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Abstract— This article proposes a ray-tracing and physical-
optics (RT-PO) model that allows for an accurate and
time-efficient evaluation of planar Mikaelian lens antennas imple-
mented by parallel plate waveguides (PPWs). With an intrinsic
flat shape and axis-symmetry of refractive-index distribution
characteristics, the planar Mikaelian lens antennas are easy to
fabricate and integrate into standard planar feeds. A numerical
computation of the ray paths based on Snell’s law describes
the phase of the electric field in the lens aperture, while the
ray-tube power conservation theory is employed to evaluate
the amplitude. The field equivalence principle is then used to
calculate the far-field of the lens antenna. The information on far-
field directivity, gain, and dielectric efficiency is further obtained,
considering a small loss in the dielectric materials. Our approach
is validated by comparing the results of a particular Mikaelian
lens antenna with those computed using a commercial full-
wave simulator, demonstrating high accuracy and a significant
reduction in computation resources and times.

Index Terms— Dielectric efficiency, directivity, gain, Mikaelian
lens antenna, parallel plate waveguide (PPW), physical
optics (PO), ray tracing (RT).

I. INTRODUCTION

NOWADAYS, our modern society is experiencing a grow-
ing need for high-speed wireless communications to

meet the demands of emerging mobile applications, such
as cloud-based virtual reality, autonomous driving, wireless
medical services, and so on. The limited availability of
spectrum in the lower frequency bands, often referred to as
sub-6 GHz, makes it difficult to meet these high-capacity
demands. In recent years, there has been a surge in research
on higher frequency bands, particularly millimeter waves
and beyond, to take advantage of the plentiful spectrum
resources available [1], [2]. At such high frequencies, beam-
forming devices are essential to generate high-gain antenna
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solutions to compensate for the considerable path losses
while still maintaining large coverage with beam-steering or
multiple-beam capabilities. However, conventional microwave
components and antennas, such as beamforming networks
and printed circuit board phased arrays, are expensive for
mass production. Consequently, quasi-optical solutions are
generally the preferred choice for highly directive and cost-
effective multiple-beam antennas at high frequencies, as they
are simpler to construct and more tolerant of manufac-
turing mistakes [3], [4], [5]. Well-known solutions include
reflector-based antennas [6], [7], homogeneous dielectric lens
antennas [8], [9], [10], gradient index (GRIN) dielectric lens
antennas [11], [12], and parallel plate lens antennas [13], [14].

Compared to homogeneous lenses, GRIN lenses are gen-
erally more flexible in achieving large beam-steering angles
with competitive efficiencies and broad operating bands. There
have been several renowned GRIN lens antennas, such as the
Luneburg lens antenna [15], the half-Maxwell fish-eye lens
antenna [16], [17], and the Gutman lens antenna [18], [19].
Despite the fact that all of the GRIN lenses mentioned have
graded refractive-index distributions, they all share the same
feature of having a curved feeding interface, making it difficult
to integrate them into standard planar feeds. To overcome
this limitation, transformation optics, and, in particular, the
quasi-conformal transformation optics method, were proposed
to modify the shape of the lens and the corresponding
refractive-index distributions [20], [21], [22], [23]. However,
these conformal mapping transformations typically cause a
reduction in beam-steering capabilities and an increase in the
complexity of implementation. Unlike these spherically sym-
metric lenses, the Mikaelian lens, also called the hyperbolic
cosine lens, has a unique flat shape characteristic of both the
feeding interface and the lens aperture [24], [25]. Moreover,
the Mikaelian lens can be easily fabricated due to the intrinsic
cylindrical symmetry of its refractive-index distribution. As a
result, it has recently attracted a great deal of attention in the
applications of microwave and millimeter-wave components
and antennas [26], [27], [28], [29], [30], [31].

For applications requiring only one-axis beam scanning,
a planar (2-D) version of the aforementioned lenses can be
implemented in a parallel plate waveguide (PPW) configu-
ration [32], [33], [34], [35], [36]. Full-wave simulators are
typically used to study the wave propagation and far-field
radiation characteristics of the PPW lenses. However, as the
electrical size of the lenses increases, these full-wave simu-
lations require considerably long computation times and high
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memory resources, which hinders the design of PPW lenses
through optimization because of the time limitations. Instead,
ray-tracing (RT) tools based on geometrical optics (GO) are
both precise and time-efficient [14], [37], [38], [39], [40],
[41], [42]. Although the RT tool proposed in those papers
is capable of giving a good description of the wavefront
of electromagnetic (EM) waves confined inside the PPW,
this approach is restricted to the analysis of the radiation
patterns in the beamforming plane (the H-plane) of PPW
lenses. In other words, compared to commercial simulators,
the relevant information is missing, including the full radiation
pattern, directivity, gain, and dielectric efficiency.

