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Abstract— An efficient recursive aggregated centered transition
matrix (T-matrix) algorithm (RACTMA) to analyze electro-
magnetic scattering from many randomly distributed obstacles
is derived. The algorithm is based on the scatterer-centered
T-matrix formalism and is accelerated using the aggregation
concept—unlike other approaches—without violating the addi-
tion theorems. An analytical derivation for the T-matrix of
multiple cylinders together with the details of the computational
complexity are given. Scattering by more than 3000 noncircular
elements is numerically studied, and the results for the scattered
fields are compared with those obtained by a well-established
recursive T-matrix algorithm and, to demonstrate a proper
convergence, the results are also compared with a commercial
finite element method (FEM)-based full-wave solver. The results
show a perfect agreement and demonstrate a high computational
efficiency of the proposed semianalytical formalism for normal
and oblique incidences. The optical theorem and the reciprocity
relationship are fully satisfied confirming the accuracy and
numerical stability of the approach.

Index Terms— Electromagnetic analysis, scattering, transition
matrix (T-matrix) method.

I. INTRODUCTION

ELECTROMAGNETIC wave scattering by many particles
has been extensively studied due to its wide practical rel-

evance in the manipulation of electromagnetic waves [1], [2],
[3], [4], [5], [6], in biomedical engineering [7], [8], [9], and
in geophysics [10]. In the case of scattering elements which
are distributed in a domain that exceeds several wavelengths,
conventional numerical approaches such as the finite ele-
ment method (FEM) [11] or the finite-difference time-domain
(FDTD) [12] method require long computation time due to the
whole domain of interest that must be spatially discretized and
surrounded by an absorbing boundary condition to fulfill the
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radiation condition. This circumstance can be overcome using
the method of moments (MoM) [13] which, however, is com-
putationally costly for a large number of unknowns. Using
the multilevel fast multipole algorithm (MLFMA) [14] or
butterfly-based algorithm [15], the computational complexity
of the iterative solver in the MoM can be significantly reduced.

A common disadvantage of all the algorithms described so
far is that due to the involved iterative inversion schemes,
they are only apt to calculate the scattered field for a fixed
incident field, and thus, for the case of a changing incidence
field, many computations must be repeated. Recently in [16],
a butterfly-based algorithm with small complexity for the
direct inversion of a large impedance matrix in the MoM to
overcome this limitation has been proposed which, however,
requires nontrivial operations in the analysis of different
incidences and deals with a large factor suppressed in the
O(·) notation of the complexity [17]. As a generalization of
the Mie-solution [18], the transition matrix (T-matrix) method
can overcome these limitations, since it is entirely based on
the series expansions into eigenfunctions of the wave equation
and the system of equations are solved using a direct method.
Once the T-matrix is known, the scattered field for each
incidence is obtained by a simple matrix multiplication. The
T-matrix method deals not only with nonspherical particles
[19], [20], [21], multilayered particles [22], [23], and multiple
particle systems [21], [24], [25], [26], [27], [28], [29], [30],
[31], [32] but also provides physical insight into the mutual
interactions between the particles [24]. Thus, the T-matrix
method is addressed and developed in many publications
[33] and also covered in electromagnetic theory textbooks
[34]. Following the standard procedure of electromagnetic
scattering by multielement systems [24], using the translation
matrices that take into account the multiple interaction process
between the particles, a set of linear equations for the unknown
scattering coefficients of each individual element is derived.
One of the efficient techniques to deal with the large system of
equations is the recursive method [21], [27], [28], [29], [30],
[31], [32] which avoids the inversion of large matrices and
reduces the computational complexity. A recursive T-matrix
algorithm (RTMA) has been developed in [27] and [28]. Its
computational complexity has been further decreased by devel-
oping the recursive aggregated T-matrix algorithm (RATMA),
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Fig. 1. Working principle of the proposed RACTMA to solve an M-cylinder
scattering problem. The figure shows the state after the (n − 1)th recursion:
the mutual interactions between cylinders 1, . . . , n are considered. The
algorithm is accelerated due to the aggregation of p ≤ n obstacles in a cluster
(surrounded by the dashed line) which are properly chosen to avoid a violation
of the addition theorems. In the following recursions, mutual interactions with
the remaining M − n cylinders (grayed out) are taken into account and the
cluster is extended. The details are given in Section III.

