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Analytical Expressions for Spherical Wire Antenna
Quality Factor Demonstrating Exact Agreement

Between Circuit-Based and Field
Integration Techniques

Alexander B. Murray , Graduate Student Member, IEEE, and Ashwin K. Iyer , Senior Member, IEEE

Abstract— Properties of spherical wire antennas are revisited
using a circuit analysis approach. This methodology yields the
exact quality factor and axial ratio (AR) of coupled-mode spher-
ical radiators as analytical expressions. The new circuit-based
equations are compared to field integration predictions for quality
factor, and both are found to agree for a general multipole
expansion of the electromagnetic fields. These two predictions
of stored energy inside a spherical wire antenna are shown to be
equivalent via direct analysis, while predictions of stored energy
outside the spherical wire antenna are compared by way of
mathematical induction. In addition, the circuit analysis reveals
general relations between supplied current and radiated power
of spherical wire antennas, resonance conditions of coupled-mode
systems, and analytical quantification of the trade-off between the
quality factor and AR for TM1m–TE1m radiators. New and simple
expressions for the minimum quality factor of circular, near-
circular, linear, and general elliptical polarizations are provided.

Index Terms— Axial ratio (AR), circular polarization, electri-
cally small antennas (ESAs), quality factor, spherical antennas,
spherical wave expansion.

I. INTRODUCTION

THE analysis of spherical waves for determining limita-
tions on electrically small antennas (ESAs) dates back

many decades to the work of Chu [1], who constructed
equivalent circuits describing the fields of the modes external
to what is now known as a Chu sphere. Conventionally,
this Chu sphere is taken to have radius a. In practice, these
circuits placed limitations on the quality factor (Q), and hence
bandwidth, of any passive, linear, and time-invariant antenna
circumscribed by this Chu sphere. Collin and Rothschild [2]
built on this spherical wave analysis from a field perspective,
to obtain the widely used lower bound on radiation Q as
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follows:

QChu =
1

(ka)3 +
1

ka
(1)

where k is the wavenumber at resonance, and the radiator is
assumed to be perfectly efficient. Equation (1) presumes the
presence of only one of the two lowest Q modes (i.e., the
TM1m and TE1q modes, which are the lowest Q modes for
small ka). In the works that followed, much of the study of
ESA performance through the lens of spherical waves has been
conducted either by equivalent circuit analysis [3], [4], [5],
[6], [7] or through direct field analysis [4], [8], [9], [10].
To date, these two formalisms have only been shown to be
in agreement for very low-order spherical waves [2], [4].
While (1) is one of the most commonly cited lower bounds,
an antenna radiating both the TM1m and TE1q modes is
constrained to the lower bound

Q̂Chu =
1

2(ka)3 +
1

ka
(2)

which is derived under the same assumption of only consid-
ering the fields outside of the Chu sphere [4]. A lower bound
with this same limiting form can be obtained for a single
mode if lossy and dispersive tuning is permitted, as shown
by Yaghjian [11]. It is worth noting that the limits of ESAs
have been estimated outside the context of a spherical wave
expansion. To name a few, Gustafsson et al. [12] consider
the scattering properties of antennas via their polarizability
dyads, a general approach which permits the study of antennas
bounded by volumes of arbitrary shape. Yaghjian et al. [13]
also deviate from the spherical wave approach to study anten-
nas bounded by volumes of arbitrary shape.

Returning to the circuit perspective of spherical wave theory,
Thal [5] extended Chu’s circuits to account for the energy
in both interior and exterior to the Chu sphere, presuming
electric currents flowing only on the surface of the Chu sphere
(a description of so-called spherical wire antennas). The modal
circuits were extended by first considering the original circuits
of Chu generated by the outwardly traveling wave impedances
(normalized to the intrinsic impedance of free space) at the
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Fig. 1. Exact circuits introduced by Thal [5] for the modes excited by a spherical wire antenna of radius a.

Chu sphere

ZTM+

nm = j

[
ka · h(2)

n (ka)
]′

ka · h(2)
n (ka)

(3)

for TM waves, and

ZTE+

pq = − j
ka · h(2)

p (ka)[
ka · h(2)

p (ka)
]′

(4)

for TE waves, where the primes indicate differentiation
with respect to ka. Recurrence relations of the spherical
Hankel functions of the second kind h(2)

n were then used to
express (3) and (4) as a continued fraction, making the form
of the equivalent circuit more obvious. Thal took the same
approach that Chu took as outlined above, but performed
additional analysis on the inwardly directed wave impedances
at the Chu sphere

ZTM−

nm = − j

[
ka · jn(ka)

]′
ka · jn(ka)

(5)

and

ZTE−

pq = j
ka · jp(ka)[
ka · jp(ka)

]′ (6)

where jn are the spherical Bessel functions of the first kind,
and the impedances are again normalized to the intrinsic
impedance of free space. Using the same procedure, networks
representing the interior region of a spherical wire antenna
were combined with those representing the exterior region as
shown in Fig. 1 for each individual spherical mode. Systems
supporting multiple modes (hereafter referred to as coupled-
mode systems) may be combined with a coupling network,
as shown in Fig. 2. The quality factor for any coupled-mode
system can then be extracted by computing the stored electric

Fig. 2. Circuit for the coupled TM1m–TE1q system introduced by Thal [5].

and magnetic energy in the circuit (We and Wm) and dissipated
power P to compute the Q as follows:

Q = 2ω
max(We, Wm)

P
(7)
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where ω is the angular frequency. These circuits permit
calculation of the radiation Q of material cores by scaling
the inductors and capacitors by the relative permeability and
permittivity, respectively.