In this article, we propose an RT and physical-optics (PO)
model, named the RT-PO model, to obtain the radiation
pattern, directivity, gain, and dielectric efficiency of planar
Mikaelian lens antennas. The implementation of the PO
approximation combined with the RT approach is demon-
strated to be considerably accurate and highly time-efficient
when comparing the obtained results to well-established com-
mercial full-wave simulators.

The article is organized as follows. In Section II, we propose
an RT-PO model to analyze planar Mikaelian lens anten-
nas, taking into account the unique properties of the lens.
In Section III, detailed numerical results of the implementation
of the method in a particular Mikaelian lens antenna are
presented and discussed. The accuracy and computational effi-
ciency of the algorithm are also evaluated by comparing it with
a commercial full-wave simulator. Finally, some conclusions
are drawn in Section IV.

II. RAY-TRACING AND PHYSICAL-OPTICS MODEL

A. Ray-Tracing for Mikaelian Lenses

First proposed by Mikaelian [24], Mikaelian lenses are
capable of transforming rays excited from one point in a flat
feeding interface to collimated rays in a flat aperture. In this
article, we focus on planar Mikaelian lens antennas realized
with GRIN dielectric materials within PPWs, as illustrated
in Fig. 1(a), where L denotes the length of the lens along
the z-axis and R half the width along the x-axis. Under this
coordinate system (x, z), the refractive-index profile is defined
as follows:

n(x) =
n0

cosh
(

π |x |

2L

) (1)

where n0 is the refractive index when x = 0 and the
profile is constant in the z-direction. The propagation of
waves in this planar Mikaelian lens antenna takes the form
of a transverse EM (TEM) mode assuming that the height
of the PPW, h, is small enough compared to the operating
wavelength. To avoid exciting high-order TE/TM modes, the
operating frequency should be lower than c/2hn0, where
c is the speed of light in vacuum. Furthermore, Fig. 1(b)
depicts the corresponding model of the Mikaelian lens antenna
used in the full-wave simulator, including the rectangular
waveguide feed and the flare structure; the details will be
discussed in Section III. As stated in Section I, the analysis
of wave propagation and the resulting radiation characteristics

Fig. 1. (a) Illustration of RT inside a planar Mikaelian lens antenna and
the cross section in the xy-plane. (b) Full-wave (CST) model of a planar
Mikaelian lens antenna and the cross section in the yz-plane, including the
feed port, lens, and radiation flare structure.

of PPW beamformers is generally performed with commercial
full-wave simulators [36]. These simulators require a lot of
computing power and time, so RT-based techniques combined
with PO procedures have been developed to be more accurate
and faster [14], [37], [38], [39], [40], [41], [42], [43]. However,
existing methods are restricted to the analysis of 2-D radiation
patterns in the beamforming plane. In this article, we present
an RT model based on Snell’s law to calculate the electric
field in the opening of the planar Mikaelian lens, along with a
straightforward implementation of the field equivalence princi-
ple for computing full 3-D radiation patterns in every direction.
Thus, we can also calculate directivity, gain, dielectric loss,
and radiation efficiency from our proposed RT-PO model.

In the GO approximation, rays are defined as trajecto-
ries perpendicular to the wavefronts of the EM waves [44],
[45], [46]. To be effective and precise, the GO approach must
meet two conditions: 1) the lens size must be sufficiently large
compared to the wavelength λ and 2) the refractive index
should vary smoothly per wavelength. This second condition
also implies that reflections can be disregarded in the direction
of the changing refractive index. As illustrated in Fig. 1(a),
in our RT model, a family of rays is traced from the source
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Fig. 2. Interface between two dielectric materials of thickness δx , where
n(xi + δx) < n(xi ). (a) Ray is transmitted from the lower layer to the upper
layer when θi < θc . (b) Ray reflects at the interface when θi ≥ θc .

