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A High-Order Ultraweak Variational Formulation
for Electromagnetic Waves Utilizing

Curved Elements
Timo Lähivaara , William F. Hall , Matti Malinen , Dale Ota, Vijaya Shankar , and Peter Monk

Abstract— The ultraweak variational formulation (UWVF) is a
special Trefftz discontinuous Galerkin (DG) method, here applied
to the time-harmonic Maxwell’s equations. The method uses
superpositions of plane waves to represent solutions element-wise
on a finite-element mesh. We focus on our parallel UWVF
implementation, called ParMax, emphasizing high-order solutions
in the presence of scatterers with piecewise smooth boundaries.
We explain the incorporation of curved surface triangles into
the UWVF, necessitating quadrature for system matrix assembly.
We also show how to implement a total field and scattered field
approach, together with the transmission conditions across an
interface to handle resistive sheets. We note also that a wide
variety of element shapes can be used, that the elements can be
large compared to the wavelength of the radiation, and that a
low-memory version is easy to implement (although computation-
ally costly). Our contributions are illustrated through numerical
examples demonstrating the efficiency enhancement achieved by
curved elements in the UWVF. The method accurately handles
resistive screens, as well as perfect electric conductors and
penetrable scatterers. By employing large curved elements and
the low-memory approach, we successfully simulated X-band
frequency scattering from an aircraft. These innovations demon-
strate the practicality of the UWVF for industrial applications.

Index Terms— Frequency-domain analysis, Maxwell equations,
numerical analysis, simulation software.

NOMENCALUTURE

N tetra
elements Number of tetrahedral elements.

N wedge
elements Number of wedge elements.

N hexa
elements Number of hexahedral elements.

Nvertices Number of vertices.
hmin Minimum distance between vertices.
hmax Maximum distance between vertices.
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NDoF Number of degrees of freedom.
N BiCG

iter Number of BiCGstab iterations required to
reach the requested tolerance value 10−5.

L2-error Relative L2-error computed from the bistatic
RCS.

CPU-time Elapsed wall-clock time needed to
assemble the matrices and reach the solution.

I. INTRODUCTION

ATREFFTZ method [1] for approximating a linear par-
tial differential equation is a numerical method using

local solutions of the underlying partial differential equation
as basis functions. The version we shall study here, the
ultraweak variational formulation (UWVF) of Maxwell’s equa-
tions, is a Trefftz-type method for approximating the solution
of Maxwell’s equations on a bounded domain due to Cesse-
nat [2] and Cessenat and Després [3]. The UWVF uses a
finite-element computational grid, classically composed of
tetrahedral elements and plane wave solutions of Maxwell’s
equations on each element.

A study of this method from the point of view of symmetric
hyperbolic systems was presented in [4] where the inclu-
sion of the perfectly matched layer absorbing condition [5]
into the UWVF was also described. In addition, several
computational heuristics relevant to our study were also
presented. As a result of this work, a first parallel imple-
mentation of the UWVF called ParMax was written. This
was further developed at Kuava Inc. and the University of
Eastern Finland and is the basic software used in this article.
ParMax uses MPI and domain decomposition to implement
parallelism.

From the point of view of theoretical convergence analysis,
it was shown in [6] that the UWVF for the related Helmholtz
equation is a special discontinuous Galerkin (DG) method,
and using duality theory convergence estimates could be
proved. A more general DG approach, again for the Helmholtz
equation, is taken in [7]. Based on these studies, and following
the proof of explicit stability bounds for the interior impedance
boundary value problem for Maxwell’s equations in [8], the
convergence of Trefftz DG methods (in particular, the UWVF)
for Maxwell’s equations under rather strict geometric assump-
tions was proved in [9]. A key point in this analysis is that it is
not necessary to use tetrahedral elements, but a wide class of
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element shapes are theoretically covered and we shall return
to this point in Section III.

A restriction on the use of the UWVF is that the rel-
ative electric permittivity denotes ϵr and relative magnetic
permeability µr must be piecewise constant (constant on each
tetrahedron in the mesh). This assumption could perhaps be
weakened using generalized plane waves [10] or embedded
Trefftz techniques [11] but these have not yet been extended
to Maxwell’s equations (the latter technique has been demon-
strated in the open source package [12]). The restriction of
piecewise constant media is relaxed if a perfectly matched
layer (PML) is used. There ϵr and µr are spatially varying
tensors [4].

We use the same stabilized BiConjugate Gradient
(BiCGstab) scheme as in [4] for solving the global linear
system resulting from the UWVF. Interesting new results on
preconditioned iterative schemes can be found in [13]. These
results are based on the use of a structured hexahedral grid,
whereas we focus on unstructured grids in this article.

The main issue facing the UWVF is that the condition num-
ber of the global system rises rapidly as the number of plane
wave directions increases. This in turn causes the iterative
solution of the linear system to slow down. We adopt the
approach of [4] choosing the number of plane wave directions
on a given element on the basis of its geometric size (in
wavelengths) to control ill-conditioning. This approach does
not directly address the accuracy of the plane wave expansion
on a given element, instead using the maximum number of
directions consistent with the desired condition number which
then ensures that the BiCGstab iteration converges. Accuracy
is controlled indirectly by increasing the requested condition
number (within the constraint that BiCGstab must converge).
Thus, as we shall see the number of directions used may be
much larger than that predicted by approximation theory (see
Section IV-A for further discussion).

Within the UWVF scheme used here there is considerable
scope for different choices of basis functions provided they
form a complete family of solutions of Maxwell’s equations.
For example, plane wave basis functions (as used here), vector
wave functions, or the method of fundamental solutions (MFS)
are discussed in [14]. In the interesting case of MFS, [15] gives
an application to wave guides. Our choice of plane waves
in ParMax follows [2] and has the advantage that necessary
integrals of products of basis functions can be performed in
closed form on flat triangular faces in the mesh (the majority
of faces). This greatly speeds up the assembly of matrices
compared to quadrature that is needed for other choices of
basis functions.

In this article, i =
√

−1 and we use the convention that
the time variation of the fields and sources is proportional to
exp(−iωt) where ω is the angular frequency of the radiation
and t is time. All results are then reported in the frequency
domain. Bold face quantities are vector-valued. The coeffi-
cients ϵ0 and µ0 are the permittivity and permeability of free
space, respectively. The wavenumber κ of the radiation is
given by κ = ω

√
ϵ0µ0.