Hansen et al. [9] address the same problem but from the field
perspective. By integrating over the fields of the modes, they
were able to recover expressions for the interior and exterior
stored energies (distinguishing between electric and magnetic
energy) as well as the dissipated power, permitting analytical
computation of spherical wire antenna Q with material cores.
In this article, their air-core results (those results assuming
the permittivity and permeability of vacuum inside the Chu
sphere) will be shown equivalent to Thal’s generalized circuits.
In returning to this circuit perspective, these equivalent equa-
tions take on different forms. This circuit formalism, validated
by the aforementioned field approach, provides analytical tools
that easily connect the quality factor and polarization purity
of ESAs. This newfound equivalence between circuit and
field integration formalisms, as well as new links between
quality factor and polarization purity and their associated lower
bounds as described by simple expressions, forms the main
contributions of this article.

This analysis is primarily focused on coupled-mode anten-
nas, as these are the antennas providing the lowest Q. This
motivates a slightly different notation than is typically used;
while usual reference to TE modes uses the subscripts n and
m, the subscripts p and q will be used to illustrate when
the mode indices between coupled TM–TE systems may be
different should both appear in the same expression. The use
of n and m indices for the TE modes will be reserved for when
they must match the TM counterpart. Otherwise, reference to
the modes and their definitions are made according to [14],
which assumes time-harmonic fields with time dependence
exp( jωt). This time dependence is suppressed throughout this
article. Furthermore, the analysis focuses on the important
special case of air-core antennas carrying electric currents,
which do not make use of dispersive tuning; all results and
statements herein are made under these simplifications. The
arguments for spherical Bessel and Hankel functions are
omitted for the remainder of this article, as their argument is
always ka.

This article is organized as follows. Section II considers the
impedances of the equivalent networks, which yield relations
between supplied current and radiated power, as well as reso-
nance conditions for coupled-mode systems. Section III then
uses the circuits to analytically compute the axial ratio (AR)
and Q of the modes. These results are then used in Section IV
to quantify the exact trade-off between Q and polarization
purity. The exact circuit results are then shown to be in
agreement with the field integration results of [9] in Section V.
This article is then concluded in Section VI.

II. MODE IMPEDANCES AND RESONANCE CONDITIONS

A. Two-Element Equivalent Circuits

While the physical meaning of mode impedances as used
in this section is not shown to be equivalent to usual circuit
impedances, they still provide value in the computation of

Fig. 3. Equivalent two-element representation of (a) TMnm and (b) TEpq
modal circuits.

radiated power or resonance conditions of coupled-mode sys-
tems. Computing radiated power from the supplied current
excitation, and concluding resonance when the reactances
are zero, is the extent of the physical meaning verified for
the impedances of this section. Whether or not they have
any correspondence to the input impedance of an antenna
supporting these modes is not proven herein.

From the form of the modal circuits accounting for stored
energy in the interior and exterior of the Chu sphere shown
in Fig. 1, general expressions for the mode impedances are
not obvious. However, based on how the circuits were intro-
duced in Section I, an alternative and more compact circuit
can be constructed, albeit with elements having impedances
of more complicated forms. These circuits are shown
in Fig. 3.

Without performing any circuit analysis, sophisticated field
integration, or additional normalization of the mode defini-
tions, it is clear from Fig. 3 that no power is delivered to the
exterior networks (thus, no power is delivered to the far-field)
for TMnm modes at electrical sizes satisfying (kajn)′ = 0,
and likewise for the TEpq modes at electrical sizes satisfying
kajp = 0. At these particular electrical sizes, the interior
network shorts the current source. Note that in the case of
magnetic currents flowing on the surface of the spherical
antenna, the shunt current source is replaced with a series
voltage source. The nonradiative electrical sizes of magnetic
current excitation, thus, occur for the open-circuit conditions
of the interior fields, dual to the electric current excitation.
Even for the case where no current is delivered to the interior
circuit, it can still hold energy, analogous to a parallel LC
network at antiresonance, and thus, Q does not reconverge
to (1). This conclusion was also reached by [9] after some
mathematical manipulation.

B. Mode Impedances

While nulls in the radiated power can easily be found, other
quantities of interest, such as the resonant-coupling condi-
tion, require a more involved analysis. For these circuits of
finitely many elements, closed-form input resistances and reac-
tances can be extracted, which allows for the resonant modal
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coupling to be derived for any two sets of modes. For the
isolated modes, the input resistances R and reactances X are
given by

RTM
nm =

[
(kajn)′

]2 (8)

RTE
pq =

(
kajp

)2 (9)

XTM
nm = −(kajn)′(kayn)

′ (10)

XTE
pq = −

(
kajp

)(
kayp

)
(11)

where yn is the spherical Bessel function of the second kind.
Equation (9) is a generalized and normalized version that was
found for a TE10 source in [15] via field analysis. These
equations for reactance are generalized versions of those in [5].
Equations (8) and (9) permit direct calculation relating far-field
power of a mode to its modal coupling, represented by the
transformer turn ratios N TM

nm and N TE
pq . If the far-field power

contributions PTM
nm and/or PTE

pq of particular modes are known,
relative modal coupling (in the form of transformer turns
ratios) can be extracted as follows:

N s
nm =

√
P s

nm

Rs
nm

(12)

where s represents either TM or TE. This relation permits
direct calculation of coupled-mode lower bounds on Q in
a given simulation or experiment as will be evident in
Section III. Equations (10) and (11) can be shown to be
in agreement with Thal [5] by considering special cases of
their Laurent series expansions about ka = 0

XTM
10 = −

2
3ka

+O(ka) (13)

XTE
10 =

ka
3

+O
[
(ka)3] (14)

XTE
20 =

ka
5

+O
[
(ka)3]. (15)

An analytical means of computing these Laurent series
expansions and others that appear in this article is given
in Appendix A, where (13) is taken as an example.