Fig. 3. Illustration of the kth ray tube to evaluate the E-field amplitude in
the lens aperture.

point f (colored red) to the target points (colored yellow)
in the aperture, with the kth ray having a starting departure
angle ϕk . The refractive index of the Mikaelian lens changes
only in the vertical direction along the x-axis, as indicated
in (1). To account for this, we divide the inhomogeneous
dielectric material in the x-direction into N homogeneous
layers with a thickness of δx (δx = 2R/N ), where the
variation of the dielectric material between layers is minimal.
Fig. 2 depicts the behavior of a ray at any inner interface
between two dielectric materials located at positions xi and
xi + δx , respectively, with i denoting the i th segment Si of
the ray. Here, we assume that xi > 0 and hence n(xi ) >

n(xi + δx) (other scenarios have been omitted for the sake of
brevity without losing generality). For the i th segment Si , the
departure angle ϕi is known; therefore, the incident angle θi

is equal to (π/2 − ϕi ). When θi is smaller than the critical
angle θc, which is equal to arcsin[n(xi + δx)/n(xi )], the ray
transits from the lower layer to the upper layer, and the
refractive angle θi+1 is equal to arcsin[n(xi ) sin θi/n(xi +δx)],
as shown in Fig. 2(a). Otherwise, the ray completely reflects
at the interface with a reflection angle θi+1 = θi , as plotted
in Fig. 2(b). In both cases, the departure angle ϕi+1 is obtained
using ϕi+1 = π/2 − θi+1 and the (i + 1)th segment Si+1 is
traced accordingly. As a result, with a known position of the
source point f and predefined starting departure angles ϕk , all
rays can be traced.

B. Electric Field in the Lens Aperture

In this section, the electric field in the lens aperture,
including both amplitude and phase, is obtained using the
information provided by the traced rays. First, the amplitude
Ak at each target point k of the lens aperture is computed
using the ray-tube power conservation theory [37], [40],
[44], [46]. Following the notation in Fig. 3, this amplitude

is given by the following equation:

Ak = A′

k

√
δϕk

δLk
(
ŝk · n̂k

) (2)

where A′

k is the amplitude at a reference position near the feed,
δϕk = (ϕk+1 − ϕk−1)/2 is the subtended angle of the kth ray
tube at the source position, δLk = (xk+1−xk−1)/2 is the width
of the kth ray tube in the aperture, n̂k is the unit vector normal
to the lens aperture, and ŝk is the unit vector along the direction
of the kth ray outside the lens aperture, corresponding to the
local Poynting vector. The feed amplitude A′

k depends only on
the source excitation, provided that the PPW has a constant
height h. Typically, the directive open-ended waveguide is
used to feed PPW lenses. Here, we approximate the amplitude
distribution of the feed waveguide by a Gaussian function
defined as

A′

k = 10−(3ζ 2/20) (3)

where ζ = ϕk/ϕ3 dB is the ratio between the angle of departure,
ϕk , and the half-power beamwidth angle, ϕ3 dB, the same
as in [37].

Phase 8k and dielectric loss ξk associated with the electric
field at the target point k in the aperture is obtained by adding
phase variation 8i and dielectric loss ξi in all segments of
the kth ray. Assuming that the dielectric material for the
i th segment of the kth ray has a complex relative dielectric
permittivity ϵri = ϵ′

ri + jϵ′′

ri with a small dielectric loss
(ϵ′′

ri ≪ ϵ′

ri ) (as usually found in dielectric lenses), the complex
wavenumber of the material is given by

ki = βi − jαi (4)

with

βi ≈

√
ϵ′

ri k0 = ni k0 (5)

αi ≈
βi

2

(
ϵ′′

ri

ϵ′

ri

)
=

βi

2
tan δ (6)

where k0 is the wavenumber in the free space, ni the refractive
index, and tan δ the dielectric loss factor. Given that the length
of the i th segment is σi = δx/ sin ϕi , the phase variation 8i

and dielectric loss ξi in the i th segment of the kth ray are

8i = βiσi (7)
ξi = αiσi (8)

and, therefore, the phase 8k and dielectric loss ξk associated
with the kth ray are calculated as

8k =

∑
i

8i =

∑
i

ni k0σi (9)

ξk =

∑
i

ξi =

∑
i

(
ni k0

2
tan δ

)
σi . (10)

Knowing the amplitude, phase, and dielectric loss, the E-field
distribution in the lens aperture is finally obtained as

Ek = Ake−j8k e−ξk ŷ. (11)

C. 3-D Far-Zone Electric Fields

In this work, the 3-D radiation characteristics of the planar
Mikaelian lens antennas are evaluated using a simplified
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Fig. 4. (a) Geometric parameters and coordinate system for numerical
evaluation of the 3-D radiation characteristics. (b) Aperture distribution of the
equivalent magnetic current assuming the screen around the aperture is PEC.