To further fix notation and context, we now define the
Maxwell system under consideration in this article. Let �

denote a Lipschitz bounded computational domain having unit
outward normal ν and boundary 0 := ∂�. For a smooth
enough vector field v, we define the tangential component
vT on 0 by vT = (ν × v) × ν. Then, given the wavenumber
κ > 0, a tangential boundary vector field g, piecewise constant
functions ϵr and µr, and a parameter Q ∈ C with |Q| ≤ 1 we
seek the complex-valued vector electric field E that satisfies

curl µ−1
r curl E − κ2ϵrE = 0 in � (1a)

ν × µ−1
r curl E +

iκ
Z

ET = Q
(

−ν × µ−1
r curl E +

iκ
Z

ET

)
+ g on 0. (1b)

Here, Z is the surface impedance (a positive real parameter).
The boundary condition (1b) is of impedance type and is well
suited to the UWVF. When Q = −1 it gives a rotated ver-
sion of the perfectly electrically conducting (PEC) boundary
condition for the scattered wave

ET =
Z

2iκ
g

where we take g = −2iκEi
T /Z and Ei is the incident wave.

When Q = 0 it corresponds to an outgoing condition that can
be used as a low-order radiation condition, while for Q = 1 we
have a symmetry boundary condition.

This article presents several novel extensions of the basic
UWVF that are of considerable utility in practical applications.

1) The original UWVF uses a tetrahedral grid, however,
the error estimates in [9] hold for more general element
types. Besides tetrahedral elements, we have imple-
mented hexahedral and wedge elements. In this article,
hexahedral elements are only used in the PML region.

2) Very often curved surfaces appear in applications, and
we have implemented a mapping technique to approx-
imate smooth curved surfaces. This allows us to use
larger elements near a curved boundary. We shall show,
using numerical experiments, that this improves the
efficiency of the software by decreasing the overall time
to compute a solution. Note that we only need to map
faces in the mesh which simplifies the implementation,
but we have to use quadrature to evaluate integrals on
curved faces.

3) We show how to implement resistive sheet transmission
conditions across thin interfaces. Related to this we have
also implemented a combined total field and scattered
field formulation to allow the solution of problems
involving penetrable media.

4) We point out that a low-memory version can be used to
solve very large problems by avoiding the storage of the
most memory-intensive matrix in the algorithm.

5) We provide numerical results to justify the utility of the
above innovations.

The article proceeds as follows. In Section II, we start
with a brief derivation of the basic UWVF and describe the
plane wave-based UWVF. Then in Section III, we describe
the five contributions of this article. We start with comments
on new geometric element types and a brief discussion of
implementing an algorithm for using scattered or total fields
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in different subdomains in the context of scattering from a
penetrable object. Then, we move to discuss resistive sheets,
curved elements, and quadrature, and finally a lower memory
version of the method. Section IV is devoted to numerical
examples illustrating the UWVF and the previously mentioned
modifications. In Section IV-A, we start with two examples
of scattering from a PEC scatterer. The first PEC example
is scattering from a sphere for which the Mie series gives
an accurate solution for comparison (cf. [16]). This example
demonstrates the benefits of curved elements and different
element types, as well as the use of very coarse meshes
(compared to those used by finite-element methods). The
second example is X-band scattering from an aircraft model.
Here again, we use curved elements, but in addition use
the low-memory version of the software. In Section IV-B,
we consider two examples involving a resistive sheet. The first
is a classic example of having an exact analytical solution, and
the second is a resistive screen surrounding a sphere. Next,
in Section IV-C, we consider heterogeneous or penetrable
scatterers. The first example is a dielectric sphere where we
use the scattered/near field formulation and compare to the
Mie series solution. The second example is scattering from a
plasma. In Section V, we present our conclusions. Finally,
in Appendix A, we give an update to the basis selection
rule used previously in [4] for the new element types. Then,
in Appendix B, we present a comparison of ParMax with
the edge finite-element method for scattering from a dielectric
sphere.

II. DERIVATION AND PROPERTIES OF THE BASIC UWVF

In this section, we provide a sketch of the derivation of
the UWVF sufficient to allow us to present the new fea-
tures of this article in the following section. For full details,
see [2], [4].

A. Brief Derivation of the UWVF

The version of the UWVF presented here is equivalent to
that used in ParMax (from [2]) but with simplified notation.
Consider a mesh of � of elements of maximum diameter h
denoted by Th . An element K ∈ Th in this mesh is a curvilinear
polyhedron (curvilinear tetrahedron, wedge, or hexahedron)
with boundary denoted by ∂K and unit outward normal νK .
We now extend the parameter Z to a real piecewise positive
constant defined on all faces in the grid. Following [2],
we choose Z as follows. Let

ϵ̂ =

{
|
√

ϵr|K ϵr|K ′ |, on K ∩ K ′ for K , K ′
∈ Th

|ϵr|, on boundary faces
(2)

where |K denotes the restriction to K . The edge function µ̂ is
defined in the same way. Then, Z =

√

µ̂/
√

ϵ̂.
Suppose ξ is a smooth solution of the adjoint Maxwell

equation in K

curl µr
−1 curl ξ − κ2ϵrξ = 0. (3)

Then, taking the dot product of (1a) with ξ (including complex
conjugation) and integrating by parts twice provides the fol-
lowing fundamental relation between the electric and magnetic
fluxes on ∂K :∫

∂K
νK

× µ−1
r ∇ × E · ξ T + νK

× E · (µr
−1

∇ × ξ)T d A = 0.

(4)

Using the above fundamental identity, we can then prove
equality (5), as shown at the bottom of the page, by expand-
ing both sides of (5) and using (4). Equality (5) gives the
conclusion of the “isometry lemma” (cf. [2]).

To simplify the presentation, we define rescaled versions of
the unknowns in [2] as follows:

χ K = −νK
× µ−1

r ∇ × E|K +
iκ
Z

(E|K )T (6)

YK = −νK
× µ−1

r ∇ × ξ |K +
iκ
Z

(ξ |K )T . (7)

The next step is to rewrite (5) using the above quantities.
In doing so, we will use the function space of surface vectors
L2

T (∂K ) := {u ∈ L2(∂K ) | u · νK
= 0}. Recalling that

ξ |K satisfies the adjoint Maxwell system in K , we can define
FK : L2

T (∂K ) → L2
T (∂K ) by setting

FKYK = νK
× µ−1

r ∇ × ξ |K + iκ Z(ξ |K )T .

