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Pulsed Electromagnetic Excitation of a Narrow
Slot Between Two Dielectric Halfspaces

Martin Štumpf , Senior Member, IEEE, Giulio Antonini , Senior Member, IEEE,
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Abstract— The transient electromagnetic (EM) excitation of a
narrow slot in a perfectly electrically conducting (PEC) screen
that separates two homogeneous dielectric halfspaces, a simplified
model of a typical feeding structure of leaky lens antennas,
is analyzed numerically in the time domain (TD). The problem
is formulated using the TD reciprocity theorem of the time-
convolution type and subsequently solved with the aid of the
Cagniard-DeHoop method of moments (CdH-MoM). Numerical
results are validated using a general-purpose EM-field solver.

Index Terms— Cagniard-DeHoop method of moments (CdH-
MoM), slot antennas, time-domain (TD) analysis, transient
electromagnetic (EM) field.

I. INTRODUCTION

THE need for evaluating the electromagnetic (EM) field
radiation from slot antennas or undesired penetration

through a crack in a shielded enclosure has prompted research
into the wave diffraction by an aperture in a conducting plane
(e.g., [1], [2], [3], [4]). An important contribution to these
efforts has been presented by Galejs [5], who thoroughly
analyzed the frequency-domain (FD) response of an electric-
current excited infinite slot on a lossy dielectric halfspace. This
model, originally intended to provide an approximate means
for the performance analysis of island antennas (e.g., [6]),
has been later examined with regard to leaky-wave (LW)
phenomena [7], thereby providing theoretical grounds for
designing slot feeding structures of ultrawideband (UWB) LW
lens antennas [8], [9], [10], [11].

LW antennas have a demonstrated technological effective-
ness [12], [13]. At this moment, their operating principle and,
as a direct consequence, their design are intrinsically related
to sinusoidally in time varying EM fields, i.e., in FD. But, the
increasingly sophisticated modulations currently employed for
boosting the data rate in digital transfer inherently squeeze
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the interval over which steady state can be assumed. This
trend justifies the attempt to understand the underlying time-
domain (TD) propagation mechanism of LW antennas, with
an eye on (possibly) inferring bounds for the time harmonic
analysis/design. As a first step, this article sets itself the task
to go beyond the existing FD models by analyzing the slot
feeding under the pulsed-field excitation in the TD. With
such a goal in mind, we introduce here a novel, integral-
equation (IE) computational model enabling an efficient TD
analysis of the space-time distribution of magnetic-current
surface density induced over a narrow finite slot in a
perfectly electrically conducting (PEC) screen that separates
two dielectric halfspaces.

The presented (full-wave) 3-D computational model
is based on the Cagniard-DeHoop method of moments
(CdH-MoM), a TD-IE technique that has recently been applied
to analyzing metasurfaces [14], [15], and other basic EM
radiation and scattering problems [16], [17], [18], [19], [20],
[21]. All such numerical solutions rely essentially on two
basic ingredients: 1) the TD EM reciprocity theorem of the
time-convolution type [22, Sec. 28.2] and 2) a version of the
CdH joint-transform technique [23]. To that extent, the current
work bears some similarities to the previous studies on the
subject. In the computational model as proposed in this article,
however, we put forward several conceptual innovations.
Indeed, papers [14], [18] and [19] are limited to 2-D problem
configurations only. Furthermore, the transient analysis of wire
antennas [20], as well as its transmission-line approximation
incorporating the effect of finite ground conductivity [17],
is based on the thin-wire approximation. Therefore, the
pertaining computational models do incorporate the (1-D)
spatial variation of the filamentary current only, which implies
a TD impedance array that is not directly applicable to
the modeling of (surface) currents distributed over planar
(2-D) domains. Moreover, an initial study presented in [21]
is concerned with the EM plane-wave transmission through
a relatively small hole in a perfectly conducting sheet, which
makes it impossible to apply the pertaining (simple) model to a
lumped-source excited, finite-length slot located in the plane
of separation between two dielectric media—the (relatively
complex) 3-D EM problem analyzed in the present article.