implementation of the PO approximation (i.e., the field equiv-
alence principle) [47]. This approach is based on sensible
estimates of the fields on and in the vicinity of the antenna
aperture, which is particularly suitable for PPW lens antennas.
As illustrated in Fig. 4(a), we model the Mikaelian lens
antenna as a thin aperture surrounded by an infinite screen,
with an aperture electric field denoted as Ea(r′) and r′ being
any point in the lens aperture. Under a reasonable assumption
that the infinite screen is a perfect electric conductor (PEC),
the actual source Ea(r′) is replaced by the following equivalent
magnetic source:

Ms
(
r′

)
= −2n̂ × Ea

(
r′

)
(12)

where n̂ is the unit vector normal to the aperture. As the
lens aperture is located in the xy-plane, Ms(r′) = 2Ea(x ′)x̂,
as plotted in Fig. 4(b), assuming that the lens works in the
fundamental TEM mode. As a result, the far-field expression
of the electric field produced by the equivalent magnetic source
in the lens aperture (S′) is given by [47], [48]

E = −jk0
e−jk0r

4πr
r̂ ×

[
−L̃

]
(13)

where L̃ stands for

L̃(θ, φ) = L̃θ θ̂ + L̃φφ̂ =

∫
S

Ms
(
r′

)
ejk0·r′

dS′ (14)

in which k0 = k0r̂ = kx x̂ + ky ŷ + kzẑ is a wavevector
with components kx = k0 cos φ sin θ , ky = k0 sin φ sin θ and
kz = k0 cos θ . Introducing (14) into (13), the far-zone electric
field can be written in spherical coordinates as

E(r, θ, φ) = Eθ θ̂ + Eφφ̂ = −jk0
e−jk0r

4πr

(
L̃φ θ̂ − L̃θ φ̂

)
. (15)

Combining (11)–(15) together, the far-zone E-field radiated by
the lens aperture can be finally computed with (29) and (30),
which are given in Appendix A.

With this information, we can calculate the radiation pat-
terns in the E- and H-planes. According to the coordinate
definition in Fig. 4(a), the E-plane pattern is in the yz-plane
(φ = π/2), and the far-zone E-field is

Er = 0 = Eφ (16)

Eθ (θ) = jk0b
e−jk0r

2πr
sin

( k0b
2 sin θ

)
k0b
2 sin θ

∑
k

Ake−ξk e−j8k δLk . (17)

Similarly, the far-zone H-plane E-field in the xz-plane (φ = 0)
is given by

Er = Eθ = 0 (18)

Eφ(θ) = jk0b
e−jk0r

2πr

∑
k

Ake−ξk e−j(8k−k0xk sin θ)δLk . (19)

It is worth emphasizing that the H-plane is the beamforming
plane of the Mikaelian lens antenna, so more attention will
be paid to this plane when studying the lens’ beam-scanning
characteristics.

D. Reflections and Virtual Source

In the preceding analysis, a simplification was assumed in
that all the EM waves that reached the lens aperture would
be transmitted directly to the open air; that is, the refraction
between the lens and the open air was taken into account
but not the reflections. However, because of the varying
refractive-index distribution in the lens aperture, part of the
waves will be reflected into the lens. The reflected waves in
the aperture can be modeled as rays traced back inside the lens,
and their amplitude will be given by the reflection coefficients
following the Fresnel formulae.

As depicted in Fig. 5(a), a family of rays emitted from the
actual source f (colored blue) arrive at the lens aperture. For
a clearer illustration, only the rays with the departure angle
ϕk > 0 are plotted in Fig. 5(a). These rays will continue into
free space. However, part of the EM waves will be reflected.
Due to the self-focusing property of the Mikaelian lens, the
corresponding reflected rays (colored green) converge to a
virtual source (VS) f ′, which is symmetric to the primary
source f with respect to the z-axis. At the interface z =

0, these rays are again partially reflected and transmitted.
The transmitted rays are omitted in Fig. 5(a) and ignored in
our analysis because they do not contribute to the forward
radiation. The reflected rays, which are colored purple, can be
seen as emitted from a VS f ′ and travel to the lens aperture
where they radiate out in combination with the originally
transmitted blue rays. A portion of the EM waves from the
VS is again reflected/refracted in the aperture, resulting in
multiple reflections and transmissions. However, the effect of
this is minimal and is not taken into account in our model.
Furthermore, due to the symmetry property of the Mikaelian
lens, we can observe in Fig. 5(a) that the purple rays from f ′

are z-axially symmetric with the blue rays from f , so they
do not need to be calculated in the code, thus reducing
computation time and memory resources.
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Fig. 5. (a) Illustration of RT inside a planar Mikaelian lens antenna
considering the effect of a VS f ′. (b) Illustration of the kth ray in the
Mikaelian lens aperture to evaluate the transmission and reflection coefficient.

