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Abstract— This work proposes a domain decomposition
method (DDM) based on Huygens’ equivalence principle to
efficiently perform an adaptive h-refinement technique for the
electromagnetic analysis of multiscale structures via surface inte-
gral equations (SIEs). The procedure starts with the discretization
of the structure under analysis via an initial coarse mesh, divided
into domains. Then, each domain is treated independently, and
the coupling to the rest of the object is obtained through the
electric and magnetic current densities on the equivalent Huy-
gens’ surfaces (EHSs), surrounding each domain. From the initial
solution, the error is estimated on the whole structure, and an
adaptive h-refinement is applied accordingly. Both the error esti-
mation and the adaptive h-refined solution are obtained through
the defined EHSs, keeping the problem local. The adaptive
h-refinement is obtained by a nonconformal submeshing, where
multibranch Rao–Wilton–Glisson (MB-RWG) basis functions are
defined. Numerical experiments of multiscale perfect-electric-
conductor (PEC) structures in air, analyzed via the combined
field integral equation, show the performance of the proposed
approach.

Index Terms— Adaptive mesh refinement, error estimation,
Huygens’ surfaces, integral equations, method of moments
(MoM), multibranch, multiscale problems, residual error.
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I. INTRODUCTION

COMPUTATIONAL electromagnetism problems require a
good mesh quality for an accurate and efficient solution.

In general, the mesh density leads to a higher accuracy of
the numerical solution, but the increase of unknowns requires
high computational resources. A tradeoff between accuracy
and computational cost is usually faced in large multiscale
problems. One would like good accuracy in the whole object,
independent of its smoothness or dimension while saving
computational resources.

Several techniques, such as the multilevel fast multipole
algorithm (MLFMA) [1], [2], the fast Fourier coupling matrix
compression for MLFMA (MLFMA-FFT) [3], or the domain
decomposition method (DDM) [4], [5], [6], [7], have been
proposed as efficient ways to face the multiscale, large
problems. These powerful techniques are usually applied to
general-purpose meshes, which could have a high number
of unknowns, maybe keeping a fine mesh in regions of the
object where it is not needed. The regions where a fine mesh
is needed depend on both the geometrical details and the
behavior of induced currents, determined by the excitation.
These dependencies lead the computational community to
look for adaptive techniques that find an optimal mesh for a
specific situation, reducing the number of degrees of freedom.
These techniques should also be automatic to give optimal
discretization without user intervention.

Some methods focus mainly on the refinement due to the
geometry, as in the case of scatterers with sharp edges [8],
[9]. Other techniques try to find indicators of the discretization
quality in two different ways. The first approach is to check
the accuracy of the solution via an error estimation residual:
Bibby and Peterson [10] and Saeed and Peterson [11] used
overdetermined systems via the electric field integral equation
(EFIE) for h- and p-refinements, while, in [12] and [13], the
jump of the charge and current at cell boundaries is evaluated.
A second approach, known as goal-oriented adaptivity, checks
the accuracy and efficiency of a quantity of interest [14], [15].

Tobon Vasquez et al. [16] proposed a local mesh refinement
technique, for triangular meshes, in the method of moments
(MoM) applied to surface integral equations (SIEs). The main
goal was to obtain an automatic technique to discretize with
a fine mesh only the regions that needed to be refined,
after estimating the error of an initial coarse solution. The
local refinement led to mesh nonconformity that was faced
through half Rao–Wilton–Glisson (RWG) basis functions and
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discontinuous Galerkin (DG) [17], [18], [19]. The complete
problem was first solved for the initial coarse mesh, then a
local refinement was implemented to improve the solution
accuracy via an error estimation procedure, and, finally, the
new discretization was used to compute the solution. Although
the error estimation step dealt with a projection on a reference
fine mesh, with no need for system matrix inversion, it still
involved the filling of a large MoM matrix, coupling far
regions with fine meshes. Moreover, in the final problem,
filling a large matrix, related to the h-refined mesh, and its
inversion were needed. Hence, although the mesh refinement
was a localized operation, both the error estimation and final
solution were performed globally, due to the coupled nature
of the problem, with an evident additional computational
cost.

In this work, the numerical inefficiencies of [16] are over-
come by a DDM based on Huygens’ equivalence principle
to perform the proposed adaptive h-refinement procedure. The
basic idea is to isolate the different parts of the structure under
analysis and perform the error estimation, the mesh refinement,
and the final solution, locally. To isolate each domain of the
problem, we propose using Huygens’ equivalence theorem
[20], where properly defined equivalent surfaces will act as
an intermediary between each domain and all the rest of
the object. This proxy, generated at the initial coarse mesh,
is used in both the error estimation and the final problem
solution, with its main advantage being in the latter. Moreover,
the cell-based nature of the error estimation and refinement
leads to a mesh nonconformity that, here, is faced with the
div-conforming multibranch RWG (MB-RWG) basis function,
recently proposed in [21], with no need for extra penalty
conditions on the SIE kernel as in [16]. The analysis in
this article is focused, without limiting the generality, on the
combined field integral equation (CFIE) of perfect-electric-
conductor (PEC) structures in a homogenous medium (i.e.,
air).