First, the TD problem under consideration is formulated
using the TD Lorentz reciprocity theorem [22, Sec. 28.2].
(For the reader’s convenience, the pertaining TD reciprocity
relations are summarized in Appendix A.) In Section III, the
starting reciprocity relation is cast into the form of complex-
slowness integrals (see also Appendix A). The thus formulated
problem is further solved numerically in Section IV. This
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Fig. 1. Narrow slot in a PEC screen at the interface of two dielectric
halfspaces.

section is supplemented with Appendix B, where it is
demonstrated that (the elements of) the pertaining TD
admittance array that interrelates the unknown voltage at
discrete points along the narrow slot with the exciting current
can be, for the piecewise linear space-time basis, expressed
in closed form via the “Cartesian version” of the CdH
technique [15, Sec. 2.1.2]. Numerical examples demonstrating
the validity and efficiency of the proposed computational
model are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. PROBLEM DEFINITION

The slot antenna under consideration is shown in Fig. 1.
In this problem configuration, the position is specified by
the coordinates {x, y, z} with respect to a Cartesian reference
frame with the origin O and the standard base {i x , i y, i z}.
Consequently, the position vector can be expressed as
r = x i x + y i y + zi z. The time coordinate is denoted
by t . The time-convolution operator is denoted by ∗t .
The Heaviside unit-step function is H(t) and the impulsive
Dirac-delta distribution is represented by δ(t).

The slot in the infinite PEC screen occupies a bounded
domain S = {−w/2 ≤ x ≤ w/2,−L/2 ≤ y ≤ L/2, z = 0},
where w > 0 and L > 0 denote its width and length,
respectively. The former dimension is supposed to be relatively
small with respect to the spatial width of the excitation
pulse, i.e., (EM wavespeed × excitation pulse time width).
The conducting screen separates two homogeneous, isotropic,
and lossless halfspaces D1 and D2 that occupy z > 0 and
z < 0, respectively. Their EM properties are described by
(scalar, real-valued, and positive) electric permittivity and
magnetic permeability {ε1, μ0} and {ε2, μ0}, respectively. The
corresponding EM wavespeeds and admittances are given by
c1,2 = (μ0ε1,2)

−1/2 > 0 and η1,2 = 1/μ0c1,2 > 0, respectively.
The incorporation of losses is, in principle, feasible via the
so-called Schouten-Van der Pol theorem [22, p. 1056], for
instance, but at the expense of an additional integral [24].

Adopting the model introduced in Galejs [5], the exci-
tation is incorporated via a localized discontinuity of (the
y-component of) the total magnetic-field strength across the
surface of slot. Assuming the uniform spatial distribution of
the electric-current source in the transverse x-direction, the

pertaining electric-current surface density can be described by

∂ Jx(x, y, t) = i(t)�(x)δ(y − y0) (1)

where i(t) represents the exciting electric-current pulse (in A),
�(x) = 1 if x ∈ [−w/2, w/2] and �(x) = 0 elsewhere, and
y0 ∈ (−L/2, L/2) denotes the position of the lumped electric-
current source. In order to reduce the computational domain
to the surface of slot, the scattered EM field (denoted by s) is
defined here as the difference between the total fields in the
presence and in the absence of the slot. Hence, associating
the latter scenario with the excitation field (denoted by e), the
scattered electric- and magnetic-field strengths, Es and Hs,
respectively, can be defined as

{Es, Hs}(r, t) = {E, H}(r, t)− {Ee, He}(r, t). (2)

This definition implies that i z × Es = 0 over the
slotted PEC screen. In fact, the space-time distribution of
E s

x(x, y, 0, t) = Ex(x, y, 0, t) over the slot S, to be associated
with (the y-component of) the equivalent magnetic-current
surface density ∂K s

y(x, y, t) = −E s
x(x, y, 0, t), is the unknown

quantity we seek.