C. Resonance Conditions and Coupling for Lowest ESA Q

Of interest is the coupling between electric and mag-
netic modes, as these provide resonance at electrically small
sizes. The resonant modal coupling transformer turns ratio
N = N TE

pq /N TM
nm in this case can be extracted by solving

XTM
nm + N 2 XTE

pq = 0 (16)

for any coupled TMnm–TEpq system as follows:

N 2
= −

(kajn)′(kayn)
′(

kajp
)(

kayp
) . (17)

It can be shown numerically that this choice of modal
coupling N not only provides resonance for any choice of
ka, but also the lowest possible Q through a TM1m–TE1q

system for sufficiently small ka, e.g., ka ⪅ 2. The same
analysis can be made for the coupling of two TM modes or
two TE modes by modification of the resonance condition
in (16); however, these modes may not resonate at electrically

Fig. 4. Derivation for the equivalent TM1m interior non-Foster circuit.

small sizes. Some choices of mode order and electrical size
yield negative N 2 and, hence, imaginary N . If this result
is obtained, it implies that the modes under consideration
both have either capacitive or inductive input reactances at
this electrical size and, hence, cannot be made to resonate.
As would be expected, it can also be shown that the Laurent
series expansion of (17) about ka = 0 for values n = 1 and
p = 1 yields

N 2
=

2
(ka)2 +O(1) (18)

and for n = 1 and p = 2 yields

N 2
=

10
3(ka)2 +O(1) (19)

as was shown by extreme truncation of the interior circuits,
assuming small ka, by Thal [5]. By contrast, the newly derived
equations are exact and valid for all ka.

III. CIRCUIT-BASED DERIVATION OF
QUALITY FACTOR AND AR

A. Non-Foster Equivalent Circuits

The two-element methodology outlined in Section II is
suitable to determine impedance quantities of the modes. How-
ever, to facilitate the calculation of other quantities, expansion
of the Bessel-type loads into more traditional circuit elements
proves useful. Along with the infinite ladder network for the
internal fields, Thal [3] also provides “non-Foster” equivalent
circuits (circuits using negative inductors and capacitors),
though does not use them in determining analytical limits
on Q. The process for obtaining these non-Foster equivalent
circuits is shown pictorially in Fig. 4, with the TM1m mode
as an example. The resulting circuits for the TM1m and
TE1q modes are shown in Fig. 5. It can be seen from the
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Fig. 5. Equivalent non-Foster representation of (a) TM1m and (b) TE1q modal
circuits.

derivation and resulting circuits that to generate the non-Foster
equivalent circuit, the interior circuit is the non-Foster image
of the exterior circuit in Fig. 1. The interior circuit is then
terminated in a impedance/admittance j tan(ka) (as opposed
to a resistance), depending on which of the two circuits of
Fig. 1 the mode corresponds to.

These circuits can be used to verify the results of Section II.
As an example, the TM1m–TE1q system, the modal coupling
quantity N 2, which yields resonance, can now be found from
direct circuit analysis. The input reactances of both circuits
are computed and combined in the same way as (16) to find
N 2 as follows:

N 2
=

2(ka)3
− 2ka +

[
1 − 3(ka)2

+ (ka)4] tan(2ka)

2(ka)3
+
[
(ka)4

− (ka)2] tan(2ka)
(20)

which is the special case of (17) for n = p = 1, expressed
using only elementary functions.

B. AR and Conditions for Circular Polarization

In applying the equivalent circuits of Fig. 5 to the modal
coupling circuit, analytical expressions for the power delivered
to the terminating resistance, and hence the far-field of each
mode, can be derived via direct circuit analysis once said
equivalent circuits are substituted into Fig. 2. The ratio of
currents flowing through the TM1m (I TM

1m,R) and TE1q (I TE
1q,R)

resistances can be found, including a phase term. This same
phase term is also obtained when the modes are solved in
isolation (i.e., not coupled via the transformer network) and
combined. The currents running though the terminating resis-
tor (of unity resistance) of each modal circuit when excited
by a unit current are

I TM
1m,R = je− jka

· (kaj1)′ (21)

I TE
1q,R = −e− jka

· (kaj1) (22)

where the constituent elementary functions have been reassem-
bled as Bessel functions for purposes of comparison with
previous results. It is seen that (8) and (9) (nonunity resistances
excited by a unit current), and (21) and (22) (nonunity currents

flowing through a unit resistance) suggest the same dissipated
powers, with their different methods of analysis.

These results can then be applied to the coupled
TM1m–TE1q circuit to derive the ratio

I TE
1q,R

I TM
1m,R

= j N ·
kaj1

(kaj1)′
(23)

where the TE mode current is scaled by the transformer
using the turns ratio N . The current ratio of (23) implies
that the modes under investigation always have quadrature
phase as was shown, albeit only numerically, by Thal [5].
With analytical results for both phase and amplitude, the AR
of a spherical wire antenna radiating only the TM1m and TE1m

modes is

AR2
= max

(
RTM

1m

N 2 RTE
1m

,
N 2 RTE

1m

RTM
1m

)
. (24)

This AR applies in all directions, as the modes under con-
sideration have the same radiation pattern, though radiate
in orthogonal and linear polarizations. This equation then
specifies the modal coupling N for circular polarization of
TM1m–TE1m radiators as follows:

N 2
=

RTM
1m

RTE
1m

. (25)

When N is selected for resonance, the AR for electrically
small TM1m–TE1m radiators is

AR2
= −

(kaj1)′(kay1)

(kaj1)(kay1)
′

(26)

which is the AR of the lowest Q TM1m–TE1m electrically
small spherical wire antenna.