To quantify the amount of reflected and transmitted EM
waves associated with the kth ray emitted from the primary
source f , we make use of the reflection Fresnel coeffi-
cient [48], which can be expressed as

ρk =
nk

(
r̂k · n̂k

)
− ŝk · n̂k

nk
(
r̂k · n̂k

)
+ ŝk · n̂k

(20)

where r̂k and ŝk are the unit vectors associated with the incom-
ing and outgoing directions of the rays, as shown in Fig. 5(b).
From (20), the transmission Fresnel coefficient is calculated
as τk = 1 + ρk , that is,

τk =
2nk

(
r̂k · n̂k

)
nk

(
r̂k · n̂k

)
+ ŝk · n̂k

. (21)

The magnitudes of the reflection and transmission power
coefficients are then given by [48]

Rk = |ρk |
2 (22)

Tk = |τk |
2 ŝk · n̂k

|nk |
(
r̂k · n̂k

) . (23)

Since the RT provides the amplitude of the electric field
through the power conservation of the ray tube [see (2)],
the relevant coefficients for the field amplitude, here denoted
as Rk and Tk , must be obtained from the power coefficients
in (22) and (23) as

Rk =

√
Rk = |ρk | (24)

Tk =

√
Tk = |τk |

√
ŝk · n̂k

|nk |
(
r̂k · n̂k

) . (25)

Due to the aforementioned symmetry properties of the
Mikaelian lens, the calculation of the reflection coefficient
R′

k associated with the kth ray of the VS f ′ can be omitted
since it is the same as Rk . It can also be clearly observed
from Fig. 5(a) that the phase distribution for the purple rays
is the reverse of that for the blue rays and that the dielectric
loss is the same. However, the dielectric loss of the green rays
must be calculated explicitly, and the process is the same as
that of the blue rays with an angle of −ϕk .

Taking all of the above into account, we finally obtain the
E-field associated with the kth ray in the lens aperture as

Ek = Ake−j8k e−ξk Tk

[
1 + Rk R′

kej28k e−

(
ξk+ξ

(−)
k

)]
(26)

where the first and second terms are the aperture fields associ-
ated with the primary and VSs, and ξ

(−)
k denotes the dielectric

loss of the ray with a departure angle −ϕk . Introducing (26)
into the corresponding expressions for the far-zone E-field,
we can now obtain the directivity D(θ, φ) and gain G(θ, φ)

of the Mikaelian lens antenna applying (31) and (32) given
in Appendix B. Subsequently, the corresponding dielectric
efficiency ed and the total radiation efficiency (including
reflections) can be calculated.

It should be noted that all the information in (26) is provided
by the blue rays that have been traced from the primary
source f ; thus, taking into account the effect of the VS does
not add to the complexity of the proposed RT-PO model.

III. NUMERICAL RESULTS

To validate the proposed RT-PO approach for planar
Mikaelian lens antennas, we consider a particular case with
R = 100 mm, L = 120 mm, and n0 = 2 (see Fig. 1).
At the design frequency of 30 GHz, R and L correspond
to 10λ and 12λ , respectively. In addition, we assume a
small dielectric loss factor of tan δ = 10−3n(x). In this
section, the height of the PPW is h = 2 mm to ensure
that only the fundamental mode is operating. The numerical
results of the RT-PO model are validated by comparing them
with the full-wave simulation results acquired with the CST
software. This software has already been shown to be in close
agreement with the experimental results of multiple PPW lens
antennas [49], [50], [51].

A. Aperture Electric Field

First, we validate our RT procedure to calculate the E-field
in the lens aperture, a computation that is key for a further
accurate evaluation of the electric far fields. In particular,
Fig. 6 shows the normalized amplitude and phase distributions
of the E-field in the lens aperture (z = L) obtained from RT
and CST at 30 GHz with the source f located at x = 1λ .
Following (3), an open-ended waveguide feed is used as the
source with the width of 8.64 mm, matching the dimensions
of standard WR34 operating at the Ka-band; the height of the
waveguide feed is the same as the PPW height h of 2 mm.
The feed model is adjusted at 30 GHz with ϕ3 dB = 32.5◦ and
a phase center displacement of 0.1λ within the lens.