which aggregates all the particles and derives the T-matrix of
a single equivalent scatterer representing the multiple element
system [29]. However, the RATMA poses severe restrictions
on the geometry of the problem [35, p. 158], due to the
restricted area of validity of the translation matrices (Graf
addition theorem in the 2-D case) and their poorly converging
behavior close to the validity limit [31]. The convergence
becomes worse in the case of large particles when higher
order spatial harmonics are required. Therefore, large particles
must be spatially discretized and considered as a cluster of
many small particles [28], [29], which leads to a substantial
increase in the computational costs [31]. Since the aggregation
concept introduces additional, numerically evaluated indirect
translations, the convergence slows further. Although it may
be overcome by applying windowing [30], the latter influences
the solution in converging regions [31]. A modified recursive
algorithm is proposed to deal with larger particles without
spatial discretization [31]; however, as it is pointed out in
[36], this algorithm still involves indirect translations lead-
ing to the aforementioned numerical instabilities. To avoid
the use of numerically evaluated indirect translations and
thus, to increase the numerical stability, a recursive centered
T-matrix algorithm (RCTMA) based on the scatterer-centered
T-matrix [37] has been developed [32]. However, this advan-
tage is at the expense of computational efficiency since the
number of involved matrices considerably increases [38].

In this article, the aggregation concept of the RATMA [29]
is combined with the RCTMA [32] to propose a recursive
aggregated centered T-matrix algorithm (RACTMA), which
shows a high accuracy and significantly reduces the compu-
tational complexity. The basic working principle to solve an
M-cylinder scattering problem is shown in Fig. 1. A similar
approach is given in [39] and [40]. However, due to clear and
rigorous mathematical derivations, special attention is paid to
the validity limits of the addition theorems and their violations
resulting in a tailored a priori criterion for the particles which

can be aggregated in each step without loss of accuracy
[see (19a) and (19b) and an improved criterion in (22a) and
(22b)]. This is mandatory for the fast and accurate scattering
analysis. Following these rules, our numerical results are in
a perfect agreement with the reference solution (RCTMA),
which is, due to the lack of such rules, not the case in [39].
A general advantage of the RACTMA is that it is free of any
restrictions on the position of the scattering elements (except
that they must not intersect each other) and does not require
a discretization of them. Thus, the RACTMA can be used to
efficiently solve the scattering problem from many irregularly
arranged particles with different material and geometrical
characteristics without violating the addition theorems.

Although the proposed algorithm can be applied to 3-D
geometries, the structures under consideration here are geo-
metrically invariant in the direction of infinite extension,
namely, along the z-axis in Fig. 2, illuminated under
normal and oblique incidences. In the numerical analysis
(cf. Section IV), we consider over 3000 noncircular cylinders,
and the scattering characteristics show an excellent agree-
ment with those obtained based on the RCTMA, but with
substantially increased computational efficiency. Specifically,
in the numerical examples, RACTMA is up to 17.5× faster
than RCTMA. We assume our semianalytical approach to be
more exact than the results obtained using purely numerical
methods; however, we also compare the results obtained using
the RACTMA with independent results based on the FEM
using COMSOL Multiphysics [41] to demonstrate a proper
convergence of the obtained results where, for two selected
examples, the FEM was up to 22× slower than the RACTMA.

This article is organized as follows. In Section II, the
basic concept of the T-matrix approach including involved
translation matrices and their limitations are formulated and
the RTMA, RATMA, and RCTMA are briefly reviewed. The
formalism of our proposed RACTMA is given in Section III,
including discussions about violations of the addition theorems
and an analytical determination of the computational com-
plexity. In Section IV, two different geometries are analyzed
proving the efficiency and accuracy of the proposed formalism.

A time-harmonic dependence e jωt is assumed but not explic-
itly written throughout this article.