III. TRANSFORM-DOMAIN REPRESENTATION

The presented solution strategy is based on the CdH
joint-transform technique [23] that combines a one-sided
time Laplace transformation with the Fourier-type slowness
representation in the plane parallel to the interface. To show
the notation, the s-domain expressions are given for the
x-component of the electric-field strength. Accordingly, the
Laplace transform is defined via

Êx(x, y, z, s) =
∫ ∞

t=0
exp(−st)Ex(x, y, z, t)dt (3)

for {s ∈ R; s > 0}, and the corresponding slowness
representation reads

Êx(x, y, z, s) = (s/2π i)2
∫ i∞

κ=−i∞
dκ

×
∫ i∞

σ=−i∞
exp[−s(κx + σ y)]Ẽx(κ, σ, z, s)dσ (4)

where κ and σ are slowness parameters in the
x- and y-direction, respectively. Through the use of (3)
and (4) in the TD reciprocity relation (21) (see Appendix A),
we may find its equivalent expressed in terms of complex-
slowness integrals

(s/2π i)2
∫ i∞

κ=−i∞
dκ

∫ i∞

σ=−i∞
∂ K̃ s

y(−κ,−σ, s)

× [
H̃ B

y

(
κ, σ, 0+, s

) − H̃ B
y

(
κ, σ, 0−, s

)]
dσ

= −(s/2π i)2
∫ i∞

κ=−i∞
dκ

∫ i∞

σ=−i∞
∂ J̃x(κ, σ, s)

× ∂ K̃ B
y (−κ,−σ, s)dσ. (5)

To determine the relation between the testing source and fields,
we may employ the (transform-domain) source-type EM-field
representations [22, Eqs. (26.4–7) and (26.4–8)] supplied with
the pertaining excitation conditions

ẼB
x

(
κ, σ, 0±, s

) = −∂ K̃ B
y (κ, σ, s) (6)
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as approaching the slot from D1,2, respectively. The difference
of the thus excited magnetic testing fields can then be
expressed in the transform domain as

H̃ B
y

(
κ, σ, 0+, s

) − H̃ B
y

(
κ, σ, 0−, s

)
= −

[
η1

c2
1


2
1(σ )

c1�1(κ, σ )
+ η2

c2
2


2
2(σ )

c2�2(κ, σ )

]
∂ K̃ B

y (κ, σ, s) (7)

where

�1,2(κ, σ ) = (
1/c2

1,2 − κ2 − σ 2
)1/2

with Re
(
�1,2

) ≥ 0 (8)

and 
2
1,2(σ ) = 1/c2

1,2 − σ 2, respectively. Since the
left-hand side of (7) can be associated with the testing electric-
current surface density, the expression in the brackets can be
interpreted as the (transform-domain) aperture admittance. The
reciprocity relation (5) with (7) is the point of departure for
the numerical solution presented in Section IV.

IV. NUMERICAL SOLUTION

The first step in the numerical solution is the discretization
of the space-time solution domain. First, the spatial discretiza-
tion points along the narrow slot are chosen to be uniformly
distributed along �S = {x = 0, yn = −L/2 + n�y, z = 0}
for n = {1, . . . , N}, where N denotes the number of inner
nodes and �y = L/(N + 1) is the spatial step. Second, in a
similar fashion, the time axis is discretized as tk = k�t for
k = {1, . . . ,M}, with �t > 0 being the time step. It is noted
that the uniform discretization is not mandatory and is chosen
here for the sake of simplicity.

Once the solution domain is discretized, the unknown
magnetic-current surface density can be expanded in terms
basis functions. To that end, we use the piecewise linear space-
time expansion

∂K s
y(x, y, t) � 1

w

N∑
n=1

M∑
k=1

v [n]
k �(x)[n](y)k(t) (9)

where v [n]
k represents the (unknown) voltage coefficient

pertaining to point (yn, tk), and

[n](y) =
⎧⎨
⎩

1 + (y − yn)/�y, if y ∈ [
yn −�y, yn

]
1 − (y − yn)/�y, if y ∈ [

yn, yn +�y
]
.