This article is organized as follows. Section II presents
the used SIE formulation. Section III describes all the steps
of the proposed approach using Huygens’ surfaces and the
MB-RWG basis functions. Finally, Section IV shows and
discusses some numerical results employing the proposed
approach to 3-D geometrically complex structures. Preliminary
numerical results have been presented in [22] and [23].

II. BACKGROUND FORMULATION

An electromagnetic scattering problem is considered here
for a PEC object in a homogeneous medium. We define J as
the equivalent electric current density on the object surface and
obtain the tangential EFIE (T-EFIE) and the normal magnetic
field integral equation (N-MFIE) by applying the equivalence
principle to the total electric and magnetic fields as

T-EFIE: ηL{J}tan = Ei
tan (1)

N-MFIE: n̂ ×K{J} +
J
2

= n̂ × Hi (2)

where η is the intrinsic impedance of the background medium,
n̂ is the unit vector normal to the surface, and Ei and Hi

are the incident electric and magnetic fields, respectively. The
operators L and K are defined as

L{J} = jk
∫∫

S
J(r′)g(r, r′)d S′

+ −
1
jk

∇

∫∫
S

J(r′)∇ ′g(r, r′) d S′ (3)

K{J} = PV
∫∫

S
J(r′) × ∇

′g(r, r′) d S′ (4)

where k is the wavenumber, r and r′ are the observation and
source points, respectively, ∇

′ is the divergence in the source
coordinates, and PV is the principal value of the integral in
(4). The homogeneous Green’s function g(r, r′) is defined as

g(r, r′) =
e− jk|r−r′

|

4π |r − r′|
. (5)

Combining (1) and (2), we obtain the CFIE

CJ {J} =
α Ei

tan

η
+ (1 − α)(n̂ × Hi) (6)

where

CJ {J} = αL{J}tan + (1 − α)

[
n̂ ×K{J} +

J
2

]
(7)

where α is a weight, between 0 and 1, that balances the EFIE
and MFIE equations (α = 0.5 here).

The MoM procedure is applied to (7), with the equivalent
electric current densities approximated as a sum of N known
vector basis functions

J ∼=

N∑
n=1

In fn (8)

where In are the unknown coefficients. Applying the Galerkin
testing procedure, we obtain the following dense matrix
system:

[Z ][I ] = [V ] (9)

with

[Z ] =
(
α
[
ZEFIE]

+ (1 − α)
[
ZMFIE])

(10)

where [ZEFIE
] and [ZMFIE

] are N × N matrices, formed
by the coupling between all the basis and testing functions,
via the EFIE and MFIE operators, respectively. [I ] is an
N -column vector collecting the unknown coefficients of the
current density expansion, and [V ] is the N -column excitation
vector obtained from the excitation fields.

Equation (7) refers to the radiation of the combined (electric
and magnetic) fields from the electric current density, J, in the
case of a PEC object; hence, we can call it the combined oper-
ator for electric currents. However, the procedure described in
Section III also requires the definition of the radiation of the
combined fields from the magnetic current density defined over
the equivalent Huygens’ surfaces (EHSs). Then, we define the
combined operator of the magnetic currents as

CM{M} = α

[
−

1
η
K{M}tan +

1
2

n̂ × M
]

+ (1 − α)
1
η

n̂ × L{M}. (11)
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III. HUYGEN’S-BASED DOMAIN DECOMPOSITION AND
ADAPTIVE H-REFINEMENT

This section describes how to integrate a Huygens’ surface
DDM (HS-DDM) into the adaptive h-refinement technique,
going toward a localized approach. In this way, both the error
estimation procedure and the h-refined problem solution are
performed as local operations.

A. Initial Mesh Solution

We start from an initial coarse mesh that describes the
geometry of our problem of interest, with an average dis-
cretization size of λ/10. The solution of this initial mesh
can be obtained by applying a DDM, as detailed in [6].
A convenient, but not mandatory, choice is to keep the same
decomposition in P domains throughout the h-refinement
process. The initial problem can be expressed as[

Z0][I 0]
=

[
V 0] (12)

where [Z0
] is the system matrix, [V 0

] is the right-hand side
(RHS) vector, and [I 0

] is the vector collecting the unknown
current density coefficients, as defined in (9) and (10), here
applied to the initial mesh.

The current density coefficients vector, [I 0
], will be the seed

for the localized error estimation process (see Section III-C).
It will also be used in the final adaptive h-refined mesh
solution (see Section III-E) via the definition of Huygens’
surfaces (see Section III-B) and the adaptive h-refinement (see
Section III-D). Considering that each domain can be treated in
parallel and independently, we will avoid the subscript p when
talking of a generic domain. Moreover, the subdivision of the
structure under analysis, defined here, will be used through all
the following adaptive h-refinement processes. The solution
of this initial system can also be obtained through other fast
MoM methods, such as the MLFMA-FFT [3]; however, the
subdivision into domains is still required for the following
steps.

B. Domain Decomposition Through Huygens’ Surfaces

After the initial solution and the definition of the domains,
an EHS is defined around each domain. The EHS is based
on Huygens’ equivalence principle, where a radiation problem
is substituted by an equivalent problem using an imaginary
closed surface and fictitious electric and magnetic surface
current densities on it, as graphically shown in Fig. 1. This
surface acts as a proxy between the enclosed domain and the
other regions of the object, isolating the domain and allowing
its independent treatment.