Now suppose elements K and K ′ meet at a face in the mesh.
On that face νK

= −νK ′

. Also, we have transmission condition
requiring continuity of ET and (µ−1

r ∇ × E)T across the face,
so

νK
× µ−1

r ∇ × E|K + iωZ(E|K )T = χ K ′ . (8)

For a boundary face, we can use the boundary condition (1b)
to replace the corresponding term on that face in terms of χ K
and g. Using the above results, we may rewrite (5) for every
element K . We conclude that for χ K ∈ L2

T (∂K ) the following
equation holds:∫

∂K
Zχ K · YK d A =

∑
K ′ ̸=K

∫
∂K∩∂K ′

Zχ K ′ · FKYK d A

+

∫
∂K∩∂K ′

Z
[
Qχ K + g

]
· FKYK d A (9)

for any YK ∈ L2
T (∂K ). This equation should hold for every

K ∈ Th and gives the UWVF for Maxwell’s equations

∫
∂K

Z
(

−νK
× µ−1

r ∇ × E +
iκ
Z

ET

)
·

(
−νK × µ−1

r ∇ × ξ +
iκ
Z

ξ T

)
d A

=

∫
∂K

Z
(

νK
× µ−1

r ∇ × E +
iκ
Z

ET

)
·

(
νK × µ−1

r ∇ × ξ +
iκ
Z

ξ T

)
d A (5)
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before discretization. Cessenat [2] proves the uniqueness of the
UWVF solution, and existence follows because (1a) and (1b)
are well-posed.

B. Plane Wave UWVF

Now that we have the variational formulation (9), we can
discretize it by using a subspace of L2

T (∂K ) on each element.
It is important for efficiency that FK be easy to compute and
this is where the plane wave basis is useful [2]. On each
element K , we choose independent directions {dK , j }

pK
j=1,

∥dK , j∥ = 1, using the first pK Hammersley points [17] on the
unit sphere. Then, we choose ξ |K to be a linear combination
of the pK plane wave solutions of the adjoint problem

ξ K ,ℓ,m = AK ,ℓ,m exp
(

iκ
√

ϵr|K µr|K dK ,ℓ · (x − xK ,0)

)
for 1 ≤ ℓ ≤ PK , 1 ≤ m ≤ 2, and K ∈ Th . Here, xK ,0 is
the centroid of the element and the polarizations AK ,ℓ,m are
chosen to be unit vectors such that dK ,ℓ ·AK ,ℓ,m = 0, m = 1, 2,
and AK ,ℓ,1 ·AK ,ℓ,2 = 0. Now, we can define a discrete subspace
WK ,h ⊂ L2

T (∂K ) by first defining

WK ,h,pK = span{−νK
× µ−1

r ∇ × ξ K ,ℓ,m

+(iκ/Z)(ξ K ,ℓ,m)T , m = 1, 2, 1 ≤ ℓ ≤ pK }.

Then, Wh,p = 5K∈Th WK ,h,pK , where p denotes the vector of
a number of directions on each element.

The dimension of Wh,p is NDoF = 2
∑

K∈Th
pK . In our work,

pK is chosen according to the heuristic in [4] (see Appendix A
for updates to this formula for larger numbers of directions
and new element types). Then, FK is easy to compute using
the definition of the basis functions. The discrete plane wave
UWVF (PW-UWVF) uses trial and test functions from Wh,p
in place of W in (9).

In our implementation, we use domain decomposition by
subdividing the mesh according to Metis [18], where pK is
used to estimate the work on each element. The elements are
sorted using reverse Cuthill–McKee to minimize bandwidth.
Then, enumerating the degrees of freedom element by element,
the matrices, and vectors corresponding to the terms in (9)
can be computed. The left-hand side of (9) gives rise to an
NDoF × NDoF block diagonal Hermitian positive-definite matrix
D, while the remaining sesquilinear forms on the right-hand
side of (9) give rise to a general sparse complex matrix C .
The data term involving g gives rise to a corresponding vector
b⃗. Denoting the vector of unknown degrees of freedom by χ⃗ ,
we solve the global matrix equation

(I − D−1C)χ⃗ = D−1b⃗ (10)

using BiCGstab, where D−1 can be calculated rapidly element
by element. Once χ⃗ is known, the solution on each element can
be reconstructed for postprocessing. For unbounded scattering
problems, we use either the low-order absorbing condition
(Q = 0) on the outer boundary or a PML as in [4]. For
a scattering problem, the far-field pattern can be calculated
using an auxiliary surface containing all the scatterers in its
interior in the usual way [2].

III. TOWARD INDUSTRIAL SCALE SOFTWARE

In this section, we discuss the extensions to the basic UWVF
in this article.

A. New Element Types

In [9], error estimates are proved for general elements that
have Lipschitz boundaries, are shapes regular in the sense
of that paper, and are star-shaped with respect to a ball
centered at a point in the element. This allows a wide variety
of elements. We have implemented curvilinear tetrahedral,
wedge, and hexahedral elements. In ParMax, we represent the
boundary of each element as a union of possibly curvilinear
triangles. The assembly phase is quickest if the triangles are
planar since then quadrature can be avoided.

For this article, we rely on COMSOL Multiphysics to
generate the meshes. An example of a grid using tetrahedral,
wedge, and hexahedral elements is shown in Section IV-A1.
Here, we use wedge and hexahedral elements in the PML, and
tetrahedral elements elsewhere.

B. Scattered/Total Field Formulation

The numerical results we shall present are all of the scat-
tering type. The total field E is composed of an unknown
scattered field Es and a given incident field Ei , so E = Es

+Ei .
We will use plane wave incident fields (but point sources or
other incident fields can be used), so

Ei (x) = p exp(iκd · x) (11)

where d ∈ R3 is the direction of propagation and ∥d∥ = 1. The
vector polarization p ∈ C3 is nonzero and satisfies d · p = 0.

To allow the use of a PML or other absorbing boundary
condition, we need to compute using the scattered field in the
PML. But inside a penetrable scatterer, we need to compute the
total field so that there are no current sources in the scatterer.
This is standard for finite-element methods, but not usual for
the UWVF so we outline the process here. Suppose � is
partitioned into two subdomains denoted �− and �+ such
that the PML (or a neighborhood of the absorbing boundary
if one is used) is contained in �+ where the scattered field is
used and where ϵr = µr = 1. The scatterer is contained in �−

where possible ϵr or µr are no longer unity and the total field
is used. Let 6 denote the boundary between �− and �+ and
assume that 6 is contained in the interior of � and is exactly
covered by faces of the mesh. Then, suppose that elements
K− ⊂ �− and K+ ⊂ �+ meet at a face F ⊂ 6.