(10)

In a similar manner, the temporal triangle function can be
expressed via

k(t) =
⎧⎨
⎩

1 + (t − tk)/�t , if t ∈ [
tk−1, tk

]
1 − (t − tk)/�t , if t ∈ [

tk, tk+1
]
.

(11)

Furthermore, the testing source distribution is chosen to have
the following form:

∂K B
y (x, y, t) = δ(x)�[q](y)δ(t) (12)

where the rectangular function, �[q](y), is defined for all
q = {1, . . . , N} as �[q](y) = 1 for y ∈ [yq − �y/2, yq +
�y/2], while �[q](y) = 0 elsewhere.

Upon substituting the transform-domain counterparts
of (9)–(12) with (1) in the reciprocity relation (5), we end
up with a system of equations in the s-domain, constituents
of which can be transformed to the TD analytically with the

aid of the CdH technique. Pursuing this approach, we end up
with the following system of equations of the time-convolution
type:

m∑
k=1

(
Y m−k+1 − 2Y m−k + Y m−k−1

) · V k = Im (13)

where the total TD admittance array, Y , consists of two
admittance arrays, say Y [1] and Y [2], pertaining to halfspaces
D1 and D2, respectively, viz.,

Y = Y [1] + Y [2]. (14)

In our notation, Y k represents a 2-D [N × N] admittance
array at t = tk , the elements of which are expressed in closed
form in Appendix B. Furthermore, V k is a 1-D [N × 1] array
of unknown voltage coefficients v [n]

k [see (9)]. Finally, the
elements of the 1-D [N × 1] excitation array, Im , for the
electric-current source (1) can be expressed as

I [q]
m = −i(tm)

[
H

(
y0 − yq +�y/2

)
− H

(
y0 − yq −�y/2

)]
(15)

for all q = {1, . . . , N}. Once both admittance and excitation
arrays are fully specified, the system of (13) can be solved for
the voltage coefficients. This can be done via the following
marching-on-in-time (MOT) scheme:

V m = Y−1
1 ·

[
Im −

m−1∑
k=1

(
Y m−k+1 − 2Y m−k + Y m−k−1

) · V k

]

(16)

for all m = {1, . . . ,M}. Once the iterative procedure (16) is
executed, the resulting voltage coefficients can be used in (9) to
determine the desired magnetic-current space-time distribution
over S and in the chosen time window of observation. Since
the elements of the admittance array are derived analytically,
its filling is fast and the MOT procedure is stable.

V. ILLUSTRATIVE NUMERICAL RESULTS

In this section, we shall employ the iterative solution (16)
to calculate the TD voltage induced across a narrow slot of
dimensions w = 1.0 mm and L = 50 mm. The TD responses
are observed in the time window {0 ≤ c0t ≤ 10L}. Throughout
the examples, the lower halfspace, D2, is supposed to be
vacuum, so that ε2 = ε0, while the upper halfspace, D1, is filled
by a dielectric medium with ε1 = εrε0, where εr > 1 denotes
its relative permittivity. Consequently, the EM wavespeeds in
D2 and D1 are c2 = c0 and c1 = c0/ε

1/2
r , respectively.

In the first example, the narrow slot on a dielectric halfspace
of relative permittivity εr = 8.0 is excited at the central point,
y0 = 0, by an electric-current pulse of the bipolar-triangle
shape, i.e.,

i(t) = (2im/tw)[t H(t)− 2(t − tw/2)H(t − tw/2)

+ 2(t − 3tw/2)H(t − 3tw/2)− (t − 2tw) H(t − 2tw)]

(17)

where we take the unit amplitude im = 1.0 A and c0tw = L
[see Fig. 2(a)]. Consequently, w/c0tw = 1/50, which implies
that the slot is relatively narrow. The resulting TD voltage
responses as induced along the slot at y = 0, y = L/5 and
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Fig. 2. Excitation electric-current pulse shapes. (a) Bipolar triangle pulse.
(b) Time-differentiated power-exponential pulse.