Each EHS is discretized with triangular flat patches with
an average cell size around λ/10 [20]. In this work, we used
spherical surfaces, but any convenient surface can be used as
EHS. Fig. 2 depicts an example of a discretized EHS around
a domain of interest. As it is evident from Fig. 2, the EHS
intersects the object. From the intersection between the EHS
and the object, we define four regions, shown in different
colors in Fig. 2. The first region is the domain itself, shown
in blue. The second region, called “inner buffer” and shown

Fig. 1. Huygens’ equivalence principle scheme; JS and MS are the electric
and magnetic equivalent current densities, respectively.

Fig. 2. Example of a discretized EHS and object under analysis, highlighting
the considered domain, the buffer regions, and the far-field region associated
with that domain.

in pink, is the region adjacent to the domain, not belonging
to it but still inside its EHS. The third region is called “outer
buffer” and is shown in yellow: it includes the cells outside
the EHS, but yet near to it. The fourth region is called the
“far-field region” (shown in pale green), and it is the zone
out of the EHS and far from it. In the following, both buffer
regions are excluded from the generation of the equivalent
current densities on the EHS as they are in their near field.
This leads to a size of the buffer regions of, at least, λ/2 to
guarantee that the radiated fields from the surface current in
the far-field region via the Huygens equivalent surfaces to the
subdomain under consideration are dominated by the traveling
waves [20].

The equivalent current densities are obtained on each EHS
from the electric and magnetic fields, ES and HS, respectively,
radiated from the far-field region of the corresponding domain
p, as

JS
p = n̂p × HS

p (13)

MS
p = ES

p × n̂p (14)

where n̂p is the inner normal to the EHS around the domain
p. These current densities are discretized as

JS
p

∼=

K p∑
i=1

C J
p,i fS

p,i (15)

MS
p

∼=

K p∑
i=1

CM
p,i fS

p,i (16)
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with fS
p,i being the i th RWG basis function, for i = 1, . . . , K p,

defined on the EHS around the pth domain. C J
p,i and CM

p,i are
the coefficients obtained from the projection of the continuous
current densities on the basis function space. These coefficients
are collected in an array of dimension 2K p defined as[

I S
p

]
=

[
C J

p,1, . . . , C J
p,K p

, CM
p,1, . . . , CM

p,K p

]T
(17)

and they will be used in the following for the error estima-
tion and adaptive h-refined problem solution to represent the
coupling of the domain p with its far-field region.

C. Error Estimation Using HS-DDM

The goal of the error estimation is to find a metric that
indicates where the initial mesh and, from there, the basis
functions defined on it cannot accurately describe the solution
current variations of the object under analysis. As in [16], the
error estimation used here is residual-based, as it compares
the residual of the initial solution with that of a different
basis function space, defined on a finer mesh. The Calderon
identity [24] shows that the error in the approximate solution
is bounded above and below by the residual error of the
discretized SIE. Then, we can improve the accuracy of the
solution by refining the mesh in the areas where the residual
is higher.

The residual is defined as

R(r) = CJ {J0(r)} −
α Ei

tan(r)
η

− (1 − α) n̂ × Hi(r) (18)

where CJ is the CFIE operator as defined in (7) and J0 is the
initial solution current density.

The testing of (18) on the same basis functions’ space used
for obtaining J0 will lead to zero, due to the orthogonality
that was exploited to obtain that solution through Galerkin.
Instead, if we use a different set of basis functions as testing,
the error can be estimated through the norm of the residual.
As we are going toward an h-refinement, a possible choice is to
select a set of basis functions that gives information on a more
refined mesh. Hence, multiple dyadic divisions of the initial
mesh are performed, leading to a finer discretization where
the new basis functions are defined. This fine mesh is called
the following “reference mesh.” The choice of which basis
functions can be defined in the reference mesh is arbitrary.
However, it is convenient to have basis functions whose linear
combination can describe exactly the basis functions defined
on the initial mesh. According to this consideration, we chose
to test RWG basis functions defined on the reference mesh.

The norm of the residual, R, is estimated through its
normalized projection on the RWG basis functions, fL , defined
in the reference mesh (ℓ = L), with L being the number of
dyadic subdivision from the initial mesh (ℓ = 0) to arrive to
the reference one. Hence, in each mth cell of the reference
mesh, the residual norm is estimated as

∣∣∣∣RL
m

∣∣∣∣ ∼= max
fL
m(i)

〈
fL
m(i), R

〉
√〈

fL
m(i), fL

m(i)

〉 (19)

where fL
m(i), with i = 1, 2 and 3, are the three RWG basis

functions defined on the edges of the selected triangle m of
the reference mesh. Then, the cell m estimated residual error
is equal to the highest estimated error among the three RWG
basis functions defined on the cell m edges. The denominator
in (19) corresponds to the norm of each fL

m(i) basis function
and can be evaluated in closed form.

