift of the pivot points is not known in any actual instances,
depending on turn of the local value of the contrast. However,
in the light of future developments, the value of the contrast
can be estimated by other auxiliary techniques or in distorted
approaches, wherein the shift compensation can be refined at
each step of the iterative procedure.

Fig. 6. Reconstruction of a kite target with dielectric constant 1.75.
(a) Ground truth. (b) LSM map with superimposed the original pivot points.
(c) TSVD reconstruction with pivot points shown in (b), the NMSE is
err = 28%. (d) LSM map with superimposed the compensated pivot points
shifted according to (13). (e) TSVD reconstruction with shift compensantion,
the NMSE is err = 24%.

VII. DISCUSSION AND CONCLUSION

In this article, an analytical expression for the VE internal
field has been derived, able to describe the virtual transmitted
field designed via LSM. The developed analysis reveals several
interesting features which allow a deeper understanding of the
design equation used for the VE paradigm.

First of all, outcomes of (12)–(13) show that, if the expan-
sion coefficients can be assumed (approximately) constant up
to the truncation index, the internal field resembles the cylin-
drical symmetry of the Bessel function of zero order, but for
a shift of the focusing point which can be assumed negligible
only for low contrast and/or small targets.1 This result is
quite well in agreement with the physical interpretation of
the LSM in terms of focusing strategy given in [16]. On the
other hand, the focusing interpretation is no longer valid
when the scatterer shows larger and larger contrast, since the
expansion coefficients in (12) cannot be assumed constant with
m. Interestingly, such circumstance is also numerically shown
in the framework of a linearized VE based reconstruction
approach proposed in [15], wherein the indicator2 proposed
to appraise the validity of the method amounts to 3.85, which

1The targets we are considering as low contrast in the context of this article
are anyway beyond the scattering regime concerned with BA [28].

2In [15] the indicator is formulated with respect to the circle’s diameter
rather than the radius as in this paper.
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is the value reported in Table II for a radius of 0.5λ and
dielectric constant ϵs = 1.5. The numerical analysis suggested
by the analytical findings fully agrees with the one reported
in [15].

It is also interesting to discuss the implication of the
analytical findings in the light of the results provided by [17],
wherein it is shown that the L2-norm of (8) diverges for all
sampling points different from the sampling point at the center
of the cylinder. The present analysis also identifies such a
peculiar point because it is the only one which ensures exact
circular symmetry of the internal field, whatever the amplitude
and size of the scatterer. Instead, in all the other pivot
points, the internal field cannot exactly match a cylindrical
focused pattern and needs to increase its energy by involving
nonradiating currents [29].

Finally, the obtained results are also in agreement with
the discussion in [18], wherein it is shown that a circular
symmetric pattern can be also radiated by any arbitrary shaped
source, not necessarily a circular or mainly focused one,
owing to the occurrence of nonradiating currents [29]. Indeed,
also not focused internal fields are compatible with the FFE
solution as shown in Fig. 2(f).

However, it is important to note that when the regularization
scheme is considered, the nonradiating currents are minimized
and the radiating ones are predominant and are expected to be
circularly symmetric as discussed in [16]. This circumstance
allows to interpret the LSM as nearly optimal focusing strategy
in the neighborhood of the pivot point [16], [30].

On the other hand, both the shift of the focusing point and
the deformation of the cylindrical wave pattern explain, in a
straightforward manner, the reason why the performance of
LSM based VE recovery strategies worsen in imaging strong
scatterers with leading dimension larger than λ0. For instance,
the shift of the focusing point can prevent the accuracy of the
underlying source point field approximation in the linearized
inversion method [8], as shown by means of the examples in
Section VI. Furthermore, in [9], the penalty term enforcing
circular symmetry of the contrast sources with respect to
the pivot points could not act properly in case of significant
deformation and shift of the cylindrical field pattern. Finally,
in [11], the algebraic approach could not work properly since
the polynomial expansion of the Bessel function around the
pivot point would be not properly exploited.

It is also worth noticing that (13) can suggest some coun-
teracting strategies to avoid performance degradation of the
VE. For instance, a proper compensation procedure could
be adopted to correct the actual focusing point as shown in
Section VI. Last but not least, results in case of strong targets
show that total field distributions other than circular ones could
be sought, so they suggest the use of different design equations
to enlarge the class of retrievable scatterers by means of VE
inversion strategies [31].

A last comment must be spent to discuss the extension to the
more realistic case concerned with the 3-D problem. In this
respect, it is worth to recall that the VE framework up to
now has been introduced and discussed only for 2-D scalar
problem. In order to extend and tailor the VE framework to
the more challenging 3-D case, two possibilities can be of

interest. The first one is concerned with scalar fields, such
as acoustic waves, wherein the problem still holds scalar
and the rationale underlying VE and the above analytical
developments can be extended and tailored. Conversely, for
vector fields, the VE design entails the finding of the optimal
polarization as additional problem’s degree of freedom [32].
Then, one could split the problem as three scalar separate
focusing problems by considering three different independent
polarizations and recasting the problem accordingly. Also in
this case, the extension of the suggested analysis are expected
to help in gaining more insights into the VE settings.

APPENDIX

In this Appendix, the analytical expression of the coef-
ficients ratio bm in expansion (12) is derived. By recalling
the expressions (4)–(5) and substituting in bm , a compact
expression can be obtained

bm =
Jm(k0a)H (2)′

m (k0a) − J ′
m(k0a)H (2)

m (k0a)
√

ϵs Jm(k0a)J ′
m(ksa) − J ′

m(k0a)Jm(ksa)
. (A.1)

Then, substituting the expression for the Hankel function
and its first derivative (H (2)

m = Jm − jYm and H (2)′

m =

J ′
m − jY ′

m), recalling the Wronskian of the Bessel functions
(Jm(x)Ym(x)′ − Ym(x)J ′

m(x) = 2/πx) and the recursive
formula of the derivative of Bessel functions (J ′(αx) =

α Jm−1(αx) − (m/α)Jm(αx)), the following ultimate expres-
sions for bm can be obtained

bm =

(
−2ȷ

πk0a

)
√

ϵs Jm(k0a)Jm−1(ksa) − Jm−1(k0a)Jm(ksa)
. (A.2)

Further manipulations can be performed by means of the
expression (6.521) in [33] to obtain

bm =
2ȷ

π(k0a)2χ
∫ 1

0 ρ Jm(k0aρ)Jm(ksaρ)dρ
(A.3)

wherein ρ is the radial variable spanning the unitary disk. The
above expression of bm has a more straightforward readability
than the previous ones.
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