II. T-MATRIX FORMULATION FOR A CLUSTER
OF CYLINDERS

The transition matrix, which is usually referred as the
T-matrix, is based on the expansion of the electromagnetic
fields into a series of solutions of the wave equation and
relates the amplitudes of the scattered to the incident fields.
The cylinders with permittivity εi , permeability µi , and radius
of the circumscribing circle ρi , where i = 1, 2, . . . , M , and M
is the total number of cylinders, are located in a background
medium with the permittivity εs and the permeability µs (cf.
Fig. 2). The local polar coordinate attached to each cylinder
is (ri , αi ) and di, j is the separation distance between the i th
and j th cylinders, respectively. The cylinders are uniform and
infinitely long along the z-axis. Thus, the scattering problem
is reduced to a 2-D problem with a leading Ez field for
TM-polarization and Hz field for TE-polarization, separately.
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To avoid confusion, in this section we only depict circular
cylinders. However, they can be replaced with noncircular
cylinders (see the numerical examples) having the same
circumscribing radius. Besides, we derive the expressions
assuming a normal incidence of the waves. Taking into account
the hybrid waves, an extension to the oblique incidence case
is straightforward, as it is formulated in the Appendix.

For the simplest case of an isolated single cylinder illumi-
nated under the normal incidence, using a complete orthogonal
set of cylindrical wave functions, the incident uinc and the
scattered uscat fields are expanded around the cylinder axis
in terms of cylindrical space harmonics in the following
form:

uinc(r, α) = ΦT
· a =

∞∑
ν=−∞

aν Jν(ksr)e jνα (1a)

uscat(r, α) = Ψ T
· p =

∞∑
ν=−∞

pν H (2)
ν (ksr)e jνα (1b)

where Φ = [Jν(ksr)e jνα
], Ψ = [H (2)

ν (ksr)e jνα
], Jν(ksr) and

H (2)
ν (ksr) are the Bessel function of the first kind and the

Hankel function of the second kind, respectively, ks = ω
√

εsµs
is the wavenumber of the surrounding medium, ω is the
angular frequency, a = [aν] and p = [pν] are the ampli-
tude vectors of the incident and scattered fields, respectively,
and the superscript T denotes a transpose of the vectors.
We denote the standing cylindrical and outgoing cylindrical
waves by the column vectors Φ and Ψ , respectively. Here,
the polar radius coordinate r is the distance from the center
of the isolated single cylinder to the observation point, and the
angle coordinate α is the observation angle from the positive
x-axis.

The calculation of the T-matrix relating the scattered field
and the incident field amplitudes through the expression

p = T · a (2)

can be carried out numerically using different methods [19],
[20], [21]. For a circular cylinder, the T-matrix, which is
then a diagonal matrix, can be easily obtained in closed form
by applying the boundary condition on the surface of the
cylinder [22].

For the multicylinder system, we have to take into account
the multiple interactions of the fields scattered from the
individual cylinders. Although more than 3000 cylinders are
considered in the numerical examples (cf. Section IV), a two-
element system with the i th and j th circular cylinders is shown
in Fig. 2. Interactions between the cylinders are addressed by
treating, besides the external excitation, the scattered waves
from the i th cylinder ( j th cylinder) as equivalent incident
waves impinging on the j th cylinder (i th cylinder) using the
translation matrices for the cylindrical wave functions. Using
the local cylindrical coordinate systems (ri , αi ) and (r j , α j )

whose origins are located at the center of the cylinders, the
translation matrices Ai, j and Ci, j transform Φ j and Ψ j into Φ i

and Ψ i according to Graf’s addition theorem in the following

Fig. 2. Circular cylinders with permittivity εm , permeability µm , and
radius ρm , where (m = 1, . . . i, j, . . . , M), are located in a background
medium with the permittivity εs and the permeability µs, and M is the total
number of cylinders. The local coordinate systems of only two cylinders
and the interaction between them are shown. The local polar coordinate
system attached to each cylinder is (ri , αi ) and (r j , α j ), and di, j is the
separation distance between the i th and j th cylinders. The validity regions
of the translation matrices in (3b) and (3c) together with (4a) and (4b) are
marked in white and gray.

form [42, p. 361]:

ΦT
j = ΦT

i · Ai, j
∀ ri (3a)