In our first analysis, the wave reflections in the lens aperture
are omitted in the RT model [i.e., Rk = 0 in (26)], and
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Fig. 6. (a) Normalized amplitude and (b) phase distributions of the E-field
in the aperture of the lens obtained from RT and CST at 30 GHz with the
source f located at x = 1λ (inset: illustration of the Mikaelian lens fed by an
open-ended waveguide with the width of 8.64 mm; lens aperture is in green).

hence we set an open boundary condition (perfect matching
layer) to eliminate the reflections in the lens aperture in the
CST modeling. In this case, Fig. 6(a) shows that both the RT
and CST amplitudes agree well with (w.) and without (w.o.)
dielectric losses, thus validating our evaluation of the field
amplitude by means of the ray-tube power, as well as our
treatment of dielectric losses. It should be noted that the results
with losses are slightly asymmetric with respect to x = 0,
because the rays arriving at the opposite position in the
aperture (z = L) pass through layers of material with different
dielectric loss factors. In Fig. 6(b), it is also shown that the
phase in the aperture obtained with RT agrees very well with
the CST results, which confirms the operation of the proposed
RT method and the accuracy of the phase of the traced rays.

If reflections in the aperture are now included in the RT
model [Rk ̸= 0 in (26)], the E-field in the lens aperture is
calculated taking into account that is generated by both the
primary and the VS. Accordingly, the CST simulation now
contains a small extension of a PPW filled with air after the
lens aperture and “open add space” boundary condition. The
normalized amplitude and phase distributions with and without
dielectric loss are plotted in Fig. 7. The phase results of the
RT and CST in Fig. 7(b) show good agreement, but some
small discrepancies are found for the amplitude in Fig. 7(a).
These deviations are mainly attributed to the fact that for
simplicity, the effect of multiple reflections inside the lens

Fig. 7. (a) Normalized amplitude and (b) phase distributions of the E-field
in the aperture of the lens obtained from RT and CST at 30 GHz with the
source f located at x = 1λ , including the effect of the VS f ′.

is not considered in the RT model. However, small numerical
errors in the amplitude of the electric field at the lens aperture
have a minor effect on the far-field calculations, in contrast
to the major influence that would have been observed if these
small discrepancies were in terms of phase. This topic will be
discussed in more detail later in Section III-B.

To better illustrate the RT implemented with the proposed
approach, some additional intermediate results are presented
in Fig. 8 concerning the traced rays and the E-field distribu-
tions inside the lens at 30 GHz with the source f located
at three different locations, x = 0, 1λ , and 2λ . A good
collimation of the rays is clearly appreciated from the rays
arriving parallel to the aperture. As shown in Fig. 8(a), when
the lens antenna radiates in the broadside direction, the rays
that exit the aperture are also well aligned, corresponding to
the flat wavefront of the E-field in the lens aperture shown
in Fig. 8(d). In the CST modeling, a flare with a sinusoidal
shape of 2–10 mm in height and a length of 18 mm is used to
match the PPW Mikaelian lens with the free space, the same as
in [51]. In the beam-scanning scenarios corresponding to the
source f located at x = 1λ and 2λ , Fig. 8(b) and (c) shows
that the rays are refracted nonparallel in the aperture due to
the varying refractive index along the aperture characteristic
of the Mikaelian lens. In accordance with the discussion
in Section II-D, the reflected waves from the aperture shown
in Fig. 8(e) and (f) [modeled as additional rays in the RT
model, not explicitly shown in Fig. 8(b) and (c)] converge
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Fig. 8. (a)–(c) RT and (d)–(f) corresponding electric field distribution of
the Mikaelian lens antenna at 30 GHz with the source f located at x = 0,
1λ , and 2λ .

to a VS f ′ that reradiate out. Therefore, it is also clear
that the total E-field distribution in the lens aperture is the
superposition of the field from the primary and the VS, which
applies to the total electric far-field as well. An additional
observation in Fig. 8(a)–(c) is that the rays that exit from
the lateral sides of the lens explain the spillover (SO) effect,
whose influence on the radiation characteristics will be shown
in Section III-B.