y = 2L/5 are shown in Fig. 3(a)–(c), respectively. The
space-time solution domain of the CdH-MoM model was
discretized in N = 49 spatial inner nodes, while the time
step was chosen to be a tenth of slot’s width, which leads
to M = 5001 temporal points. The total computational time
of a nonoptimized MATLAB� code was about 200 s, out
of which approximately 25% being spent for filling the TD
admittance array and 75% for the MOT scheme (16). For
the sake of comparison, the corresponding feeding structure
has also been analyzed using the finite-integration technique
(FIT) as implemented in CST Studio Suite�. As can be
seen in Fig. 3, the pulse shapes do correlate very well. But,
owing to its volumetric mesh, the FIT model consists of
about 2 millions of meshcells and the corresponding total
computational time, while using four CPU threads, was about
30 min. All simulations were conducted on a standard laptop
with Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz and
16 GB RAM.

In the second example, the narrow slot is activated
at y0 = 2L/5 by an electric-current pulse of the time-
differentiated power-exponential (PE) shape [25]

i(t) = im N(ν/t0x)(1 − t/t0x)(t/t0x)
ν−1

× exp[−ν(t/t0x − 1)]H(t) (18)

in which N = (t0x/ν
1/2)[ν1/2/(ν1/2 − 1)]ν−1 exp(−ν1/2) is

a normalization factor, ν > 1 denotes the rising power,
and t0x represents the zero-crossing time. As the latter can
be associated with the pulse rise time of the corresponding

�Registered trademark.

Fig. 3. Induced voltage pulse shapes due to the triangular electric-current
pulse [see Fig. 2(a)] applied at y0 = 0. Observation points are at (a) y = 0;
(b) y = L/5; and (c) y = 2L/5.

unipolar PE pulse, tw, we have tw = t0x�(ν + 1) exp(ν)/νν+1,
where �(x) is the Euler gamma function. In our examples,
we take im = 1.0 A and c0tw = L, again, with ν = 3.
Consequently, c0t0x � 0.672L [see Fig. 2(b)].

The resulting voltage signals as calculated through both
CdH-MoM and FIT models at y = {0, L/5, 2L/5} are given in
Fig. 4(a)–(c), respectively. The agreement between the results
is satisfactory, again. The computational requirements to
calculate the results presented in Fig. 4 are similar to the ones
indicated in the previous example, i.e., the use of CdH-MoM
model reduces: 1) the computational time about ten times
(using the nonoptimized MATLAB� code) and 2) the solution
space (with accompanying memory requirements) by several
orders of magnitude with respect to the general-purpose 3-D
EM solver. On the other hand, standard 3-D EM solvers based
on the finite-difference/element TD techniques are generally
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Fig. 4. Induced voltage pulse shapes due to the time-differentiated power-
exponential pulse (see Fig. 2b) applied at y0 = 2L/5. Observation points are
at (a) y = 0; (b) y = L/5; and (c) y = 2L/5.

more versatile, thus enabling numerical solutions of EM
problems of higher complexity.

The presented computational model can be easily general-
ized to incorporate multiple slots and their mutual coupling.
This can be briefly demonstrated by calculating the transient
voltage as induced in the second identical slot that extends
along R = {−w/2 ≤ x − x0 ≤ w/2,−L/2 ≤ y ≤ L/2,
z = 0}, where |x0| > 0 has the meaning of the spatial offset
in the x-direction with respect to the excited slot S. Assuming
the triangular-pulse excited slot from the first example, the TD
voltage responses at the center of R are shown in Fig. 5 for
x0 = L/10. To illustrate the effect of the relative permittivity,
εr = ε1/ε0, the pulse shape is evaluated for εr = 8 and
εr = 16. It is observed that the pulse shapes do correlate
well again with the ones achieved using the FIT model. While
the computational efficiency of the CdH-MoM approach is

Fig. 5. Voltage pulse shapes induced in the second slot R due to the triangular
electric-current pulse [see Fig. 2(a)] applied at y0 = 0 of the excited slot
S . The relative permittivity of the upper halfspace is (a) ε1/ε0 = 8 and
(b) ε1/ε0 = 16.

virtually independent of the halfspace permittivity, the number
of meshcells of the FIT model may be exceedingly high for a
high-dielectric medium.