Ψ T
j = Ψ T

i · Ai, j
∀ ri > di, j (3b)

Ψ T
j = ΦT

i · Ci, j
∀ ri < di, j (3c)

with

Ai, j
µν = Jµ−ν(ks di, j ) e−j(µ−ν)θi, j (4a)

C i, j
µν = H (2)

µ−ν(ks di, j ) e−j(µ−ν)θi, j (4b)

where Φ i = [Jν(ksri )e jναi ] and Ψ i = [H (2)
ν (ksri )e jναi ]. The

validity regions of the translation matrices given by (3b) and
(3c) together with (4a) and (4b) are marked in white and
gray in Fig. 2. Applying the boundary conditions on the
surfaces of both the cylinders, a set of linear equations for
the unknown scattering amplitudes of each individual cylinder
can be derived and the matrix equation is solved with a suitable
truncation of the matrix size. As the system of equations is
ill-conditioned and the number of unknowns increases with
the number of cylinders, there exists a variety of recursive
algorithms to treat the multiple elements system, such as the
RTMA [28], the RATMA [29], and the RCTMA [32]. In all
these algorithms, the sizes of the matrices to be inverted are
much smaller compared with those in a direct solution of the
system of equations. First, we briefly describe all these three
algorithms, and then, we propose an RACTMA including the
rules for an aggregation scheme (cf. Section III), which is the
fundamental result of this work.

A. Recursive T-Matrix Algorithm

The RTMA calculates the matrix T j
{n+1}

∀ j ≤ (n+1) which
relates the scattered p j to the incident a j amplitudes of the
j th cylinder p j = T j

{n+1}
· a j taking into account the multiple

interaction between all (n + 1) cylinders. It is recursively
calculated from T j

{n}
in the following form:

T j
{n+1}

= T j
{n}

·

[
I + C j,n+1

· Tn+1
{n+1}

· An+1, j
]

(5)
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Fig. 3. Aggregated T-matrix CT{n} (CT{M}) of a system with a total number of
n (dark gray) and M (dark gray and light gray) cylinders. The index 0 indicates
the (local) coordinate system of the aggregate. The scattered field calculated
by CT{n} (CT{M}) is valid outside the dashed (dotted) circles, respectively. The
hatched cylinder cannot be analyzed using the RATMA due to a violation of
the addition theorems (see Section III).

with

Tn+1
{n+1}

=

I − Tn+1 ·

n∑
j=1

Cn+1, j
· T j

{n}
· C j,n+1

−1

·Tn+1 ·

I +

n∑
j=1

Cn+1, j
· T j

{n}
· A j,n+1

 (6)

where Tn+1 is the T-matrix of the single (n + 1)th cylinder
in isolation, and I is a unit matrix. The translation matrices
A and C are given in a similar form as in (4a) and (4b).
Note that in the RTMA the inverse matrix is used only
in (6). For the details, the interested reader is referred to [28].
Since the RTMA formalism involves indirect translations (cf.
Section III-A), the truncation of the translation matrices leads
to numerical instabilities, in particular for large scatterers [31]
which are not spatially discretized [28].

B. Recursive Aggregated T-Matrix Algorithm

An aggregated T-matrix CT{n} relates the amplitudes a0 of
the incidence field to the amplitudes p0,{n} of the scattered
field for a cluster composed of n cylinders p0,{n} =

CT{n} · a0,
where index 0 refers to the local coordinate system of the
cluster. The geometry of the problem is shown in Fig. 3.
In the RATMA formalism, the T-matrix of each cylinder is
transformed into the coordinate with the origin at the center
of the cluster and combined. Hence, CT{n} acts as an equivalent
T-matrix of an obstacle (dashed line in Fig. 3) with the same
scattering characteristic as all the aggregated cylinders, and it
is calculated using the translation matrices given in (3a) and
(3c) by the following relationship:

CT{n} =

n∑
j=1

A0, j
· T j

{n}
· A j,0. (7)

The calculation of the aggregated T-matrix for (n+1) cylinders
CT{n+1} is now reduced to a simple two-scatterer problem,
namely, the first scatterer (dashed line in Fig. 3) with all
n cylinders is characterized by the T-matrix CT{n} and the
second single scatterer is characterized by the T-matrix Tn+1

of the (n + 1)th cylinder in isolation. Applying (7), a simple
recurrence relationship can be easily obtained