B. Radiation Characteristics

Next, we present numerical results of the radiation charac-
teristics obtained with the RT-PO model, which are compared
to full-wave (CST) simulations, including radiation patterns
in the uv-plane, principal E- and H-plane patterns, directivity,
gain, and dielectric efficiencies. The contour maps of the
radiation patterns in the uv-plane at 30 GHz with the source f
located at x = 0, 1λ , and 2λ are reported in Fig. 9, where the
upper and lower rows correspond to the results of the RT-PO
model and the full-wave simulation of CST. It is apparent
that the RT-PO model precisely predicts the main beam
and the sidelobes, whereas the ring-shaped sidelobes caused
by the diffraction effect in the edge of the lens flare shown in
the full-wave simulations are not present in the RT-PO model.
Note that the diffraction sidelobes are well below the level of
the main beam, as expected. In terms of computational effort,
the RT-PO model performs in less than 5 s, while the CST
model requires 16M cells and 30 min on a computer with
a 64-bit operating system and 128-GB RAM.

Fig. 10 shows the far-field directivity in the principal E- and
H-planes, which gives a more detailed comparison between the
results of the RT-PO model (solid line) and the full-wave CST
simulation (dashed line). The results in the H-plane (φ = 0),

Fig. 9. Contour maps of the radiation patterns in the uv-plane at 30 GHz with
the source f located at x = 0, 1λ , and 2λ obtained using RT-PO (top row)
and CST (bottom row), under the same scale.

Fig. 10. Far-field directivity of the Mikaelian lens antenna at 30 GHz in
(a) H-plane (φ = 0) and (b) E-plane (φ = π/2) obtained by RT-PO (solid
line) and CST full-wave simulation (dashed line) for the source f located at
x = 0 (blue line), 1λ (purple line), and 2λ (green line).

which is the beamforming plane, are plotted in Fig. 10(a),
where the blue, purple, and green lines represent the curves
for the source f located at x = 0, 1λ , and 2λ , respectively.
In Fig. 10(a), the accuracy in agreement with the main beam
from the RT-PO model and the CST results can be clearly
appreciated. It is also apparent that the peak directivity values
are well estimated, as well as the pattern shapes, including
the sidelobes in the opposite direction of the main beam,
contributed by the VS. Finally, we can observe some additional
lobes below 0 dBi caused by the SO effect. Note that these
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Fig. 11. Far-field gain of the Mikaelian lens antenna at 30 GHz in the H-plane
(φ = 0) obtained by RT-PO (solid line) and CST full-wave simulation (dashed
line) for the source f located at x = 0 (blue line), 1λ (purple line), and 2λ

(green line).

TABLE I
DIELECTRIC EFFICIENCIES OBTAINED WITH RT-PO AND CST

low-level lobes in the CST results are more irregular because
of the superposition of the SO and diffraction effects.

The directivity data in the E-plane (φ = π/2) are plotted
in Fig. 10(b). Since the aperture width in the E-plane is
only 10 mm, which is much smaller than the one in the
H-plane, the beamwidths in Fig. 10(b) are much wider. When
the source f is located at x = 0, the beam shape obtained
using the RT-PO model and the CST simulation agrees well
with very small discrepancies. In beam-scanning scenarios,
where the main beam is shifted away from the E-plane, the
agreement worsens, with ripples in the CST results that are not
present in the RT-PO predictions. As mentioned above, these
ripples are mainly caused by diffraction effects; and since their
level is around 20 dB lower than that of the main beam, they
are negligible in most cases.

The RT-PO algorithm also allows for the computation of the
far-field gain of the Mikaelian lens antenna considering dielec-
tric losses, which can be further used to assess the dielectric
efficiency. For brevity, only the results in the beamforming
H-plane are shown in Fig. 11. Compared to the directivity
results in Fig. 10(a), the gain patterns have a similar beam
shape with a lower peak value due to dielectric losses. As a
result, the corresponding dielectric efficiencies ed are obtained
and shown in Table I. The dielectric efficiencies obtained
using the RT-PO model agree well with the CST results, with
relatively larger discrepancies occurring in the beam-scanning
cases. These discrepancies are due to the increased dielectric
losses in multiple reflections, which are not taken into account
in our model.

To examine the impact of SO and VS effects on RT-PO
predictions, Fig. 12 compares the CST full-wave simulations
when the source f is positioned at x = 1λ with RT-PO
results with and without the SO or VS effects. The findings
reveal a notable correspondence between RT-PO results and

Fig. 12. Far-field directivity of the Mikaelian lens antenna at 30 GHz in
the H-plane obtained by RT-PO with or without SO or VS effect and CST
full-wave simulation for the source f located at x = 1λ .