C. Stored Energy and Quality Factor

Using the circuits in Fig. 5, the exact stored energy of
the modes can also be determined. While the majority of
the circuit analysis needed to find the stored electric and
magnetic energy is to find the currents through and voltages
across inductors and capacitors, the stored energy in the
impedance/admittance j tan(ka) is also required. Two equa-
tions from [14] of a lossless load of reactance X can be
modified to fit into this problem

ωWe∣∣I ∣∣2 =
1
8

(
kaX ′

− X
)

(27)

ωWm∣∣I ∣∣2 =
1
8

(
kaX ′

+ X
)

(28)

where unlike [14], the primes still indicate differentiation with
respect to ka. It would be appealing to substitute (10) or (11)
into (27) and (28) and obtain general equations for the stored
energy of the modes, though this would be an approximation.
Equations (27) and (28) apply only to reactances of lossless
systems, and therefore, all uses of these equations herein are
applied only to impedances with Re(Z) = 0 to maintain an
exact analysis. Noting this, the equations can be applied to the
j tan(ka) loads to obtain

ωWe(z = j tan ka)∣∣I ∣∣2 =
ka csc2 ka − cot ka

8
(29)
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TABLE I
COEFFICIENTS FOR THE STORED ENERGY EQUATIONS OF THE TM1m AND TE1q MODES

ωWm(z = j tan ka)∣∣I ∣∣2 =
ka csc2 ka + cot ka

8
(30)

ωWe(y = j tan ka)∣∣I ∣∣2 =
ka sec2 ka + tan ka

8
(31)

ωWm(y = j tan ka)∣∣I ∣∣2 =
ka sec2 ka − tan ka

8
. (32)

With these, the stored energy of the modes can be determined
via circuit analysis to derive equations of stored energy in
terms of only elementary functions. It is possible to separate
interior and exterior stored energy in this manner. For the
purposes of later work in this article, the total stored energies
of the TM1m and TE1q modes are derived and found to be

ωW1m∣∣I ∣∣2 =
1

16

1∑
i=−4

(ka)i [ai + bi cos(2ka) + ci sin(2ka)] (33)

with coefficients ai , bi , and ci given in Table I. With the results
obtained thus far, the Q of a coupled TMnm–TEpq system is
then obtained analytically as follows:

Q = 2ω
max

(
W TM

e,nm + N 2W TE
e,pq , W TM

m,nm + N 2W TE
m,pq

)
1
2 RTM

nm +
1
2 N 2 RTE

pq

(34)

where the stored energies W are those of a unit current
excitation.

While the above methodology is general and applies to all
modes, solving a circuit for every mode may be impractical for
a more general analysis. Thus, a general procedure is outlined
below to generate stored energy equations, separating electric
from magnetic energy, in the interior and exterior regions, for
any order. The stored energy of a lossless interior region is
simple to obtain; the equations

ωWe∣∣V ∣∣2 =
1
8

(
kaB ′

+ B
)

(35)

ωWm∣∣V ∣∣2 =
1
8

(
kaB ′

− B
)

(36)

found in [14] for a lossless load of susceptance B can be used
to obtain the stored energy from the inwardly directed wave
impedances of (5) and (6) [via B = Im(1/Z)] as follows:

ωW TM−
e,nm∣∣V TM

nm

∣∣2 =
ka
[
(kajn)′

]2
− kajn

[
ka(kajn)′′ − (kajn)′

]
8
[
(kajn)′

]2 (37)

ωW TM−
m,nm∣∣V TM

nm

∣∣2 =
ka
[
(kajn)′

]2
− kajn

[
ka(kajn)′′ + (kajn)′

]
8
[
(kajn)′

]2 (38)

ωW TE−
e,pq∣∣V TE

pq

∣∣2 =

ka
[
(kajn)′

]2
−kajp

[
ka
(
kajp

)′′
+
(
kajp

)′]
8
(
kajp

)2 (39)

ωW TE−
m,pq∣∣V TE

pq

∣∣2 =

ka
[
(kajn)′

]2
−kajp

[
ka
(
kajp

)′′
−
(
kajp

)′]
8
(
kajp

)2 (40)

where the voltages can be determined from the currents
supplied to the mode as follows:

V s
nm =

(
Rs

nm + j X s
nm

)
I s
nm (41)

recalling that s represents either TM or TE. The choice to
determine the stored energy in terms of applied voltage is
chosen, as this voltage is the same for the interior and exterior
networks. Similar to (27) and (28), (35) and (36) cannot be
applied to lossy loads and, thus, cannot be used to compute the
stored energy from the outwardly directed wave impedances
of (3) and (4). Instead, a more general circuit approach is
taken. The exterior circuits of Fig. 1 can be seen as a cascade
of T or π networks, depending on if the mode is TM or
TE—with some elements acting as perfect open or short
circuits in the case of odd n (being reactances with zero
inductance/capacitance). Given the relations between reactance
values of the circuit, the currents and voltages at one port of
these two-port sections are determined by those at the other
port as follows:[

V s
i−2

I s+
i−2

]
=

[
As

i Bs
i

C s
i Ds

i

] [
V s

i
I s+
i

]
(42)

where

ATM
i = DTE

i =
(ka)2

− 2i2
+ 3i − 1

(ka)2 (43)

BTM
i = CTE

i = j
(2i − 1)

(
i2

− i − (ka)2)
(ka)3 (44)

CTM
i = BTE

i = j
1 − 2i

ka
(45)

DTM
i = ATE

i =
(ka)2

− 2i2
+ i

(ka)2 . (46)

The initial voltage, having the largest subscript value i = n
(n as usual being the mode order, to be replaced by p for TE
modes), is the same voltage given in (41), with I s

nm taken as
unity. The initial currents are

I s+
n = −

V s
nm

Z s+
nm

(47)



1642 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 2, FEBRUARY 2024

where the sign of these currents is simply a matter of what
direction they are defined to flow and Z s+

nm is the impedance
of (3) or (4). With the voltages and currents computed, the
stored energies of the exterior region are

ωW TM+
e,nm∣∣I TM

nm

∣∣2 =

n∑
i=1 or 2

i≡n (mod 2)

(i − 1)
∣∣I TM+

i−2

∣∣2 + i
∣∣I TM+

i

∣∣2
4ka

(48)

ωW TM+
m,nm∣∣I TM

nm

∣∣2 =

n∑
i=1 or 2

i≡n (mod 2)

ka
∣∣I TM+

i−2 −I TM+

i

∣∣2
8i − 4

(49)

ωW TE+
e,pq∣∣I TE

pq

∣∣2 =

p∑
i=1 or 2

i≡p (mod 2)

ka
∣∣V TE

i−2 − V TE
i

∣∣2
8i − 4

(50)

ωW TE+
m,pq∣∣I TE

pq

∣∣2 =

p∑
i=1 or 2

i≡p (mod 2)

(i − 1)
∣∣V TE

i−2

∣∣2 + i
∣∣V TE

i

∣∣2
4ka

(51)

where i ≡ n (mod 2) indicates that i and n are always of
the same parity (the sum is over only odd or even integers,
depending in the parity of n), and likewise for i ≡ p (mod 2).