CT{n+1} =
CT{n} +

CT{n} · C0,n+1
· Tn+1

{n+1}
· An+1,0

+A0,n+1
· Tn+1

{n+1}
· An+1,0 (8)

where

Tn+1
{n+1}

=
[
I − Tn+1 · Cn+1,0

·
CT{n} · C0,n+1]−1

· Tn+1

·
[
I + Cn+1,0

·
CT{n} · A0,n+1]. (9)

A detailed derivation of the algorithm is shown in [29].
Following [29], the cylinders must be sorted a priori with
an increasing separation distance of their center to the center
of the aggregate. However, as pointed out in Section III-
A, there must be severe restrictions on the geometry not to
violate the addition theorems, which prevents the hatched
cylinder in Fig. 3 being added to the cluster characterized
by CT{n}.

The computational time for solving a 2-D scattering prob-
lem with M cylinders using the RATMA scales with O(M2)

[29] compared with O(
√

M5) of the RTMA [28]. Due to
the application of (7) and the restrictions of the translation
matrices [cf. (3a)–(3c)], the aggregated T-matrices CT{n} and
CT{M} can only be used to calculate the scattered field outside
the aggregate (indicated by the dashed and dotted lines,
respectively, in Fig. 3), whereas the RTMA can be used to
calculate the scattered field everywhere outside the cylinder.
However, this limitation of the RATMA can be overcome using
the backward recursion procedure shown in [29] at the expense
of an additional computational effort.

C. Recursive Centered T-Matrix Algorithm

The RCTMA can be used to calculate the scatterer-centered
Tk

j,{n}
-matrix recursively. It is a matrix that calculates the

scattered field of the j th cylinder (field is viewed from
the local coordinate system of the j th cylinder) caused by
the incident field impinging on the kth cylinder (field is
viewed from the local coordinate system of the kth ele-
ment) when multiple interactions between all the cylinders
1, . . . , n are taken into account. The scatterer-centered Tk

j,{n}
-

matrix is related to the T j
{n}

-matrix used in the RTMA
formalism [37]

T j
{n}

=

n∑
k=1

Tk
j,{n}

· Ak, j . (10)

Unlike the RTMA and the RATMA, an advantage of this
approach is that we can avoid indirect translations, and hence:
1) the sizes of all the scatterer-centered Tk

j,{n}
-matrices and

the translation matrices are much smaller and 2) the addition
theorems are not violated [32]. A detailed derivation of the
RCTMA is given in [32].
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The recursion formulae in the RCTMA formalism written
in the form

Tn+1
n+1,{n+1}

=[
I − Tn+1 ·

n∑
ℓ=1

n∑
m=1

Cn+1,ℓ
· Tm

ℓ,{n}
· Cm,n+1

]−1

· Tn+1 (11a)

Tk
n+1,{n+1}

= Tn+1
n+1,{n+1}

·

n∑
ℓ=1

Cn+1,ℓ
· Tk

ℓ,{n}
(11b)

Tn+1
j,{n+1}

=

n∑
m=1

Tm
j,{n}

· Cm,n+1
· Tn+1

n+1,{n+1}
(11c)

Tk
j,{n+1}

= Tk
j,{n}

+

n∑
m=1

Tm
j,{n}

· Cm,n+1
· Tk

n+1,{n+1}
(11d)

can be directly derived by substituting (10) into (6) and (5).
Although only (11a) involves a matrix inversion and the costs
to determine all the matrices (11a)–(11d) are reduced due
to smaller matrix sizes, the disadvantage of the RCTMA
compared with the RTMA and the RATMA is the number
of matrices to be determined in each recursion step. Using
the RACTMA derived in Section III, this circumstance is
significantly mitigated.