VI. CONCLUSION

An efficient TD computational model for analyzing a typical
feeding structure of UWB leaky lens antennas was proposed.
The problem of calculating the space-time distribution of
the equivalent magnetic-current surface density due to an
impulsive electric-current source in the slot was approached
via the CdH-MoM—a TD-IE technique based on Lorentz’s
reciprocity theorem and the CdH technique. It was shown
that this approach leads to a time-convolution type system
of equations that can be solved using a step-by-step MOT
procedure. Since the elements of the pertaining TD admittance
array were derived analytically in terms of elementary
functions, their evaluation is computationally effortless and
the MOT procedure is stable. Finally, it was demonstrated that
the use of a general 3-D EM numerical tool leads to virtually
equivalent results, but at the expense of significantly higher
computational requirements compared to our dedicated CdH-
MoM computational model. Since, in addition, the proposed
TD model is easy to implement, it can be readily incorporated
in antenna design and optimization procedures.

APPENDIX A
RECIPROCITY RELATIONS

The problem under consideration is formulated via the
TD EM reciprocity theorem of the time-convolution type
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[22, Sec. 28.2]. To that end, the theorem is applied to the
scattered field and to the testing field (denoted by B) that is
causally related to the testing magnetic-current surface density,
∂K B

y (x, y, t), distributed along S. Accounting for the explicit-
type boundary condition on the slotted screen as well as the
causality condition at infinity [22, Sec. 28.4], the difference
of reciprocity relations pertaining to D1 and D2 leads to

∫
S
∂K s

y(x, y, t) ∗t

[
H B

y

(
x, y, 0+, t

) − H B
y

(
x, y, 0−, t

)]
d A

=
∫
S

[
H s

y

(
x, y, 0+, t

) − H s
y

(
x, y, 0−, t

)] ∗t ∂K B
y (x, y, t)d A.

(19)

In line with (2), the scattered magnetic field on the right-hand
side of (19) is further written as H s

y = Hy − H e
y , which yields

∫
S
∂K s

y(x, y, t) ∗t

[
H B

y

(
x, y, 0+, t

) − H B
y

(
x, y, 0−, t

)]
d A

=
∫
S
∂ J e

x (x, y, t) ∗t ∂K B
y (x, y, t)d A

−
∫
S
∂ Jx(x, y, t) ∗t ∂K B

y (x, y, t)d A (20)

where we expressed the jump discontinuities of the magnetic-
field strength using the pertaining electric-current surface
densities. As a matter of fact, ∂ J e

x can be associated with the
“total surface current induced on the short-circuited aperture”
[26, Sec. 9.6] that is useful, in particular, for the evaluation of
EM field penetration through apertures. The second interaction
integral on the right-hand side of (20) then represents the
action of ∂ Jx(x, y, t) through which one may incorporate an
electric-current source. Accounting for the latter excitation
mechanism only, we take ∂ J e

x = 0 and end up with

∫
S
∂K s

y(x, y, t) ∗t

[
H B

y

(
x, y, 0+, t

) − H B
y

(
x, y, 0−, t

)]
d A

= −
∫
S
∂ Jx(x, y, t) ∗t ∂K B

y (x, y, t)d A. (21)

Recall that ∂K s
y(x, y, t) represents the (unknown) magnetic-

current surface density induced in the slot and ∂ Jx(x, y, t)
is the excitation electric-current surface density that for
the lumped electric-current source takes the form of (1). The
relation between the testing source, K B

y (x, y, t), and the
limiting values of the testing fields, H B

y (x, y, 0±, t) is
determined in the transform domain in Section III. In this
respect, it is next demonstrated that the TD reciprocity
relation (21) can be cast into the form of complex slowness
integrals [see (5)]. Considering its right-hand side, for
example, application of the Laplace transform (3) allows to
write ∫