With the above equations determined, the Q of a general
spherical wire antenna can be found, supporting a single mode
or multiple modes. For a single mode, the Q is

Qs
nm = 2ω

max
(
W s+

e,nm + W s−
m,nm, W s+

m,nm + W s−
m,nm

)
1
2 Rs

nm

(52)

where again a unit current excitation I s
nm is assumed without

loss of generality. For multiple modes, this Q is

Q = 2ω

max

(∑
n,m,s

(
N s

nm

)2W s
e,mn,

∑
n,m,s

(
N s

nm

)2W s
m,mn

)
1
2

∑
n,m,s

(
N s

nm

)2 Rs
mn

(53)

where I s
nm is taken as unity for all modes (the relative modal

excitation accounted for via inclusion of transformer turn
ratios in the above equation)

W s
e,nm = W s+

e,nm + W s−
e,nm (54)

and

W s
m,nm = W s+

m,nm + W s−
m,nm . (55)

The only unknowns in (53) are the electrical size ka and
transformer turns N s

nm . The quantity N s
nm can be obtained

from (12), using the far-field radiation pattern by integrating
over the far-field pattern and applying the orthogonality of
the modes to obtain P s

nm . Thus, the Q of a spherical wire
antenna is fully defined by its electrical size and radiation
pattern, if known exactly.

IV. QUALITY FACTOR AND POLARIZATION
PURITY TRADE-OFF

The exact relationship between the AR and Q on the
electrical size ka and the modal coupling N has been demon-
strated. It will now be shown analytically that the lowest Q
TM1m–TE1m antenna has, in general, elliptical polarization,

Fig. 6. Relationship between AR and Q. Colored lines: trade-off between
Q and AR for various electrical sizes while varying N . Black line: AR with
N selected for minimum Q while varying electrical size. Dot: elliptically
polarized antenna of Best [16] included for reference.

whereas circular or linear polarization is usually preferred.
First, circular polarization is analyzed, where the required
compromise on Q for better polarization purity is demon-
strated. With both the AR and Q determined by ka and N ,
their relationship can be evaluated quantitatively. A first look is
given in Fig. 6, where Q and AR are the axes, while N is left
to vary for constant ka, or vice versa. In effect, this plot states
the lower bound on Q for a required AR and electrical size.
An elliptically polarized spherical wire antenna (ka ≈ 0.263)
proposed by Best [16] is annotated on the plot. As can be
seen, Best [16] achieved nearly the best possible Q (61.7) for
the reported AR of 3 dB and the antenna’s electrical size. The
contents of the plot are well summarized by considering the
Laurent series expansion of Q in terms of ka, with coefficients
dependent on AR

QNCP =
1

AR2
+ 1

(
3

(ka)3 +
3 + 21AR2/20

ka

)
+O(ka) (56)

which applies for “near-circular polarization” having AR more
circularly polarized than (26), the AR of a resonant antenna.
By the nature of its derivation, (56) is increasingly accurate for
smaller ka. Equation (56) is, thus, a convenient shorthand for
computing the required compromise on circularly polarized
ESA Q for improved AR. It is clear from the form of the
equation that the 1/(ka) term can be discarded for ka ≪ 1.

Equation (25) can be used to determine the modal cou-
pling N , which achieves circular polarization, a known
deviation from the ideal modal coupling, which provides
minimum Q. The resulting Q can then be computed with (34).
Similarly, linear or lowest Q elliptical polarization can be
analyzed by the choice of N outlined above. A plot of the
smallest Q air-core spherical wire antenna, which provides
various polarizations, is shown in Fig. 7. It can be seen that
both linearly and circularly polarized antenna Q curves con-
verge to 1.5QChu as ka → 0. Notably, this comparison implies
that while elliptical polarization yields the lowest Q, of the
polarizations considered “pure”, linear polarization—and not
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Fig. 7. Minimum Q for a TM1m–TE1m spherical wire antenna for var-
ious polarizations. Approximations are taken ignoring Laurent series terms
O[(ka)5

] and higher.

circular polarization—yields the lowest Q of an electrically
small spherical wire antenna. For convenience, Laurent series
approximations for the Q of circularly polarized (QCP), lin-
early polarized (QLP), and elliptically polarized (QEP) lower
bounds are provided, valid for small ka, and are compared
against the exact expressions in Fig. 7

QLP =
3

2(ka)3 +
3

5ka
+

587ka
1400

+
757(ka)3

9000
+O

[
(ka)5] (57)

QCP =
3

2(ka)3 +
81

40ka
−

11ka
700

+
1157(ka)3

50400
+O

[
(ka)5] (58)

QEP =
1

(ka)3 +
11

10ka
+

11ka
700

+
14141(ka)3

63000
+O

[
(ka)5]. (59)

Note that the limiting form of (59) agrees with the result
obtained in [13] for the self-tuned, free-space, electric-current
spherical dipole antenna.

By substituting AR = 1 into (56), the first two terms
of (58) are recovered. Equation (57), being the Q of the
TM1m modes, is similar to that of Hansen and Collin [17] who
obtain their expression by a curve fitting procedure (and, thus,
their expression contains floating point numbers rather than
exact fractions). In contrast, the Laurent series approach taken
here suggests higher order terms, which provide improved
accuracy for larger ka values, and a prescription for how to
obtain higher order terms for accuracy at larger ka should
it be required. From the above analysis, it is clear why
Hansen and Collin [17] had difficulty fitting to the curve
Q = A/(ka) + B/(ka)2

+ C/(ka)3, since even order terms
are not present in the above expansions. From the decimals
obtained from curve fitting, Hansen and Collin [17] suggest an
alternative approximation with irrational coefficients, though
the above has shown no irrational numbers are present in the
lowest order terms. In both cases, agreement is seen that the
lowest order term is 3/[2(ka)3

].