III. EFFICIENT T-MATRIX ALGORITHM FOR A CLUSTER
OF RANDOMLY DISTRIBUTED CYLINDERS

In Section II, we briefly reviewed three well-known Recur-
sive T-Matrix algorithms, which allow calculating the scattered
field of a cluster of cylinders. In this section, we show that
only the RCTMA can be applied to a composite of multiple
cylinders without posing severe restrictions on their positions
but at the expense of an increased computational effort.
We derive an efficient RACTMA, which can be considered
as a combination of the RCTMA using scatterer-centered T-
matrices and the aggregation concept in the RATMA resulting
in: 1) a substantially increased computational efficiency and
2) avoiding violations of the addition theorems.

A. Violation of the Addition Theorems

The translation matrices, which appear in Graf’s addition
theorem and are expressed through the cylindrical Hankel
and Bessel functions in (3a) to (3c), show convergence
and yield accurate results only in a certain validity region
(cf. Fig. 2). We distinguish two types of violations of the
addition theorems:

Type 1: violations due to indirect translations between una-
ggregated cylinders;

Type 2: violations due to a field evaluation inside a cluster
after its aggregation.

For an illustrative demonstration, a geometry of a configuration
with only three cylinders is shown in Fig. 4. The indirect trans-
lations in the RTMA formalism are written in the following
form [32]:

Ck,ℓ
= Ak, j

· C j,ℓ
∀ d j,ℓ > d j,k + ρk (12a)

C j,ℓ
= A j,k

· Ck,ℓ
∀ dk,ℓ > d j,k + ρ j . (12b)

Fig. 4. Geometry of a three-cylinder configuration. Outside the gray
highlighted region (dashed circle), field expansions involving a translation
matrix Ck,ℓ (C j,ℓ) violate the addition theorems.

An indirect translation (12a) can only be applied if the kth
cylinder lies completely inside a circle of radius d j,ℓ centered
at the j th cylinder, i.e., d j,ℓ > d j,k +ρk . It can be easily shown
that the RTMA violates the addition theorems in general. In the
geometry illustrated in Fig. 4, the kth cylinder lies inside the
dashed circle, and thus, the addition theorem is not violated
when the translation matrix C j,ℓ is applied. However, the j th
cylinder is located outside the gray highlighted area, in a
region where a field expansion involving the translation matrix
Ck,ℓ violates the addition theorem. Hence, an indirect trans-
lation (12b) violates the addition theorem (violation Type 1)
which may lead to erroneous results for the T-matrices. Due
to the recursive character of the RTMA, further steps will lead
to an error propagation.

Since the RATMA is derived from the RTMA involving
further indirect translations, it suffers from the same Type 1
violations of the addition theorems as the RTMA. In addition,
the RATMA involves Type 2 violations: in each step of
calculation, the problem is reduced to multiple interactions
between two obstacles (cf. Section II-B) and the boundary
conditions should be correctly applied on the surfaces of these
obstacles. This inherently requires that the scattered field of
the first (second) obstacle can be expanded into cylindrical
waves viewed from the coordinate system of the second (first)
obstacle, which must be valid on the surface of the second
(first) obstacle. Since the approach uses a translation of type
(3b) in (7), the determined scattered field using the cluster
T-matrix can be evaluated only outside the circle marked by
the dashed line in Fig. 3. Thus, the (n + 1)th cylinder is not
allowed to intersect the dashed circle in Fig. 3, which yields
severe restrictions on the geometry [35, p. 158] as, e.g., the
hatched cylinder in Fig. 3 cannot be taken into account using
the RATMA.

In the RCTMA, violations of Type 1 are avoided as the
formalism does not involve any indirect translations due to
the use of scatterer-centered T-matrices. In addition, since no
aggregation is involved in the RCTMA, violations of Type 2
are also omitted. However, these improvements come at the
expense of computational efficiency. Particularly, as it will
be shown in Section III-D, the computational complexity to
solve the scattering problem of M identical cylinders using
the RCTMA is of O(M3).
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Fig. 5. Geometry of an M-cylinder configuration solved using the RACTMA.
During the nth calculation step, {p} (dark gray) cylinders are aggregated
in a cluster [cf. (15a)–(15c)], whereas the others are characterized by the
scatterer-centered T-matrices. The (p+1)th and nth cylinders cannot be added
to the cluster due to a violation of the addition theorems (the origin of the
(n +1)th cylinder lays inside the gray dashed circle and the gray dotted circle
intersects with the (n +1)th cylinder). During the following calculation steps,
the cluster is extended based on (20a)–(20c) taking into the cylinders that do
not violate (19a) and (19b).