Consider first K−. Reviewing the derivation of the UWVF
outlined in Section II-B, we see that we must rewrite the term
in E on the right-hand side of (5) in terms of χ K−

and χ K+
.

In particular, using the facts that νK−
= −νK+

and that on K+

the scattered field Es is be approximated, so that in (6) E|K +

is replaced by (Es
+ Ei )|K + , we obtain(

νK− × µ−1
r ∇ × E|K−

+
iκ
Z

E|K−,T

)
= −νK+ × µ−1

r ∇ × (Es
+ Ei )|K+

+
iκ
Z

(Es
+ Ei )|K+,T

= χ K+
+ gK−,F .
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Fig. 1. Geometry and notation for the resistive sheet calculation. The normal
ν is outward to �−.

Here, we have also used the transmission condition that the
tangential components of E and µ−1

r curl E are continuous
across 6. In this equation, the source function on F associated
with K− is

gK−,F =

(
νK− × µ−1

r ∇ × Ei
|F +

iκ
Z

Ei
|F,T

)
.

Carrying out the same procedure on K+ remembering this
element supports the scattered field gives another equation and
source function gK+,F again relating E and Es . Thus a com-
bined scattered and total field algorithm can be implemented
by allowing for a source function g on the internal surfaces.

C. Resistive Sheet

A similar procedure to that used to implement the
scattered/total field UWVF can be used to derive appro-
priate modifications to include resistive [19] or conductive
sheets [20]. We only consider the resistive sheet. Suppose now
that a surface 6r ⊂ � is a resistive sheet, and that νr denotes
a continuous normal to the sheet. This surface may be open or
closed and could intersect the boundary. We just assume that
it is the union of a subset of the faces (possibly curvilinear)
in the mesh. Suppose K+ and K− are two elements that meet
at a face Fr ⊂ 6r such that νr points into K+. The geometry
is shown in Fig. 1.

The resistive sheet approximation requires us to implement
the following transmission conditions across 6r :

νr ×
(
µ−1

r curl E|K+
− µ−1

r curl E|K−

)
= iκσd(νr × EK+

) × νr (12)
(νr × E|K+

) × νr = (νr × EK−
) × νr (13)

where σ is the conductivity of the material in the layer and
d is the thickness. Alternatively, the resistivity of the sheet is
given by

R = (σd)−1
= −

Z0

i(ϵr − 1)κ0d

with ϵr = 1 + iσ/(ϵ0ω), Z0 =
√

µ0/ϵ0 is the impedance of
free space and κ0 = ω

√
µ0ϵ0 is the wavenumber. We now set

η = σd .
As for the scattered/total field version of UWVF, we must

write the term in E on the right-hand side of (5) using the
variables χ |K+

and χ |K−
on either side of Fr .

Adding χ |K+
to χ |K−

, using the resistive sheet transmission
conditions and noting that νK− = νr = −νK+ gives

χ K−
+ χ K+

= iκ
(

2
Z

EK+,T + ηEK+,T

)
so

E|K+,T = E|K−,T =
χ K−

+ χ K+

2iκ/Z + iκη
. (14)

Now, we rewrite the term in E on the right-hand side of (5)
using the UWVF functions. Using (14), we have

νK− × µ−1
r ∇ × E|K−

+
iκ
Z

E|K−,T = νK− × µ−1
r ∇ × E|K−

+
1
Z

χ K−
+ χ K+

2/Z + η
. (15)

But, using (12), we have

νK− × µ−1
r ∇ × E|K−

= −νK+ × µ−1
r ∇ × E|K+

− iκηEK+,T .

Then, using the above equality in (15) together with (14) again
we have

νK− × µ−1
r ∇ × E|K−

+
iκ
Z

E|K−,T

= −νK+ × µ−1
r ∇ × E|K+

− iκηEK+,T

+
1
Z

χ K−
+ χ K+

2/Z + η

=

(
χ K+

−
η

2/Z + η
(χ K−

+ χ K+
)

)
.

The new term introduces a new diagonal block into the matrix
C [defined before (10)] and a perturbation to the off-diagonal
blocks coupling fields on K+ and K−.

In the current ParMax implementation, η is assumed con-
stant on each mesh face of the resistive sheet and may be
complex.

D. Curved Elements and Quadrature

We take a straightforward approach to approximating curved
boundaries and quadrature. All the elements in ParMax have
faces that are unions of possibly curvilinear triangles. Suppose
a curvilinear face F in the mesh is such that either an edge
of F , or F itself is entirely contained in a smooth curvilinear
subset of the boundary 0. We approximate F by a mapping
from a reference element F̂ [with vertices â1 = (0, 0), â2 =

(0, 1), and â3 = (1, 0)] in the (s, t) plane to an approximation
of F using a degree ℓ polynomial map FF : F̂ → F .

In the important case of a quadratic map (ℓ = 2), we choose
ai , i = 1, 2, 3 to be the vertices of K and take the remaining
interpolation points by choosing ai, j to be a point on the
smooth boundary approximately halfway between ai and a j

(mapped from âi, j = (̂ai + â j )/2; see Fig. 2). We use the
following nodal basis

φ̂1(s, t) = (1 − s − t)(1 − 2s − 2t)

φ̂2(s, t) = s(2s − 1)

φ̂3(s, t) = t (2t − 1)

φ̂1,2(s, t) = 4s(1 − s − t)

φ̂2,3(s, t) = 4st

φ̂1,3(s, t) = 4t (1 − s − t)
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Fig. 2. Sketch of mapping from the reference face to the face of an element in
the volume mesh. Here we sketch a quadratic map requiring that the midpoint
of each edge in the curvilinear face be given.

and define FF by

FF (s, t) =

3∑
i=1

ai φ̂i (s, t) +

2∑
i=1

3∑
j=i+1

ai, j φ̂i, j (s, t). (16)

We use FF (F̂) ≈ F for computing the UWVF matrices.
Thus, we need to evaluate integrals over each face FF (F̂).
Using the reference element, for a smooth function g defined
in a neighborhood of F∫

F
g(y)d S(y)

≈

∫
FF (F̂)

g(y)d S(y)

=

∫
F̂

g(FF (s, t))
∥∥∥∥∂FF

∂s
(s, t) ×

∂FF

∂t
(s, t)

∥∥∥∥ ds dt.