V. COMPARISON WITH FIELD INTEGRATION METHOD

With exact equations for Q of the circuits of Thal [5]
determined, agreement between circuit and field perspectives

is readily examined. Collin and Rothschild [2] suggest that
their field integration-based Q values are the same as those
for Chu’s circuits (when the circuits are solved exactly) for
the n ∈ {1, 2, 3} modes, though they did not verify any higher
order modes on account of the algebraic complexity of the
problem. Both calculations consider stored energy only exter-
nal to the Chu sphere, and the Collin and Rothschild analysis
did not consider coupled modes. Fante [8] then provided
expressions for Q considering both electric and magnetic
energies external to the Chu sphere, allowing for coupled-
mode Q calculation from field integration, and quantified
the difference between his equations against the approximate
expressions for Q provided by Chu [1]. In Fante’s work,
agreement is only shown for small ka. McLean [4] then found
that when the circuits are solved exactly for n = 1, the
coupled combinations of the TM1m and TE1q modes agree with
Fante [8], as well as with Collin and Rothschild [2] for all ka.
To date, the circuit and field integration formalisms have been
shown to agree only to this very limited extent. What remained
to be shown was that the general nth-order network of Chu
(when solved exactly) and the field integration techniques
agreed in general. One factor constraining this discovery was
the fact that exact solutions to Chu’s circuits for the nth-order
circuit were not available. Later, Thal [5] generalized Chu’s
circuits to account for energy both interior and exterior to the
Chu sphere of a spherical wire antenna, while Hansen et al. [9]
performed the same generalizations using the field integration
techniques. In this section, the agreement of the circuit and
field formalisms will be shown in all cases of electric current
excitation by way of comparing the equations derived herein
(based on the networks of Thal [3]) with Hansen et al. [9],
which both account for stored energy exterior and interior of
the Chu sphere and present exact equations for arbitrary mode
order and electrical size.

To make this comparison, a subset of Q’s are defined. In all
cases, the Q definitions are the usual

Q =
2ωW

P
. (60)

An external Q (which will be denoted with a superscript +)
is where W is taken as the energy exterior to the Chu sphere,
whereas an internal Q (denoted with superscript −) is where
W is taken as the energy interior to the Chu sphere. Similarly,
an electric Q (with roman/upright subscript e) is where W
is taken as the electric energy only, regardless of whether it
is the larger of the electric or magnetic energies. Similarly,
a magnetic Q (with roman/upright subscript m) is that where
W is the magnetic energy only. The power P is the same
radiated power in all cases. These qualifiers can be combined
and associated with a mode, e.g., external electric TM1m

Q denoted as QTM+

e,1m , which is the Q of (1). With these
subdivisions, the total Q of a mode is then

Qs
nm = max

{
Qs+

e,nm + Qs−
e,nm, Qs+

m,nm + Qs−
m,nm

}
. (61)

The utility in this subdivision is that all four permutations
of external, internal, electric, and magnetic can be compared
separately to establish complete agreement in Q predictions
between the circuit and field integration approaches. Similar
subsets are defined in [8] and [9], notated with primes.
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For the claims of equality that follow, overviews for the
proofs are given in Appendix B. The equations of this article
and those of [9] show that internal Q values of both circuit and
field integration formalisms are identical for all mode orders n,
for all ka, and for both TM and TE modes. This verification
is performed by simply equating the expressions for Q− of
the two formalisms, which are then manipulated to show the
equality is true. This was verified analytically for the general
nth-order case. The external Q requires a more sophisticated
argument, owing to the forms derived from the circuit formal-
ism. The external Q is shown to agree between circuit and field
integration formalisms via an argument from mathematical
induction. For modes n ∈ {1, 2}, the external electric and
magnetic Q values are found analytically equivalent between
the two formalisms—for both TM and TE modes—in the
same manner as the internal Q− expressions. This can be
verified by simply expanding the sums for externally stored
energy, incorporating them into a measure of Q, and then
showing equality with similar expressions derived from [9].
These n ∈ {1, 2} serve as the base case for the inductive
argument. Next, recurrence relations can be derived from the
circuit formalism, relating the Q+ of mode order n mode to
that of mode order n + 2. The relations are

QTM+

e,n+2,m = QTM+

e,nm +
4

RTM
nm

·
(n + 1)

∣∣I TM+
n

∣∣2+(n + 2)
∣∣I TM+

n+2

∣∣2
4ka

(62)

QTM+

m,n+2,m = QTM+

m,nm +
4

RTM
nm

·
ka
∣∣I TM+

n − I TM+

n+2

∣∣2
8n + 12

(63)

QTE+

e,p+2,q = QTE+

e,pq +
4

RTE
pq

·
ka
∣∣V TE

p − V TE
p+2

∣∣2
8p + 12

(64)

QTE+

m,p+2,q = QTE+

m,pq +
4

RTE
pq

·
(p + 1)