B. Recursive Aggregated Centered T-Matrix Algorithm

To solve a scattering problem using the RTMA and the
RATMA, severe restrictions are posed on the geometries to
prevent a violation of the addition theorems (cf. Section III-A).
In addition, electrically large cylinders cannot be considered
as one single scatterer but should be spatially discretized
[28], [31]. These limitations are circumvented in the RCTMA
formalism, but at the expense of computational efficiency as
the number of matrices to be determined using the RCTMA
equals to the squared number of matrices in the RTMA.
Here, we propose an RACTMA, which uses the elements
of the RCTMA but with substantially increased computa-
tional efficiency due to the aggregation approach. Namely, the
computational complexity of the RACTMA compared with
the RCTMA is reduced from O(M3) to O(M2); the details
are given in Section III-D. In [39] and [40], a comparable
method is derived, but without rules for the scatterers to be
aggregated in each recurrence step (an a posteriori brute-force
ansatz was used in [39]). Here, due to the rigorous derivations,
we introduce an a priori criterion [cf. (19a) and (19b)] and
an improved a priori criterion [cf. (22a) and (22b)] ensuring
the nonviolation of the addition theorems to identify these
scatterers. The criteria are essential for efficient and accurate
scattering analysis.

Fig. 5 shows an M-cylinder configuration to be solved
with the RACTMA during the nth computational step. Unlike
the RATMA formalism, where all n cylinders are aggregated
before the nth step, in the RACTMA only p ≤ n (dark gray
in Fig. 5) of them are aggregated. As in the RCTMA formal-
ism, the RACTMA calculates the scatterer-centered T-matrices
recursively. However, in the RACTMA the centered T-matrices
also characterize the aggregated elements. Taking into account
the multiple interactions between the n cylinders (set of the
dark and light gray cylinders in Fig. 5), the cluster-centered

T-matrices T{p}

{p},{n}
(Tk

{p},{n}
) determined in Section II-C relate

the amplitudes a0 (ak) of an incident field to the amplitudes
p{p}

{p},{n}
( pk

{p},{n}
) of a scattered field for the cluster composed

of {p} cylinders due to the field impinging on the cluster (on
the kth cylinder) in the following form:

p{p}

{p},{n}
= T{p}

{p},{n}
· a0 (13a)

pk
{p},{n}

= Tk
{p},{n}

· ak . (13b)

Accordingly, the (n − p) unaggregated obstacles are
characterized by their scatterer-centered T-matrices Tk

j,{n}

(p < j, k ≤ n) and T{p}

j,{n}
, where the former are the

scatterer-centered T-matrices used in the RCTMA formalism
and the latter relates the amplitudes a0 of the incidence
field to the amplitudes p{p}

j,{n}
of the scattered field for the

j th cylinder due to the field impinging on {p} aggregated
obstacles

p{p}

j,{n}
= T{p}

j,{n}
· a0. (14)

After several mathematical manipulations, the cluster-centered
T-matrices in (13a) and (13b) and the scatterer-centered
T-matrix in (14) can be expressed through the scatterer-
centered T-matrix Tk

j,{n}
using (3a) and (3b) in the following

form:

T{p}

{p},{n}
=

p∑
j=1

p∑
k=1

A0, j
· Tk

j,{n}
· Ak,0 (15a)

Tk
{p},{n}

=

p∑
j=1

A0, j
· Tk

j,{n}
∀ p < k ≤ n (15b)

T{p}

j,{n}
=

p∑
k=1

Tk
j,{n}

· Ak,0
∀ p < j ≤ n. (15c)

Following the procedure in Section III-A, one can easily show
that for an indirect translation of the form Ck,ℓ

= Ck, j
· A j,ℓ,

where Ck, j appears in (3c) and A j,ℓ appears in (3b), to omit
the violation of the addition theorems, the following condition
must be fulfilled:

Ck,ℓ
= Ck, j

· A j,ℓ
∀ d j,ℓ < d j,k − ρk . (16)