It now suffices to define quadrature on the reference element
via the Duffy transform. Suppose G(s, t) is a smooth function
on F̂ (in particular the integrand above), then setting t =

(1 − s)ξ we can map to the unit square∫
F̂

G d Â =

∫ 1

0

∫ 1−s

0
G(s, t) dt ds

=

∫ 1

0
(1 − s)

∫ 1

0
G(s, (1 − s)ξ) dξ ds.

Let (w
g
i , t g

i ), 1 ≤ i ≤ N , denote the N -point Gauss–Legendre
rule weights and nodes on (0, 1). Then, for each s,∫ 1

0
G(s, (1 − s)ξ) dξ ≈

N∑
i=1

w
g
i G
(
s, (1 − s)t g

i

)
.

Next, using N point Jacobi quadrature weights and nodes on
(0, 1) denoted (w J

j , x J
j ), we obtain finally∫

F̂
G d A ≈

N∑
i=1

N∑
j=1

w J
j w

g
i f
(
x J

j , t g
i

(
1 − x J

j

))
.

Note that the quadrature has positive weights.

E. Low-Memory Version

A simple low-memory version of ParMax is easily available
because we use BiCGstab to solve the linear system. We com-
pute D as usual (it is block diagonal), and the vector b⃗ but do
not compute the elements of C in (10). Then, as required by
BiCGstab, to compute D−1C x⃗ for some vector x⃗, we compute
the blocks of C element by element and accumulate C x⃗
element by element. Then D−1 is computed element by

element using precomputed LU decompositions. Obviously
computing the entries of C repeatedly greatly increases CPU
time but this allows us to compute solutions to problems that
would otherwise require very large memory to store C . For
example, the solution of a scattering problem for a full aircraft
at X-band frequencies is shown in Section IV-A2.

IV. NUMERICAL EXAMPLES

All results were generated using the computer clusters Puhti
and Mahti at the CSC – IT Center for Science Ltd., Finland.
Detailed descriptions of these supercomputers can be found on
the CSC’s website [21]. Computational grids used in this work
were prepared using COMSOL Multiphysics on a personal
computer. In addition, the geometry model for aircraft used
in Section IV-A2 is adapted from the COMSOL’s application
Simulating Antenna Crosstalk on an Airplane’s Fuselage.

For all numerical experiments, the incident electric field is a
plane wave propagating in the direction of the positive x-axis
polarized in the y-direction where the field is given by (11).

A. Scattering From PEC Objects

In both PEC examples, we compute the scattered field, and
the incident field is used as a source via the PEC condition
on the surface of the scatterer.

1) Sphere: This experiment is intended to demonstrate
the advantages of multiple element types, and a curvilinear
approximation to a smooth curved boundary (the surface of
the sphere). In particular, we study scattering from a PEC
sphere placed in a vacuum, ϵr = µr = 1, where the frequency
of the incident field is f = 2 GHz (wavelength in the air:
λ0 = 0.14990 m). The scatterer is a PEC sphere with a radius
of 1 m or approximately 6.7λ0.

To demonstrate the use of several types of large elements
and curvilinear grids, we use an unusually large computational
domain. In particular, the sphere is placed with its origin at the
center of a cube-shaped computational domain [−1−15λ0, 1+

15λ0]
3.

An absorbing boundary condition, (1b) with Q = 0, is used
on the exterior surface geometry. In addition, a PML with a
thickness of 5λ0, and constant absorption parameter σ0 = 1 is
used within each side of the cube.

Two computational grids with different geometric approx-
imations are used (see Fig. 3). For the first grid (mesh 1),
we set the requested element size on the PEC sphere to be
hs = λ0/5 which we will see provides a geometrically accurate
surface representation using flat face elements such that the
far-field pattern predicted by UWVF is in good agreement
with the far-field computed via Mie scattering. For the second
grid (mesh 2), the surface grid density is relaxed to hs = 3λ0.
For both cases, the requested element size in the volume is
set to hv = 10λ0. We request wedge and hexahedral elements
in the PML region, and tetrahedra elsewhere.

We show results for three cases: 1) scattering calculated
using mesh 1; 2) scattering computed using mesh 2 with flat
facets approximating the surface of the sphere; and 3) the use
of mesh 2 with a quadratic approximation to the boundary of
the sphere (see Section III-D). These results are computed on
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Fig. 3. Cross sections of the computational grids used to approximate
scattering from a PEC sphere. The colorbar shows the number of plane wave
directions on each element. The major difference is the grid density on the
surface of the sphere. This figure shows how wedge and hexahedral elements
can be usefully employed in the outer PML layer. In all figures showing grids,
the colorbar shows the number of plane wave directions, see (17), for each
element.

the Puhti system with five computing nodes and ten cores per
node. Nomenclature summarizes the notation used in reporting
results and Table I gives details of the PEC computations
including CPU time.

Fig. 3 shows that up to 1200 directions are used on some
elements. As is done in the Mie series, the field scattered by
a sphere can be approximated well by relatively few spherical
vector wave functions, and these in turn can be approximated
by special plane wave expansions involving many fewer direc-
tions [22]. However, our code is for general wave propagation
problems, and the heuristic used in the appendix for giving
the number of directions on an element always chooses the
largest number consistent with a chosen condition number.
This approach is intended to ensure good accuracy (within the
conditioning constraint) for a general problem.

Fig. 4 shows the modulus of the y-component of the
scattered electric field |E s

y | on the z = 0 plane. There are clear
differences between the results for mesh 1 and mesh 2 with
flat facets. These are caused by the coarse surface grid in the
second case. However, mesh 1 with flat facets, and mesh 2 with
a quadratic boundary approximation are in good agreement.
As can be seen in Table I, mesh 2 with quadratic boundary
approximation is much cheaper in terms of CPU time than
mesh 1.

Very often, the far-field pattern of the scattered wave [16] is
the quantity of interest for these calculations, and, in particular,
the radar cross section (RCS) derived from the far-field pattern.
In this article, far-field directions are defined in terms of the
azimuth angle φ (◦) as (cos(φπ/180), sin(φπ/180), 0).

Fig. 5 shows a comparison of the bistatic RCS predicted
by the computational experiments with the UWVF and one
computed by the Mie series. Clearly, mesh 2 with flat facets
produces an inaccurate far-field pattern, whereas mesh 1 or
mesh 2 with curved elements produces much more accurate
predictions.

2) Aircraft at X-Band Frequency: The aircraft model used
in this section is derived from a model available in COMSOL
(application Simulating Antenna Crosstalk on an Airplane’s
Fuselage). We treat the aircraft as a curvilinear perfect

Fig. 4. Snapshots of the scattered electric field component |E s
y | for the

meshes considered here. There is good agreement between mesh 1 and mesh
2 with curved faces. Mesh 2 with flat faces produces unacceptable errors due
to the coarse boundary approximation.