Substituting (18) into (19) and removing the index m(i)
to simplify the notation, the inner product ⟨fL , R⟩ in the
numerator of (19) can be expressed as〈
fL , R

〉
=

〈
fL , CJ

{
J0}〉

−

〈
fL ,

α Ei
tan

η
+ (1 − α) n̂ × Hi

〉
. (20)

To evaluate (20), the current density, J0, obtained with the
initial mesh, is projected on the fL

j basis functions defined on
the reference mesh, obtaining

J0(r) ∼=

NL∑
j=1

I 0,L
j fL

j (r) (21)

where I 0,L
j are the current density coefficients obtained with

the initial mesh (ℓ = 0) and projected on the NL basis
functions defined on the reference mesh (ℓ = L), following
the procedure described in [25]. We collect them in the vector[

I 0,L]
=

[
I 0,L
1 , . . . , I 0,L

NL

]T
. (22)

Substituting (21) into (20), we obtain the following matrix
system: [

RL]
=

[
AL][

I 0,L]
−

[
BL]

(23)

where [RL
] is the projected residual NL × 1 vector defined

as

RL
=

[〈
fL
1 , R

〉
, . . . ,

〈
fL

NL
, R

〉]T
. (24)

[AL
] is the usual CFIE system matrix of dimension NL × NL ,

and [BL
] is the NL × 1 CFIE RHS. Each element of [AL

] and
[BL

] is evaluated as

AL
i j =

〈
fL
i , CJ

{
fL

j

}〉
(25)

BL
i =

〈
fL
i ,

α Ei
tan

η
+ (1 − α) n̂ × Hi

〉
(26)

with i, j = 1, . . . , NL .
We remark that, if it is needed to compare the error maps

obtained for different excitations and geometries, the residual
in (24) should be normalized by, for example, the norm of the
corresponding RHS (26)

The dimension NL reflects the number of levels L used
to generate the reference mesh. This number tends to increase
rapidly as each dyadic division of the triangle means multiply-
ing the number of mesh cells by 4, leading to the computation
of a large matrix. Although (23) does not need a matrix
inversion, the matrix filling and the matrix–vector product
could be made more efficiently via the HS-DDM technique
presented in Section III-B, transforming a global problem
into several local ones through the EHSs as detailed in the
following.
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We consider the initial division into P domains of the object
under analysis (see Section III-A). Then, for each domain p,
with p = 1, . . . , P , the radiation of the current densities on the
object via (23) is separated into two components: one due to
the local interaction of the current densities inside the domain
and in its buffers regions (see Fig. 2), and the second due to
the far-field current densities through the EHS.

The interaction within the domain and its buffer regions is
obtained through the matrix [ ÃL

p ], with each element equal to

ÃL
p,i, j =

〈
fL

p,i , CJ
{̃
fL

p, j

}〉
(27)

where f̃L
p, j is the j th source basis function among Ñ L

p defined
in the domain together with its buffers, while f L

p,i is the i th
test basis function among N L

p defined in the domain only.
Hence, the matrix [ ÃL

p ] is not square as Ñ L
p > N L

p . Instead,
the interaction with the far-field region of the object is obtained
via the matrix [ZS,L

p ], where each element is equal to

ZS,L
p,i, j =

{〈
fL

p,i , CJ
{
fS

p, j

}〉
, with j = 1, . . . , K p〈

fL
p,i , CM

{
fS

p, j

}〉
, with j = K p + 1, . . . , 2K p

(28)

and i = 1, . . . , N L
p .

Finally, combining (27) and (28) with (23), we obtain[
RL

p

]
=

[
ÃL

p

][
Ĩ 0,L

p

]
+

[
ZS,L

p

][
I S

p

]
−

[
BL

p

]
(29)

where [BL
p ] is the RHS on the domain p, being a subset of

[BL
], and [ Ĩ 0,L

p ] collects the initial current density coefficients,
projected in the reference level, for the basis functions defined
on the domain and its buffers. To generate the error estima-
tion associated with all the cells of the reference mesh, the
described procedure has to be repeated for all the domains p,
with p = 1, . . . , P .

D. Adaptive H-Refinement

The error estimation (19) is associated with each of the
cells in the reference mesh. Then, as in [16], the adaptive
h-refinement starts from the initial mesh through a dyadic
subdivision. If the considered cell contains at least one ref-
erence mesh cell with an associated error above the chosen
threshold, it is divided by four. If, instead, it does not contain
any reference cell above the threshold, it is kept unmodified in
the adaptive process. The dyadic subdivision is applied where
required, recursively, up to the level L of the reference level.

Fig. 3(a) depicts an example of the initial mesh (thick
lines), the corresponding reference mesh, and one triangle with
an associated error above the threshold (highlighted in red).
The adaptive h-refinement process will ensure the presence of
that triangle above the threshold in the final h-refined mesh.
It keeps the shared edges of the initial discretization, gener-
ating a nonconformal mesh due to the localized refinement,
where one cell is divided but not its neighbor, as shown in
Fig. 3(b).