∣∣V TE
p

∣∣2+(p + 2)
∣∣V TE

p+2

∣∣2
4ka

(65)

where the additional currents and voltages are found from[
V s

n+2
I s+
n+2

]
=

[
As

n+2 Bs
n+2

C s
n+2 Ds

n+2

]−1 [
V s

n
I s+
n

]
(66)

and V s
n and I s+

n are the voltage and current used to pro-
duce Qnm , all assuming (without loss of generality) a mode
excitation I s

nm of unity.
It is found that all external Q+ of this work and equivalent

formulations of these Q+ from the externally stored energies
and radiated powers of [9] obey these recurrence relations for
arbitrary mode order. Thus, since all external Q+ equations
between this work and that of [9] agree for the cases n ∈ {1, 2},
and both formalisms relate the mode order n + 2 to the
mode order n in exactly the same way, they are shown to
be equivalent for all n via a proof by mathematical induction.
Therefore, the circuit work of Thal [5] and the field integration
work of Hansen et al. [9] have been shown to make the exact
same predictions of Q for arbitrary multipoles, at arbitrary
electrical sizes, accounting for electric currents, which excite
stored electric and magnetic energy both inside and outside
of a spherical wire antenna. Furthermore, it can then be

inferred that the bases for these works—circuits derived from
modal wave impedances (Chu [1]), and field integration with
subtraction of the far fields (Collin and Rothschild [2] and
Fante [8])—produce the exact same predictions in all cases
of electric current excitation. Previous work by McLean [4]
and Fante [8] demonstrates equality between circuit and field
integration formalisms for special cases of low-order modes,
only accounting for energy external to the Chu sphere. This
work then generalizes the unity of these formalisms to all
multipoles, accounting for fields interior and exterior to the
Chu sphere, without any assumption on electrical size ka.
While special case agreement is not atypical for many other Q
calculations of antennas (e.g., agreement at small ka), it is now
clear that these two methods of computing Q are completely
equivalent (at least for the class of air-filled spherical wire
antennas carrying electric currents).

VI. CONCLUSION

Exact properties of air-core spherical wire antennas have
been revisited from the circuit perspective. It is shown that the
circuit analysis approach to the study of ESAs via spherical
waves is in agreement with the field integration perspective
for arbitrary multipoles. The Q predictions concerning stored
energy of the interior region of a spherical wire antenna from
circuit and field integration formalisms are compared to show
direct equality in the nth-order case, while an argument from
mathematical induction is used for Q predictions concern-
ing the energies stored in the exterior of a spherical wire
antenna. Furthermore, the presented analytical circuit approach
established exact equations for the radiated power, resonance
conditions of coupled-mode systems, and quantitative demon-
strations of the trade-off of quality factor and polarization
purity. Some Laurent expansions are taken to show these
new results to be the general cases of previous work, while
other Laurent expansions provide new and simple equations to
quantify the limits of small antennas, for use when the exact
Bessel-related expressions prove to be superfluous.

APPENDIX A
SAMPLE COMPUTATION OF BESSEL FUNCTION-RELATED

LAURENT SERIES EXPANSIONS

This appendix serves as a guide for the computation of
Laurent series expansions involving spherical Bessel functions,
as they appear in the main body of this article. Derivation
of (13) is taken as an example, though other Laurent series’ can
be obtained via a similar procedure. Spherical Bessel functions
of the second kind can be converted to those of the first kind
as yn = (−1)n+1 j−n−1, which is convenient so as to use only
one Bessel-related power series. Starting with

XTM
10 = −(kaj1)′(kay1)

′
= −(kaj1)′(kaj−2)

′ (A.1)

the product rule can be used to obtain

XTM
10 = −

[
j1 j−2 + kaj1 j−2 + kaj ′

1 j ′

−2 + (ka)2 j ′

1 j ′

−2

]
. (A.2)

Hereafter, a known series expansion of the spherical Bessel
function of the first kind is applied [18]

jn =

∞∑
i=0

(
−

1
2

)i
(ka)2i+n

i !(2n + 2i + 1)!!
(A.3)
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and its derivative

j ′

n =

∞∑
i=0

(2i + n)
(
−

1
2

)i
(ka)2i+n−1

i !(2n + 2i + 1)!!
(A.4)

to obtain expansions of the functions in (A.2). Only the first
terms of each expansion are required to determine the (ka)−1

term of the Laurent series expansion of (A.1), as determined
a posteriori. These required terms are

j1 =
ka
3

+O
[
(ka)3] (A.5)

j ′

1 =
1
3

+O
[
(ka)2] (A.6)

j−2 = −
1

(ka)2 +O(1) (A.7)

j ′

−2 =
2

(ka)3 +O
[
(ka)−1]. (A.8)

Upon substituting these truncated expansions into (A.2), the
TM10 input reactance is found to have the Laurent series
expansion of

XTM
10 = −

2
3ka

+O(ka). (A.9)

Other Laurent series expansions in this article can be found
by a similar procedure. In cases involving trigonometric func-
tions, their known Taylor or Laurent series expansions are to
be employed (e.g., as tabulated in [18]). The only remaining
complication is when spherical Bessel functions appear in the
denominator of an expression to be expanded. In this case,
the required series expansion is obtained from polynomial
long division, starting with the lowest order terms of (A.3)
or (A.4) (division by increasing powers). While, for an exact
result, the division contains infinitely many steps, a truncated
expression can be obtained, which is sufficient for the Laurent
series exercise to which it is to be applied. Some pertinent
examples are provided for reference, to high order of ka

1
j1

=
3

ka
+

3ka
10

+
27(ka)3

1400
+

19(ka)5

18000
+O

[
(ka)7] (A.10)

1
j ′

1
= 3 +

9(ka)2

10
+

303(ka)4

1400
+O

[
(ka)6] (A.11)

1
j−2

= −(ka)2
+

(ka)4

2
−

3(ka)6

8
+O

[
(ka)8] (A.12)

1
j ′

−2
=

(ka)3

2
−

(ka)7

16
+

(ka)9

144
+O

[
(ka)11]. (A.13)

Series expansions of reciprocals of sums of spherical Bessel
functions can be obtained in a similar manner. Alternately,
polynomial long division of increasing powers can be per-
formed directly after all functions are replaced with their series
expansions.

APPENDIX B
PROOF OUTLINE OF EQUALITY BETWEEN CIRCUIT

AND FIELD INTEGRATION QUANTITIES

A. Appendix Overview

For the proof of equality between the circuit and field inte-
gration formalisms, three results need to be proved: equality

between formalisms of the internal Qs−
nm , equality between

formalisms of the base cases Qs+
1m and Qs+

2m , as well as showing
both formalisms obey the recurrence relations in (62)–(65). For
each of these, four permutations (electric/magnetic TM and
electric/magnetic TE) need to be shown. However, between
these four permutations, the proofs are quite similar; therefore,
for brevity, only the electric TM case will be shown here.