Fig. 5. Bistatic RCS at 2 GHz for the PEC sphere. We show the RCS
computed using meshes 1 and 2 compared to the Mie series. The bottom panel
shows the difference between the numerical solution and the Mie series. Note
that the ’Mesh 2, flat - Mie’ curve is omitted from the bottom panel due to
its significantly larger amplitude compared to the other two curves.

conductor. The frequency of the incident field is f = 8 GHz,
so λ0 = 0.03747 m. The aircraft is 20.5 m or 547 wavelengths
long and 17.8108 m or 475 wavelengths wide. A PML with
a thickness of 5λ0 is added to each side of the cuboid
computational domain with side lengths (16.9334, 16.9334,
5.0826) m.

For generating the computational grid, curved elements
and a mesh size parameter of hs = 3λ0 were employed
on the aircraft’s surface. Because we can use 10λ0 sized
elements away from the boundary, the entire grid can be
created on a standard office computer. The grid consists of
697 783 tetrahedral elements with 142 731 vertices covering
the computational domain. The surrounding PML layer is
discretized using 413 hexahedral and 14 904 wedge elements.
In addition, for this grid, hmin = 1.72 cm and hmax = 0.55 m.
The number of degrees of freedom NDoF is 685 245 422.
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TABLE I
TABLE GIVING DETAILS FOR THE COMPUTATIONAL GRIDS FOR THE PEC SPHERE, AND ACCURACY AND TIMING.

SEE NOMENCLATURE FOR DEFINITIONS OF THE REPORTED QUANTITIES

Fig. 6. Surface triangulation for the aircraft and tetrahedral, hexahedral,
and wedge elements on two planes. The colorbar shows the number of plane
waves per element.

In Fig. 6, the computational grid on the aircraft’s surface is
depicted, along with the grid in two planes: z = −1 m and
x = 0 m.

For this numerical experiment, we used the supercomputer
Mahti. When we tried this example storing the matrices C and
D as usual [see. (10)], we ran out of memory. An estimate
for the memory requirement for solving the problem by
keeping all necessary matrices in memory is 68 terabytes.
The low-memory version relaxes this memory requirement
by a factor of 0.2. So, we switched to the low memory
version described in Section III-E to compute the results
shown here. In Mahti, we used a total of 200 computing
nodes and 100 CPU units per node. The total time for the
calculation was 18 h, including building the system matrix D,
and then iteratively reaching the requested solution accuracy.
The BiCGstab algorithm took a total of 437 iterations.

Fig. 7 shows the scattered electric field |E s
y | on the x = 0,

y = 0, z = 0 planes. Fig. 8 shows the RCS in a full azimuth
angle range φ ∈ [0, 360]

◦.

B. Resistive Sheets

1) Salisbury Screen: We next model a “Salisbury screen”
(W. W. Salisbury, U.S. Patent US2599944 A 1952). For
simplicity, assume ϵr = µr = 1. Our standard incident
field (11) propagates normally to a resistive sheet at x = −H ,
H > 0, backed by a PEC surface at x = 0.

To the left of the resistive Sheet, the total electric field is

E− =

 0
1
0

 exp(iκx) +

 0
R2
0

 exp(−iκx), x < −H

where (0, R2, 0)T is the polarization of the reflected
wave. Between the sheet and the PEC surface, where

Fig. 7. Snapshots of the scattered electric field |E s
y | for the aircraft model.

In the top left panel, we show results in the xy plane at z = 0, top right is
in the zy plane at x = 0 and bottom left is in the xy plane at z = 0. Clearly,
a strong shadow region and multiple reflections are evident.

−H < x < 0

E+ =

 0
q0,2
0

 exp(iκx) +

 0
q1,2
0

 exp(−iκx).

Here, (0, q0,2, 0)T and (0, q1,2, 0)T are the polarizations of
the left and right going waves, respectively, in the gap
−H < x < 0.

Imposing the PEC boundary condition at x = 0 and
the resistive sheet transmission conditions (12) and (13) at
x = −H shows that

R2 = −
(i(η − 1) sin(κ H) − cos(κ H)) exp(−2iκ H)

i(η + 1) sin(κ H) − cos(κ H)

q0,2 =
exp(−iκ H)

−i(η + 1) sin(κ H) + cos(κ H)

q1,2 =
exp(−iκ H)

i(η + 1) sin(κ H) − cos(κ H)
.

For given κ , H , and η, we can compute the total field in
each region and compare it to the analytic solution. As is well
known, one choice of η gives R2 = 0

η = 1 − i cot(κ H).

A particularly interesting case occurs when cot(κ H) = 0 or
H = π/(2κ). Recalling that the wavelength of the radiation
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Fig. 8. Bistatic RCS for the aircraft at 8 GHz.

is λ0 = 2π/κ , we see that zero reflection occurs when
H = λ0/4.

To test the UWVF for resistive sheets, we use a rectangular
parallelepiped computational region with faces normal to the
coordinate directions (see Fig. 9). The rightmost face x =

0 is PEC (Q = −1), and the leftmost face is an ABC with
Q = 0 where we use a nonhomogeneous absorbing boundary
condition to excite the plane wave. There is no need for a
PML since the solution is a wave propagating orthogonally to
the absorbing boundary.

On the remaining faces, Q = ±1 is chosen so that the inci-
dent plane wave propagates along the box without distortion.
We take the radiation to have frequency f = 2 GHz and place
the resistive sheet one-quarter wavelength (H = 3.75 cm)
from the PEC surface. Fig. 9 shows a surface of the grid
used in the computations. In this case, the grid consists of
136 tetrahedral elements with 51 vertices. In addition, hmin =

3.33 cm, hmax = 16.18 cm, and NDoF = 9946.
Results are shown in Fig. 10. We plot the magnitude of

the y-component of the total field as a function of x when
y = z = 7.5 cm. Choosing η = 1 the magnitude of the
field is flat to the left of the resistive sheet showing that this
choice of η gives rise to no reflected wave. However, when
η = 0.5 the nonconstant magnitude of the total field indicates
that a reflected wave is present to the left of the sheet.

In this example, just two plane waves per element would
suffice to compute the solution, but our code is not tuned to
this example and chooses the number of directions as if this is
a general Maxwell problem via the condition number heuristic
in Appendix A.