S
∂ Ĵx(x, y, s) ∂ K̂ B

y (x, y, s)d A (22)

where we used the standard convolution (faltung) theorem
[27, 29.2.8]. In the following step, the Fourier rep-
resentation (4) is used to express the electric-current

Fig. 6. Complex planes with their integration paths. (a)κ-plane with the CdH
path C ∪ C∗ for x < 0. (b) σ -plane with the CdH path G ∪ G∗ for y < 0.

surface density as

∂ Ĵx(x, y, s) = (s/2π i)2
∫ i∞

κ=−i∞
dκ

×
∫ i∞

σ=−i∞
exp[−s(κx + σ y)]∂ J̃x(κ, σ, s)dσ.

(23)

Substituting next (23) in (22) and changing the order of the
integrations, we finally end up with an equivalent expression
for the interaction surface integral, viz.,( s

2π i

)2
∫ i∞

κ=−i∞
dκ

∫ i∞

σ=−i∞
∂ J̃x(κ, σ, s)∂ K̃ B

y (−κ,−σ, s)dσ.

(24)

Equation (24) is used in the main text to express the right-
hand side of the reciprocity relation (5). Its left-hand side can
be rewritten by following the same lines of reasoning.

APPENDIX B
TD ADMITTANCE ARRAY

The elements of the TD admittance arrays as defined
via (14) can be expressed as

Y [q,n]
[1,2] (t) = 2η1,2

w�yc1,2�t

[
�1,2

(
yq − yn + 3�y/2, t

)
− 3�1,2

(
yq −yn+�y/2, t

) + 3�1,2
(
yq −yn −�y/2, t

)
−�1,2

(
yq −yn−3�y/2, t

)]
(25)

respectively, for all q = {1, . . . , N}, n = {1, . . . , N} and
t > 0, where

�1,2(y, t) = ϒ1,2(y, w/2, t)−ϒ1,2(y,−w/2, t) (26)
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respectively, where the TD functions ϒ1,2(y, x, t) are closely
related to the generic integral function analyzed in [16,
Sec. G.1]. Indeed, it is noted that their slowness integral
representations have the following form:

ϒ̂1,2(y, x, s) = c2
1,2

8π2

∫
σ∈S0

exp(sσ y)

s3σ 3

2

1,2(σ )dσ

×
∫
κ∈K0

exp(sκx)

sκ

dκ

�1,2(κ, σ )
(27)

for {s ∈ R; s > 0}, {x ∈ R; x 	= 0}, {y ∈ R; y 	= 0}
and the integration contours in the complex σ - and κ-planes,
S0 and K0, respectively, follow the imaginary axes except for
the origins, where they are indented to the right by circular
arcs of vanishingly small radii (see Fig. 6). The transformation
of (27) back to the TD can be performed with the help of the
“Cartesian version” of the CdH technique [15, Sec. 2.1.2].

Starting with the inner integral in the complex κ-plane,
the integration path, K0, is by virtue of Jordan’s lemma
and Cauchy’s theorem [22, p. 1054] replaced by C ∪ C∗
with C = {κ(u) = −u
1,2(σ )sgn(x) + i0; 1 ≤ u < ∞},
thus representing a loop around the horizontal branch cut
{|
1,2(σ )| ≤ Re(κ) < ∞, Im(κ) = 0} [see Fig. 6(a)].
Owing to the chosen indentation, the contribution of simple
pole at κ = 0 must be incorporated for x > 0. The thus
transformed inner integral is subsequently substituted back
in (27), where we interchange the order of the integrations
with respect to σ and u. In the subsequent step, we proceed
in a similar fashion in the complex σ -plane. Accordingly, the
integration contour, S0, is first deformed into the hyperbolic
CdH path, say G ∪ G∗, along which −σ y + u|x |
1,2(σ ) =
τ is satisfied, where {r(u)/c1,2 ≤ τ < ∞} with r(u) =
(u2x2 + y2)1/2 > 0 represents the real-valued and positive
(time) parameter [see Fig. 6(b)]. In addition, the contribution
of the pole at σ = 0 is for y > 0 accounted for. Once we
then change the variable of integration from σ to τ , we arrive
at a double integral with respect to u and τ . In this result,
we further change the order of the integrations and end up
with the integral expression whose form resembles the one
of Laplace-transform integral (3). Since the Laplace-transform
parameter, s, is kept real-valued and positive throughout

the analysis, Lerch’s uniqueness theorem [28, Appendix]
ensures the existence of the unique TD original function. The
latter can be finally expressed as (28) [16, cf., Eqs. (G.24),
(G.25), and (G.30)], as shown at the bottom of the page,
where r = (x2 + y2)1/2 > 0, and