The MB-RWG basis functions [21] are defined on a trian-
gle, called positive, and a group of smaller triangles, called
negative, with an edge in common with the positive triangle,
where the edges from the negative side form exactly the

Fig. 3. H-refinement process. (a) Coarse triangle (thick lines), and reference
mesh (ℓ = L) with one triangle above threshold (selected triangle). (b) Adap-
tive h-refinement mesh. (c) Example of an MB-RWG basis function.

edge in the positive side. By definition, the MB-RWG basis
functions guarantee normal current continuity across common
edges, meaning that no line charges exist and the functions
are div-conforming. The nature of the dyadic h-refinement in
Fig. 3(b) makes the MB-RWG basis functions very suitable
for their use in the proposed approach. Fig. 3(c) shows the
vectorial behavior of an MB-RWG basis function, in a mesh
resulting from the performed adaptive h-refinement. Hence, the
MB-RWG basis functions are defined, together with the RWG
basis functions, on the obtained h-refined mesh. This choice
avoids DG, which would imply implementing an extra penalty
condition in the kernel of the SIE, as done in the formulation
proposed in, for example, [18] and [19].

E. Adaptive H-Refined Solution

Once each domain p reaches an adaptive h-refined mesh,
the complete problem can be solved again but, unlike [16],
here the solution is efficiently achieved using the HS-DDM
scheme. In the following, we will use the subscript H to
indicate the adaptive h-refined mesh level. Similar to the error
estimation part explained in Section III-C, the global coupling
in the adaptive h-refined solution is separated into different
parts. In this case, we find the unknown current density in
each domain p, considering three different contributions: 1)
the h-refined extended domain, defined by the domain itself
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and its inner buffer, interacting with itself; 2) the outer buffer
current densities radiating to the extended h-refined domain;
and 3) the far-field region radiating through the EHS to the
extended h-refined domain.

The interaction between the basis functions inside the
domain and its inner buffer is represented by the matrix [ ÃH

p ].
This matrix is a square matrix of dimension Ñ H

p ×Ñ H
p , with Ñ H

p
being the number of basis functions in the h-refined extended
domain p, considering both the domain and the inner buffer.
A generic element of [ ÃH

p ] is equal to

ÃH
p,i, j =

〈
f̃H

p,i , CJ
{

f̃H
p, j

}〉
(30)

where f̃H
p is a basis function defined in the extended h-refined

domain, and i, j = 1, . . . , Ñ H
p .

The radiation from the outer buffer to the h-refined domain
of interest is done through the matrix [ ǍH

p ]. This matrix is
rectangular as it goes from the Ň 0

p basis functions of the
initial mesh in the outer buffer to the Ñ H

p basis functions in the
h-refined extended domain. A generic element of the matrix
is equal to

ǍH
p,i, j =

〈
f̃H

p,i , CJ
{

f̌0
p, j

}〉
(31)

where f̌0
p, j is the j th basis function defined in the outer buffer

discretized via the initial mesh, with j = 1, . . . , Ň 0
p. The test

basis functions are the same as in (30).
The last contribution is that from the far-field region and

is made through the EHS. This is represented by the matrix
[ZS,H

p ], where the current densities on the EHS, [I S
p ], radiate

to the h-refined extended domain p. This matrix is of the same
nature as the one in (28), but changing the testing functions.
The matrix [ZS,H

p ] dimensions are Ñ H
p , that is, the number of

testing functions in the h-refined extended domain, by 2K p,
that is, two times the basis functions on the EHS, as in (28).
Then, each element of [ZS,H

p ] is equal to

ZS,H
p,i, j =


〈
fH

p,i , CJ
{

fS
p, j

}〉
, with j = 1, . . . , K p〈

fH
p,i , CM

{
fS

p, j

}〉
, with j = K p + 1, . . . , 2K p

(32)

where i = 1, . . . , Ñ H
p , and fH

p,i is the i th testing function in
the h-refined extended domain.

Collecting (30)–(32), we can set for each domain p the
matrix system[

ÃH
p

][
Ĩ H

p

]
+

[
ǍH

p

][
Ǐ 0

p

]
+

[
ZS,H

p

][
I S

p

]
=

[
B̃H

p

]
(33)

where [B̃H
p ] is the RHS vector in the h-refined extended

domain obtained as in (26). The array [ Ǐ 0
p] collects the

coefficients of the initial current density in the outer buffer
zone. The unknown in (33) is the coefficients array [ Ĩ H

p ]

representing the final current density in the adaptive h-refined
extended domain. Hence, (33) can be written as[

ÃH
p

][
Ĩ H

p

]
=

[
B̃H

p

]
−

[
ǍH

p

][
Ǐ 0

p

]
−

[
ZS,H

p

][
I S

p

]
(34)

where all the terms on the RHS are known and represent the
excitation of the h-refined extended domain p. The solution

[ Ĩ H
p ] can be obtained through a direct inversion of the matrix,

or via a fast MoM solver, such as the MLFMA, if the
dimensions of the local problem require it. The system (33)
is defined on the extended domain, hence, after obtaining the
solution, we discard the coefficients in the inner buffer (that
will be obtained via another domain), keeping those in the
domain itself, only. This solution procedure is then repeated
for each domain.

F. Workflow Summary

A summary of the different steps needed to obtain an
adaptive h-refined solution is summarized here, following
Fig. 4.

We start from an initial coarse mesh, where we obtain an
initial solution and define the domains that will be used in the
following steps [see Fig. 4(a)] as detailed in Section III-A.
For each domain, an EHS is defined [see Fig. 4(b)] and its
equivalent current densities are obtained (see Section III-B),
as well as the localized error estimation with the definition
of the reference mesh (see Section III-C). Via the error
estimation, the adaptive h-refined mesh is generated (see
Section III-D), selecting the reference mesh cells above the
chosen error threshold [see Fig. 4(c)].