2) Sphere With Resistive Sheet: In this second experiment
with resistive sheets, a PEC sphere with a radius of 1 m
is placed at the origin of a cube [−1 − 15λ0, 1 + 15λ0]

3.
Surrounding this sphere is a spherical resistive sheet of radius
1 +λ0/4 and surrounding both is an artificial sphere of radius
1+λ0. Outside this artificial sphere, we compute the scattered
field, and inside the total field (see Section III-B). The incident
field then gives rise to a source on the artificial boundary
as detailed in Section III-B. A PML with a thickness of
5λ0 is applied to the inside of each side of the cube, and
the frequency of the incident field is set at f = 2 GHz.

To generate the computational grid, we utilized curved
elements and a mesh size parameter of hs = 2λ0 on the PEC

Fig. 9. Computational grid for the Salisbury screen, showing smaller elements
between the screen and PEC surface, expanding away to the left.

Fig. 10. Magnitude of the y-component of the total electric field Ey as
a function x with y = z = 7.5 cm with η = 1 and η = 0.5, together
with the analytic solution. The vertical dashed line marks the location of the
resistive sheet. To the left of the sheet, no reflected wave is evident when
η = 1, whereas a reflected wave is indicated when η = 0.5. The bottom panel
shows the absolute value of the difference between the numerical and analytic
solutions, with the difference multiplied by a factor of 1000.

and resistive sheet surfaces. The grid comprises 428 wedge
elements (representing the domain between the resistive sheet
and PEC sphere) and 7589 tetrahedral elements that cover the
main domain of interest. Furthermore, the surrounding PML
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Fig. 11. Left: 428 wedge elements forming the interior of the resistive sheet
outside the PEC surface. Right: A cross section of the overall computational
grid.

Fig. 12. Snapshots of the total electric field ℜ(Ey) for the three choices of
resistive sheet parameter η (left: η = 0, middle: η = 0.5 and right: η = 1). The
red dashed line marks the resistive sheet interface and the solid black line the
artificial interface used to introduce the incident wave. Backscattering appears
less for η = 1 compared to η = 0.5 or the pure PEC sphere.

layer is discretized using a combination of 104 hexahedral
and 936 wedge elements. The entire grid is composed of
2550 vertices, with hmin = 3.75 cm and hmax = 1.48 m.
A cross section of the computational grid is shown in
Fig. 11. In this case, the number of degrees of freedom
NDoF = 4 599 234.

We used the supercomputer Puhti with a total of five
computing nodes and ten CPU units per node to solve the
three configurations for different resistive sheet parameters η.
It took 18 (η = 0), 17 (η = 0.5), and 17 (η = 1.0) min
CPU-time, respectively, to build the system matrices and then
reach the solution with BiCGstab. The solution was achieved
after 194 iterations for η = 0, 169 iterations for η = 0.5, and
172 iterations for η = 1.0.

In Fig. 12, the total field component ℜ(Ey) on the plane
z = 0 is shown for three choices of η. We can no longer
expect invisibility since the screen is curved, but it is evident
that backscattering is decreasing as η increases. This is seen
more clearly in Fig. 13 where we show the RCS in each case.

C. Heterogeneous Models

1) Dielectric Sphere: In this experiment, a penetrable
sphere with a radius of 1 m is centered at the origin inside the
cube [−1 − 15λ0, 1 + 15λ0]

3, where λ0 is the wavelength in

Fig. 13. Bistatic RCS for the PEC sphere and resistive sheet example
at 2 GHz. The decreased backscattering due to the resistive sheet covering
the sphere at η = 1 is clearly seen.

Fig. 14. Cross section of the computational grid for the penetrable sphere
case.

vacuum. For the penetrable sphere, we assume ϵr = 1.5+0.5i
and µr = 1, while we select vacuum parameters in other
domains. The frequency of the incident field is f = 2 GHz
and a PML with a thickness of 5λ0 is used on each side of the
cube. An artificial spherical boundary with a radius 1 + λ0 is
used to separate a scattered field region outside and a total field
region inside this surface. The scattered-total field formulation
in Section III-B is used to introduce a source on the artificial
boundary.

We utilized curved elements and a mesh size parameter of
hs = 3λs , where λs is a measure of the wavelength in the
penetrable sphere computed using κabs defined in Appendix A.
Fig. 14 shows cross sections of the computational grids.
To solve this problem, we used the supercomputer Puhti with
a total of seven computing nodes and 40 CPU units per node.
More detailed information on the computations, including
information on the grids and CPU time, is given in Table II.

In Fig. 15, we show the total field component ℜ(Ey)

on the z = 0-plane for the two meshes. As expected (see
also Table II), mesh 2 with curved face elements produces a
solution comparable to mesh 1, but faster. The accuracy of
the far-field pattern is compared to the Mie series solution in
Fig. 16 and again demonstrates that mesh 1 and mesh 2 with
curved faces give comparable results.

For a comparison of ParMax with edge finite elements in
the case of the dielectric sphere, see Appendix B.

2) Plasma Sphere: In this second experiment for penetrable
objects, we assume a penetrable sphere with a radius of 0.25 m
is centered at the origin of a cube [−0.25−15λ0, 0.25+15λ0]

3.
The material in the sphere is assumed to be a plasma modeled
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TABLE II
DETAILS OF THE COMPUTATIONAL RESULTS FOR THE PENETRABLE SPHERE. SEE NOMENCLATURE FOR DEFINITIONS OF THE REPORTED QUANTITIES

Fig. 15. Snapshots of the electric field ℜ(Ey) on the z = 0 plane for the
penetrable sphere. The solid white line shows the material interface and the
solid black line marks the artificial interface used to introduce the incident
wave.

Fig. 16. Bistatic RCS for the penetrable sphere at 2 GHz; otherwise, the
layout is the same caption as for Fig. 5.

by setting ϵr = −1.5 + 0.5i and µr = 1. The frequency of
the incident field is f = 2 GHz and a PML with a thickness
of 5λ0 is used inside each side of the cube. The source is
introduced on an artificial spherical surface of radius 0.25+λ0.

We utilize curved elements and a mesh size parameter hs =

3λs , where λs denotes the wavelength in the penetrable sphere,
on the material discontinuity surface. The grid comprises
2959 tetrahedral elements that cover the main domain of
interest. Furthermore, the surrounding PML layer is discretized
using a combination of 92 hexahedral and 768 wedge ele-
ments. The entire grid has 1304 vertices, with hmin = 5.88 cm

Fig. 17. Snapshots of the total electric field. Top panel: a contour plot of
|Ey | in the plane z = 0. The solid white line shows the interface between the
vacuum and the plasma sphere. The solid black line marks the interface used
to introduce the incident wave. Bottom panel: a plot of |Ey | along the line
y = z = 0.