B. Internal Quality Factor

The quantity QTM−
e,nm as derived herein is

QTM−

e,nm =
ωW TM−

e,nm∣∣V TM
nm

∣∣2 ·
4
∣∣RTM

nm + j XTM
nm

∣∣2
RTM

nm
(B.1)

which can be expanded to

QTM−

e,nm =
ka
[
(kajn)′

]2
− kajn

[
ka(kajn)′′ − (kajn)′

]
8
[
(kajn)′

]2

· 4
{[

(kajn)′
]2

+
[
(kayn)

′
]2
}
. (B.2)

The equivalent quantity from [9], denoted QTM−
e,nm , is

QTM−

e,nm =

∣∣(kah(1)
n

)′∣∣2[
(kajn)′

]2

[
(ka)3

2

(
j2
n−1 − jn−2 jn

)
− nkaj2

n

]
.

(B.3)

Since ∣∣(kah(1)
n

)′∣∣2[
(kajn)′

]2 =

[
(kajn)′

]2
+
[
(kayn)

′
]2[

(kajn)′
]2 (B.4)

upon assuming QTM−
e,nm = QTM−

e,nm , these terms cancel from their
respective sides to obtain

ka
[
(kajn)′

]2
− kajn

[
ka(kajn)′′ − (kajn)′

]
= (ka)3( j2

n−1 − jn−2 jn
)
− 2nkaj2

n . (B.5)

Expanding the derivates using standard identities and rearrang-
ing the left-hand side give

(ka)3 j2
n−1 − j2

n

[
2nka − (ka)3]

− (ka)2(2n − 1) jn−1 jn
= (ka)3( j2

n−1 − jn−2 jn
)
− 2nkaj2

n (B.6)

which is readily shown true with the recurrence relation

jn−1 + jn+1 =
2n + 1

ka
jn. (B.7)

C. Base Case for External Quality Factor

In this section, the n = {1, 2} case is shown. The quantity
QTM+

e,nm as derived herein is

QTM+

e,nm =
4ωW TM+

e,nm∣∣I TM
nm

∣∣2 RTM
nm

. (B.8)

The field integration expression from [9] is

QTM+

e,nm = ka + nka
∣∣h(1)

n

∣∣2− (ka)3

2

[∣∣h(1)
n−1

∣∣2−Re
{

h(1)∗

n−2h(1)
n

}]
.

(B.9)
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QTM+

e,n+2,m −QTM+

e,nm =
2n + 3
(ka)3

{∣∣h(1)
n

∣∣2[(ka)2((ka)2
− 2(n + 2)(2n + 1)

)
+ (n + 2)(2n + 3)(2n + 1)2]

+(ka)2
∣∣h(1)

n−1

∣∣2(n + 2)(2n + 3) + 2ka · Re
{

h(1)∗

n−1h(1)
n

}[
(ka)2

− (2n + 3)(2n + 1)
]
(n + 2)

}
(B.18)

From (8) and (48), QTM+

e,1m is

QTM+

e,1m = ka
∣∣h(2)

1

∣∣2 =
1

(ka)3 +
1

ka
(B.10)

as expected. The quantity QTM+

e,1m is readily found evaluate to
the same result with the simplification∣∣h(1)

0

∣∣2 − Re
{

h(1)∗

−1 h(1)
1

}
=

2
(ka)2 (B.11)

recognizing that |h(1)
n | = |h(2)

n |. The n = 2 case is better
handled by invoking trigonometric/exponential representations
of spherical Bessel functions after simplifying as much as pos-
sible, since their order is known. After further manipulation,
it can be shown that

QTM+

e,2m = QTM+

e,2m =
18

(ka)5 +
6

(ka)3 +
3

ka
(B.12)

which is consistent with [2].

D. Induction Step for External Quality Factor

Expanding the stored energy in (B.8) gives

QTM+

e,nm =
4

RTM
nm

n∑
i=1 or 2

i≡n (mod 2)

(i − 1)
∣∣I TM+

i−2

∣∣2 + i
∣∣I TM+

i

∣∣2
4ka

(B.13)

where as usual, QTM+
e,nm = 2ωW TM+

e,nm /PTM
nm . Let the input

current to this mode be unity, without loss of generality. Now,
increasing the mode order by 2 involves simply appending a
lossless high-pass T network to the input of the mode under
investigation (a π network for the TE case). The voltages
and currents can simply be solved in reverse, assuming a
larger input current, which maintains the unit current at the
branch, which was the input to the nth-order mode. This is
the role of the matrix equation (66). Crucially, the radiated
power in this case remains unchanged, as the additional T
network is lossless; therefore, PTM

n+2,m = PTM
nm = (1/2)RTM

nm for
this analysis. The stored electric energy (multiplied by angular
frequency) of the additional T network is

ω
(
W TM+

e,n+2,m − W TM+

e,nm

)
=

(n + 1)
∣∣I TM+

n

∣∣2 + (n + 2)
∣∣I TM+

n+2

∣∣2
4ka

.

(B.14)

Since under the proposed current excitations

2ωW TM+

e,n+2,m

PTM
n+2,m

=
2ωW TM+

e,nm

PTM
nm

+
2ω
(
W TM+

e,n+2,m − W TM+
e,nm

)
PTM

nm
(B.15)

it is clear that

QTM+

e,n+2,m = QTM+

e,nm +
4

RTM
nm

·
(n + 1)

∣∣I TM+
n

∣∣2+(n + 2)
∣∣I TM+

n+2

∣∣2
4ka

(B.16)

follows directly from the external TM circuits. After consid-
erable manipulation, it can be shown that

QTM+

e,n+2,m =QTM+

e,nm +
4

RTM
nm

·
(n + 1)

∣∣I TM+
n

∣∣2+(n + 2)
∣∣I TM+

n+2

∣∣2
4ka

(B.17)

can be expanded to (B.18), as shown at the top of the page,
and shown to be true.
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