Fig. 4(d) depicts the collection of all the domains after
the adaptive h-refinement, where a solution will be obtained.
In Fig. 4(e), the HS-DDM is applied to each domain to obtain
the adaptive h-refined solution (see Section III-E), shown in
Fig. 4(f).

IV. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of the pro-
posed HS-DDM implementation in solving two different EM
examples with real-life interest, considering both a scattering
and a radiation problem.

All simulations shown in this article were performed in a
cluster with 2 × AMD EPYC 7H12@2.6 GHz (2 × 64 cores =

128 cores) and 2 TB of RAM memory.

A. Scattering Problem: Rafale Aircraft

A first numerical example is introduced to examine the
efficiency of the proposed method to obtain an accurate
solution for an adaptive h-refined mesh. A morphed version
of a Rafale aircraft, shown in Fig. 5, is considered as the
structure to analyze. This example has small and thin regions
around the wings and the nose and some sharp edges around
all the fuselage. The excitation of the problem is an oblique
(θ = 30◦, φ = 30◦) impinging plane wave at 137 MHz. The
dimensions of the aircraft are approximately 15.3 m in length,
4.6 m in wingspan, and 3.9 m in height (7λ × 4.6λ × 1.8λ at
the working wavelength, λ).

We start obtaining the solution of an initial mesh of the
problem through a fast MoM method, that was modeled using
7986 unknowns corresponding to RWG basis functions. For
this example, since the geometry does not exhibit multiscale
features, we use an MLFMA-FFT [3] method to obtain the
initial solution. The domain decomposition of the geometry is
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Fig. 4. Workflow of the HS-DDM procedure to generate an adaptive h-refined mesh and to find the corresponding current densities. (a) Initial mesh and
domain decomposition. (b) Initial mesh domain and its equivalent Huygens’ surface (EHS). (c) Refined mesh for a domain. (d) Total refined mesh and domain
decomposition. (e) Refined mesh domain and its equivalent Huygens’ surface (EHS). (f) Solution current.

Fig. 5. Partition into domains and initial mesh of the Rafale aircraft.

then applied, splitting the Rafale aircraft into eight domains,
shown with different colors in Fig. 5 together with the initial
mesh. Next, each domain is encapsulated in an EHS, and
we evaluate the error of the initial solution with respect to
a reference one, obtained with a mesh that has two levels
of cells dyadic subdivision (L = 2) from the initial one,
as described in Section III-C; the reference mesh is formed by
127 776 RWG basis functions. The obtained error estimation
is shown in Fig. 6 that represents the error values assigned
to each triangle of the reference mesh. In the resulting error
map, we can identify the regions with a high estimated
error, concentrated mainly in the sharp parts (edges and
borders).

Fig. 6. Rafale aircraft error map associated with the initial mesh.

Then, the automatic h-refinement procedure, described in
Section III-D, is applied to the initial mesh, comparing the
error map with an error threshold equal to −3.5 (in loga-
rithmic scale) [16] and obtaining an adaptive h-refined mesh,
shown in Fig. 7, that provides a total of 54 405 unknowns
(corresponding to 50 073 RWG and 4332 MB-RWG basis
functions).

Finally, to find the solution in the adaptive h-refined mesh,
we apply the proposed HS-DDM scheme, as described in
Section III-E; in the following, we will refer to this approach as
“adaptive h-refined (local).” To characterize and compare the
performance of the HS-DDM method, also an MLFMA-FFT
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Fig. 7. Adaptive h-refined mesh of the Rafale aircraft. In gray, the plane
region where the near field is evaluated.

TABLE I
SIMULATION TIMES (IN SECONDS) FOR THE RAFALE EXAMPLE

solver is applied to the whole structure to obtain the solution
of the adaptive h-refined mesh; the results obtained with
the MLFMA-FFT solver are marked in the following with
“adaptive h-refined (global).”

Fig. 8(a) shows the convergence in terms of the iteration
number under an iterative Krylov resolution of the matrix
system (we are using GMRES [26]), comparing different
solutions to better understand the improvement provided by
the proposed approach. In Fig. 8, the green line corresponds to
the solution with the initial mesh using the MLFMA-FFT, the
black line shows the convergence of the MLFMA-FFT using
the reference mesh, the red line represents the convergence of
the adaptive h-refined mesh applying the MLFMA-FFT to the
whole structure, while blue lines illustrate the convergence
of the adaptive h-refined mesh problem using the HS-DDM
method, where each blue line refers to the solution of one
domain (obtained via a local MLFMA-FFT). We can observe
that the convergence of all domains is faster than the rest of
the solutions. Table I lists the times needed for the setup and
solution of the initial problem (using the initial mesh), the time
to generate the error estimation map and the currents on the
EHSs, and the setup and solution times for the solution using
the final refined meshes. The time for the local refinement is
not reported because it is negligible. In columns two and three,
Table I reports the required times using the adaptive h-refined
global and local approaches, respectively; it is evident that the
proposed local approach (i.e., the HS-DDM) outperforms the

Fig. 8. Rafale aircraft: iterative convergence in terms of (a) number of
iterations, and (b) solution time.

global one. The last column reports the setup and solution
times using the reference mesh. In this case, the reference
solution requires higher times than the adaptive h-refined
solutions (both global and local).