Fig. 18. Bistatic RCS for the plasma sphere at 2.0 GHz, comparing the
computed RCS and Mie result. The top right corner shows the difference
between the numerical and Mie series.

and hmax = 1.30 m. Here, the degrees of freedom number
NDoF is 2 234 416.

We used the supercomputer Puhti with a total of five
computing nodes and ten CPU units per node to solve the
problem. It took 427 s from each CPU unit to build the system
matrices C and D and then reach the solution with 103 bi-
conjugate iterations. Snapshots of the total field are shown in
Fig. 17. In Fig. 18, we show the computed RCS which shows
remarkable agreement with the Mie series solution.
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TABLE III
PARAMETERS FOR THE BASIS POLYNOMIALS [SEE (17)]

V. CONCLUSION

In this study, we explored and extended the UWVF applied
to the time-harmonic Maxwell’s equations. Our research find-
ings led to important contributions that enhance the efficiency
and applicability of the UWVF method for solving electro-
magnetic wave problems.

The article shows a series of numerical examples validat-
ing the effectiveness of the new enhancements. Scattering
problems from PEC objects were considered, highlighting the
benefits of curved elements, different element types, and the
low-memory version of the software. The applicability was
further demonstrated through simulations of scattering from
a full-size aircraft, emphasizing its potential for real-world
industrial scenarios.

This article has not only extended the capabilities of the
UWVF for electromagnetic wave problems, but has also pro-
vided a comprehensive set of numerical results to underline the
practical significance of these advancements. The integration
of curved elements, various element shapes, and resistive
sheets collectively contribute to the method’s robustness and
utility, making it a valuable tool for addressing complex
electromagnetic problems.

The choice of mesh size for the surface triangulation needs
further study in the case of large imaginary parts of ϵr or
regions of high curvature but these issues are beyond the
scope of the article. Related to this, an important direction
for further work would be to refine the heuristics for choosing
the number and direction of plane waves on each element.
This is particularly needed for elements that might have large
aspect ratios such as elongated wedges.

APPENDIX A
CHOICE OF BASIS

Because we have used new element types and larger num-
bers of directions in this article compared to [4], we need new
heuristics for choosing the number of plane wave directions
on a particular element. We use the same technique as in [4].
Computing on the reference element, in Fig. 19, the number
of plane waves Nℓ is plotted as a function of (κabshav)ℓ, when
the maximum condition number of the matrix blocks of Dℓ is
limited by the tolerances 105, 107, and 109. Here

κabs = ω
∣∣√ϵrµr

∣∣
and the element size parameter hav is defined as the mean
distance of the element’s vertices from its centroid.

This data is fit by a quadratic polynomial function with the
constraint that the polynomial gives at least four directions
even on the finest grid

Nℓ =

⌈
a
(
κabshav)2

ℓ
+ b

(
κabshav)

ℓ
+ c

⌉
. (17)

Fig. 19. Number of basis functions Nℓ as a function of (κabshav)ℓ when the
basis dimension is chosen by constraining the maximum condition number
of Dℓ.

Results of this fitting are shown in Table III. Although only
computed for one element shape, these polynomials are used
to set the number of directions for any given mesh. Generally,
a higher tolerance on the condition number results in more
directions per element so greater accuracy, but too high a
condition number slows BiCGstab unacceptably.

APPENDIX B
COMPARISON TO EDGE ELEMENTS

There are many ways to solve the scattering example prob-
lems in this article. To provide a comparison to a more familiar
method, we now use ParMax and the edge finite-element
method to compute scattering from a dielectric sphere of radius
1 m. The Mie series is used to assess accuracy at several
frequencies.

We have used the open-source Netgen/NGSolve finite-
element package [23]. This is a library of highly optimized
C++ functions supporting multithreading that can be used
via a Python interface (called NGSpy). It includes the Netgen
mesh generator. We use pth order Nédélec edge elements
of full polynomial degree on a tetrahedral mesh with a
rectilinear PML and an outer impedance boundary condition.
A direct sparse matrix solver supplied with NGSpy was used
to solve the linear system. This limited the overall size of the
problem we could solve to approximately 1.2 million degrees
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Fig. 20. Comparison results between NGSpy and ParMax.

of freedom. In particular, results are presented for frequencies
from 10−2 to 0.7 GHz.

To make the application of the FEM possible, the com-
putational domain described in Section IV-C is not used
here. Instead, the computational domain is the cube [−1 −

(1 + dpml)λ0, 1 + (1 + dpml)λ0]
3. A PML of relative width

dpml = 0.3 with FEM and dpml = 1 with ParMax is added
within this cube. For the FEM, we requested NGSpy to use
the mesh size λ0(2p + 1)/(4π) outside the scatterer and
increased p gradually from p = 2 to p = 8 as λ0 decreased
to maintain an accuracy of roughly 1% in the computed RCS.
Inside the scatterer, the mesh size is reduced by a factor of 0.4.

The computations were run on an Intel Xeon
Gold 6138 CPU 2.00 GHz with 20 cores, each having
two threads per core and 394 GB of memory. Since NGSpy
ran multithreaded computations, we ran ParMax with MPI
and 20 cores. Elapsed time is reported for NGSpy and
ParMax, including assembly, matrix factorization, solving,
and computation of the far-field pattern. The error reported is
the relative percentage error in the RCS compared to the Mie
solution. The results are shown in Fig. 20.

Fig. 20 (top) shows that the relative L2-error remains
comparable between NGSpy and ParMax across the entire
frequency spectrum used here. As illustrated in Fig. 20 (mid-
dle), the number of degrees of freedom required by NGSpy
increases more rapidly than that for ParMax. Likewise, the
comparison in Fig. 20 (bottom) reveals that the CPU-time
required by NGSpy increases more significantly compared to
ParMax. This could perhaps be ameliorated using an auxiliary
space preconditioned iterative scheme [24] rather than a direct
factorization, but this is not available to us in NGSpy.

At an even lower frequency of 10−3 GHz, ParMax did not
produce a satisfactory RCS for this problem, and at this point
the heuristic given by (17) has broken down. In this case, the
wavelength of the radiation in a vacuum is 300 m (while the

dielectric sphere has a radius of 1 m). Hence, in comparison
to the wavelength, the computational mesh is highly refined
near the dielectric sphere because of the need to resolve
the shape of the sphere. For the related Trefftz-DG method
for the Helmholtz equation, it is known that mesh-dependent
choices of flux parameters are needed for such locally refined
meshes [25]. The incorporation of mesh-dependent coupling
parameters in the UWVF is an interesting direction for future
research but is beyond the scope of our article.
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