α = c1,2t
(
c2

1,2t2/6 − y2) (29)

βς = (
c2

1,2t2/ς2 − 1
)1/2

for ς = {x, y}. (30)

Furthermore, we used (31), as shown at the bottom of the
page, with

ξς = (ξ2/ς2 − 1)1/2 for ς = {x, y}. (32)

As the closed-form expression (28) can be easily implemented
in any computing platform such as MATLAB�, the evaluation
of the TD admittance arrays through (25) and (26) is
computationally (almost) effortless. The most expensive
task in this respect could be the time-convolution integral
in (28). As its integrand does not exhibit any nonintegrable
singularities, it can be readily carried out via a standard
Gaussian quadrature or using the recursive convolution
technique [15, Appendix L]. Yet more efficient approach is to
handle the integration analytically via a multiple application
of integration by parts. Following this strategy, we may write∫ ct

ξ=r
(ct − ξ)3ψ(y, x, ξ)dξ

= −(ct − r)3∂−1
ξ ψ(y, x, r)

− 3(ct − r)2∂−2
ξ ψ(y, x, r)− 6 (ct − r)∂−3

ξ ψ(y, x, r)

− 6 ∂−4
ξ ψ(y, x, r)+ 6 ∂−4

ξ ψ(y, x, ct) (33)

where ∂−n
ξ denotes the nth integration with respect to ξ . Since

ψ(y, x, ξ) is available in closed form via (31), the integrals
on the right-hand side of (33) are attainable analytically.
Consequently, the elements of the TD admittance array can
be expressed solely in terms of elementary functions, which
enables its fast evaluation.
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ϒ1,2(y, x, t) = sgn(x)sgn(y)

12π

∫ c1,2t

ξ=r

(
c1,2t − ξ

)3
ψ(y, x, ξ)dξ

+ sgn(x)H(y)

4π

{
|x |

(
c2

1,2t2 − y2 + x2

3

)
cosh−1

(
c1,2t

|x |
)

− α tan−1(βx)− 7c1,2tx2βx/6

}
H

(
c1,2t − |x |)

+ sgn(y)H(x)

4π

{
|y|

(
c2

1,2t2 − y2

6

)
cosh−1

(
c1,2t

|y|
)

− α tan−1
(
βy

) − 5c1,2ty2βy/3

}
H

(
c1,2t − |y|)

+ αH(x)H(y)H(t)/4 (28)

ψ(y, x, ξ) = (
1/ξx + 1/ξy

)
/2ξ

− 1

16

x4

y2ξ3

1
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x
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ξ6

x6

(
y2

x2
− 1

)
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]
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95th birthday. His truly pioneering research achievements, the
“Cagniard-DeHoop technique” and the wavefield reciprocity
approach, paved the way for the development of the CdH-
MoM, and stimulated many of his students and colleagues to
embark on the exciting quest for beauty of science.

The research reported in this article was carried out during
a research stay M. Štumpf had effectuated at the TeraHertz
Sensing Group, TU Delft.
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and Delft University of Technology, where he is
currently an Associate Professor. In 1997, he was a
Visiting Scientist with Schlumberger-Doll Research,
Ridgefield, CT, USA. He endeavors towards bridging

the gap between electromagnetic field theory and the design, implementation
and measurement of antenna front-end architectures. His research interests
include in applied electromagnetics, especially time-domain propagation and
applications, and antenna engineering, with an emphasis on nonperiodic
(interleaved) array antenna architectures.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