However, considering that the different convergences shown
in Fig. 8(a) corresponds to problems with a different number
of unknowns, the number of iterations cannot be reliable to
compare the performance of the different results, such as the
times per iteration are different. A better figure of merit is
shown in Fig. 8(b), where the above iterative convergences are
expressed in terms of the total time to solve each problem.
In Fig. 8(b), comparing the convergence of the proposed
HS-DDM scheme (blue lines) with the MLFMA-FFT in the
case of the adaptive h-refined problem (red line), it can
be observed a speedup factor greater than ×7 applying a
parallel implementation of the HS-DDM, which can be easily
integrated in the method such as the solution of one domain is
totally independent of the rest of domains. But, even without
applying a parallel scheme in the solution of the different
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Fig. 9. (a) Reference radiated electric near field. (b) Difference between initial
and reference electric near fields. (c) Difference between adaptive h-refined
mesh (global solution) and reference electric near fields. (d) Difference
between adaptive h-refined mesh (local solution) and reference electric near
fields. All the reported data are in dBµV/m. The plane where the near fields
are evaluated is shown in Fig. 7 (inset).

Fig. 10. Rafale aircraft surface current density and differences (dBµA/m).
(a) Reference current density, (b) difference between initial and reference
current densities, (c) difference between adaptive h-refined mesh (global
solution) and reference current densities, and (d) difference between adaptive
h-refined mesh (local solution) and reference current densities.

domains, the HS-DDM solver is more than ×2 faster than the
MLFMA-FFT one. Finally, comparing the adaptive h-refined
solutions with respect to the reference one, there is a speedup
factor of ×15 using the HS-DDM (parallelizing the domains
solutions) and ×9 using the MLFMM-FFT (parallelized with
eight processors); in both cases (HS-DDM and MLFMM-
FFT), we consider also the time for the generation of the initial
solution that is present in both approaches.

To verify the solution accuracy of the different methods,
first, we examine the radiated electric near-field on a plane at
λ/20 to the upper wing, as shown in Fig. 7. The obtained near
fields are reported in Fig. 9(a)–(d) for the solution of the initial
mesh, the reference mesh, and the adaptive h-refined mesh,
both with the global MLFMA-FFT solver and the HS-DDM
one. The near-field obtained with the adaptive h-refined mesh
matches very well with the reference one, with a maximum
error of −25.96 dB for the global MLFMA-FFT case and
−23.65 dB for the HS-DDM one. Instead, the near-field

Fig. 11. Geometry and partition into domains of the vessel.

evaluated with the initial mesh is quite different with respect
to the reference one with a maximum error of −6.76 dB.

These findings are coherent with the obtained electric cur-
rent density over the aircraft surface, shown in Fig. 10, where
there is a good agreement between the adaptive h-refined mesh
solutions [see Fig. 10(c) and (d)], with respect to the reference
one [see Fig. 10(b)], with maximum errors equal to −18.51 dB
for the MLFMA-FFT solver and −16.82 dB for the DDM-HS
one, while the initial mesh current density is quite different
[see Fig. 10(a)], with a maximum error of −7.36 dB.

B. Antenna Problem: Modern Vessel

As a second example, the radiation of a realistic and
multiscale structure is considered to evaluate the accuracy and
efficiency of the proposed method. The structure is a modern
vessel with four integrated patch antennas embedded into the
main mast (see Fig. 11). The approximate dimensions of the
ship are 140 m in length, 20 m in width, and 40 m in height
(23.3 λ × 3.3 λ × 6.7 λ in the used working wavelength cor-
responding to 50 MHz). These antennas are designed to work
together as an omnidirectional VHF communication system.
The excitation is a delta gap in the feeding points of the
antennas.

In this case, the geometry of the problem exhibits very
deep multiscale features and a localized excitation, so, instead
of the MLFMA-FFT solver (that has a slow convergence),
the DDM of [6] is applied to obtain the solution of the
initial mesh, the global solution of the adaptive h-refined mesh
and the one of the reference mesh. For this structure, the
initial mesh is composed of 76 578 RWG basis functions (see
Fig. 12), and the reference one by 306 900 unknowns, that
correspond to one level of dyadic cells subdivisions (L = 1)
from the initial mesh. The entire problem is partitioned into
14 domains, shown in Fig. 11: ten large domains belonging to
the vessel superstructure, and four electrically small domains
corresponding to the four patch antennas.
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Fig. 12. Vessel initial mesh. Plane where the near field is evaluated.

Fig. 13. Vessel error map associated with the initial mesh.

TABLE II
SIMULATION TIMES (IN SECONDS) FOR THE VESSEL EXAMPLE

After obtaining the electric current density on the surfaces
of the initial mesh, the error estimator algorithm is applied
using the proposed local scheme to generate the error map
shown in Fig. 13. We can see that, in this case, the maxima of
the error are concentrated in the proximity of the antennas and
the illuminated parts of the structure. Then, after comparing
that error map to an error threshold of −3.5 (in logarithmic
scale), the h-refinement technique is applied, resulting in the
adaptive h-refined mesh shown in Fig. 14, providing a total of
17 7752 unknowns (176 010 RWG and 1742 MB-RWG basis
functions). We can observe that the obtained adaptive h-refined
mesh concentrates the refinement close to the radiating sys-
tems; the vessel parts, far from the antennas, maintain the
initial mesh (except on the edges), while the discretization of
the masts and the antennas is refined to improve the accuracy
of the solution.