CST simulations, even when disregarding the SO and VS
effects, particularly on the main beam’s shape and the main
sidelobes above 5 dBi. The presence of the VS is clearly
evident in the orange-dotted curve, significantly impacting
directivity at angles opposing the main beam direction, con-
sequently giving rise to sidelobes. The magnitude of these
sidelobes is determined by the refractive index distribution
across the lens aperture. Moreover, a comparison between the
solid-purple curve and the orange-dotted curve suggests that
the sidelobes below 0 dBi can reasonably be attributed to the
SO effect. In conclusion, for a more accurate prediction of
the radiation characteristics of the Mikaelian lens antenna,
particularly under circumstances involving strong reflections
within the lens aperture, the inclusion of both SO and VS
effects within the RT-PO model is imperative.

IV. CONCLUSION

In this manuscript, we presented an accurate and efficient
RT-PO approach for the analysis of planar Mikaelian lens
antennas. This numerical method combines geometric optics
and PO. Geometric optics is used to obtain the phase and
amplitude information of the electric field in the lens aper-
ture. Phase information is extracted from the rays that are
traced from the feed to the lens aperture making use of
Snell’s law, whereas amplitude information is given by the
ray-tube power conservation theory. The 3-D far-field pattern
radiated by the lens aperture is finally computed with the
field equivalence principle, which is a PO approximation.
Information on directivity, gain, and dielectric efficiency is
obtained by considering a small dielectric loss of the lens.
The unique characteristics of a VS for the Mikaelian lens
and the SO effect are further included in the RT-PO model.
The 3-D far-zone electric fields evaluated with the proposed
approach have been satisfactorily validated by comparison
to the commercial full-wave simulator CST for a particular
Mikaelian lens antenna. The RT-PO model provides a precise
description of lens radiation characteristics with a computation
time factor of approximately 300 times less than the CST
model. This feature is particularly useful when the RT-PO
model is exploited to design Mikaelian lens antennas or other
PPW beamformers through optimization. Future work will
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explore the use of this RT-PO model applied to more general
Mikaelian lens antennas to improve scanning performance and
even other PPW lens antennas with arbitrary aperture shapes,
such as geodesic lens antennas.

APPENDIX

A. Far-Zone E-Fields for PPW Mikaelian Lenses

For the derivation of the far-zone E-field, we start with
L̃θ and L̃φ in (15). For the specific aperture orientation
shown in Fig. 4, where the aperture is in the xy-plane and
the equivalent magnetic source only has the x-component,
L̃θ and L̃φ are found to be

L̃θ = cos θ cos φ
sin Y

Y
Ẽa(k0 sin θ cos φ) (27)

L̃φ = − sin φ
sin Y

Y
Ẽa(k0 sin θ cos φ) (28)

where a and b are the length and width of the lens aperture,
respectively, k0 ·r′ is equal to k0(x ′ sin θ cos φ + y′ sin θ sin φ),
Y = (k0b/2) sin θ sin φ, and Ẽa(q) is the Fourier transform
of Ea(x). Although this Fourier transform can be numerically
computed in different efficient ways, here we propose to apply
a simple Simpson rule using the obtained E-field distribution
of the traced rays in (11). As a result, the field radiated by the
lens aperture can finally be calculated as (Er = 0)

Eθ (θ, φ) = jk0b
e−jk0r

2πr
sin φ

sin Y
Y

×

∑
k

Ake−ξk e−j(8k−k0xk sin θ cos φ)δLk (29)

Eφ(θ, φ) = jk0b
e−jk0r

2πr
cos θ cos φ

sin Y
Y

×

∑
k

Ake−ξk e−j(8k−k0xk sin θ cos φ)δLk . (30)

B. Derivation of Directivity and Gain

For the derivation of directivity, the average radiated power
density Prad is first formed using the fields in the lens aperture
and then integrated over the whole aperture bounded by the
surrounding PEC. We assume that the magnetic field in the
aperture is given by Ha = −(Ea/ηa)x̂ where the wave
impedance in the aperture is given by ηa = η0/(ŝk · n̂k), with
η0 being the free-space wave impedance. After some simple
derivations, the directivity and gain can be obtained as

D(θ, φ) =
4πU
Prad

≈

4πr2
(
|Eθ |

2
+

∣∣Eφ

∣∣2
)

b
∑

k A2
k e−2ξk

(
ŝk · n̂k

)
δLk

(31)

G(θ, φ) =
4πU
Pin

≈
4πr2

(
|Eθ |

2
+ |Eφ|

2
)

b
∑

k A2
k

(
ŝk · n̂k

)
δLk

. (32)
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