Fig. 14. Vessel adaptive h-refined mesh.

Fig. 15. Iterative convergence in terms of the solution time for the vessel.

Similar to the previous example, we analyze the perfor-
mance of the proposed HS-DDM scheme with respect to
the global solutions, but in this case, the convergence of
the different methods and stages are shown in terms of the
total time to solve the problem only, such as the completely
different time per iteration between the different solutions
makes difficult to extract conclusions from the number of
iterations. The results are shown in Fig. 15, where, for the
HS-DDM method (blue line), the solution of the domain with
the worse convergence in terms of time is represented only,
to avoid the superposition of too many lines. The performance
improvement in the solution of the adaptive h-refined problem
via the HS-DDM (blue line) is also evident for this radiation
case, with a speedup factor of ×10 with respect to its solution
via the global DDM (red line) [6]. As in the previous case,
Table II summarizes, for the vessel case, the required times
for the initial setup and solution, for the generation of the
error map and the currents on the EHSs, the final mesh setup
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Fig. 16. (a) Reference radiated electric near-field. (b) Difference between
initial and reference electric near-fields. (c) Difference between adaptive
h-refined mesh (global solution) and reference electric near-fields. (d) Differ-
ence between adaptive h-refined mesh (local solution) and reference electric
near-fields. All the reported data are in dBµV/m. The plane where the
near-fields are evaluated is shown in Fig. 12 (inset).

Fig. 17. Vessel surface current density (dBµA/m). (a) Initial mesh. (b) Ref-
erence mesh. (c) Adaptive h-refined mesh (global solution). (d) Adaptive
h-refined mesh (local solution).

and solutions, and the reference mesh setup and solution
times. In this case, the proposed local approach (i.e., the
HS-DDM) outperforms the global one and there is a gain in
time with respect to the reference solution (last column). It is
important to notice that the reference mesh, and consequently
the adaptive h-refined mesh, has only one level of refinement
below the initial coarse mesh, and, in the adaptive h-refined
mesh, the refinement is concentrated mainly on the mast.

As in the previous example, we evaluate the radiated electric
near-fields on a plane at λ/10 from one of the antennas, shown
in Fig. 12. Fig. 16(a)–(d) reports the near fields obtained from
the solution of the initial mesh, the reference one, and the
adaptive h-refined mesh, both with the global DDM and the

Fig. 18. Detailed view of the vessel surface current density and differences
(dBµA/m). (a) Reference current density. (b) Difference between initial and
reference current densities. (c) Difference between adaptive h-refined mesh
(global solution) and reference current densities. (d) Difference between
adaptive h-refined mesh (local solution) and reference current densities.

HS-DDM one. We can observe a good agreement between
the reference field and the ones obtained with the adaptive
h-refined mesh, with a maximum error of −34.89 dB for the
global DDM and −27.71 dB for the HS-DDM, while with
the initial mesh, the maximum error is equal to −10.75 dB.
Finally, the electric current density is shown in Fig. 17 for
all the approaches. To better show the differences among
the solutions, in Fig. 18, there is a detailed view close to
one excited antenna. In the evaluation of the current density,
the maximum error of the adaptive h-refined solutions, with
respect to the reference one, is equal to −33.22 dB for the
global DDM and −27.82 dB for the HS-DDM, while it is
−14.62 dB using the initial mesh.

V. CONCLUSION AND PERSPECTIVES

In this work, we presented a new HS-DDM for obtaining
an efficient and accurate adaptive h-refined problem solution
for multiscale realistic PEC structures. The error estimation
and solution of the adaptive h-refined problem are, in general,
globally coupled, requiring the handling of large matrices.
In this work, we proposed dividing the structure into domains
and considering the effects of external (far-field) regions
through equivalent surfaces at half-wavelength from those
regions and based on Huygens’ equivalence principle, going
toward a localized problem. The initial solution, obtained via
an average λ/10 mesh discretization, is the seed for all the
proposed technique steps and defines the equivalent currents
that link the domains in all the processes. Error estimation and
adaptive h-refined solution are performed locally through the
use of Huygens’ surfaces. Moreover, in the adaptive h-refined
mesh, which can be nonconformal, we used MB-RWG and
RWG basis functions, avoiding the extra interior penalties of
the DG MoM needed, instead, if half-RWG basis functions
are applied. As the numerical results showed, the HS-DDM
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allows a significant speed-up in the solution process, keeping a
good accuracy in the evaluated current density and near-fields.

Two possible future developments of the approach pre-
sented here are the extension to objects composed of multiple
materials, and the implementation of the multiresolution pre-
conditioner [27], [28] for the solution of the local domains
to further improve the overall solution time. Moreover, the
number of levels in the reference mesh could be different for
each region or triangle to better adapt the scheme to the initial
mesh size and the problem excitation.
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