Substituting (15a)–(15c) into (11a)–(11d) and using the indi-
rect translations (12a) and (16), the following set of new four
recurrence equations is obtained:

Tn+1
n+1,{n+1}

=

[
I − Tn+1 · Cn+1,0

· T{p}

{p},{n}
· C0,n+1

− Tn+1 ·

n∑
j=p+1

(
Cn+1, j

· T{p}

j,{n}
· C0,n+1

)
− Tn+1 ·

n∑
k=p+1

(
Cn+1,0

· Tk
{p},{n}

· Ck,n+1)
− Tn+1 ·

n∑
j=p+1

n∑
k=p+1

(
Cn+1, j

· Tk
j,{n}

· Ck,n+1
)]−1

· Tn+1 (17a)
Tk

n+1,{n+1}
= Tn+1

n+1,{n+1}
· Cn+1,0

· Tk
{p},{n}

+ Tn+1
n+1,{n+1}

·

n∑
j=p+1

(
Cn+1, j

· Tk
j,{n}

)
(17b)
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Tk
j,{n+1}

= Tk
j,{n}

+ T{p}

j,{n}
· C0,n+1

· Tk
n+1,{n+1}

+

n∑
ℓ=p+1

(
Tℓ

j,{n}
· Cℓ,n+1)

· Tk
n+1,{n+1}

(17c)

Tn+1
j,{n+1}

= T{p}

j,{n+1}
· C0,n+1

· Tn+1
n+1,{n+1}

+

n∑
ℓ=p+1

(
Tℓ

j{n}
· Cℓ,n+1)

· Tn+1
n+1,{n+1}

(17d)

where

p < k ≤ n or k = {p}

p < j ≤ n or j = {p}.

Comparing (15a)–(15c) and (17a)–(17d), it is obvious that
(17a)–(17d) involve numerically evaluated indirect translations
of the following form:

Cn+1, j
= Cn+1,0

· A0, j , for 1 ≤ j ≤ p (18a)

Ck,n+1
= Ak,0

· C0,n+1, for 1 ≤ k ≤ p. (18b)

Thus, to avoid a violation of the addition theorems [restrictions
in (12a) and (16)], one can derive two rules that the {p}

aggregated cylinders must follow:

d0, j < d0,k − ρk ∀ 1 ≤ j ≤ p and n < k ≤ M (19a)
d0,k > d0, j + ρ j ∀ 1 ≤ j ≤ p and n < k ≤ M. (19b)

The cylinders are properly chosen during each calculation
step based on (19a) and (19b) which are implemented in
the numerical code. Here, (19a) ensures that before the nth
calculation step, no cylinder k > n must lay inside or intersect
the circle (dotted line in Fig. 5) centered at the origin of the
cluster with radius

max
1≤ j≤p

(
d0, j

)
, and (19b) ensures that the origins of cylinders k > n must lay
outside the circle (dashed line in Fig. 5) around the aggregated
cylinders with radius

max
1≤ j≤p

(
d0,k + ρk

)
.

It is easy to see that (19a) and (19b) are the same if all the
cylinders are of equal size.

After each calculation step, the cluster is extended by t
cylinders which are properly selected based on (19a) and
(19b). After several mathematical manipulations, the extended
cluster-centered and the scatterer-centered T-matrices can be
derived from (15a) to (15c) according to

Tk
{p+t},{n}

= Tk
{p},{n}

+

p+t∑
j=p+1

A0, j
· Tk

j,{n}

∀ p + t < k ≤ n (20a)

T{p+t}
j,{n}

= T{p}

j,{n}
+

p+t∑
k=p+1

Tk
j,{n}

· Ak,0

∀ p + t < j ≤ n (20b)

TABLE I
TRUNCATION NUMBER OF THE MATRICES INVOLVED IN THE RACTMA

FORMALISM (17A)–(17D) AND (20A)–(20C)

T{p+t}
{p+t},{n}

= T{p}

{p},{n}
+

p+t∑
k=p+1

Tk
{p},{n}

· Ak,0

+

p+t∑
j=p+1

A0, j
· T{p}

j,{n}
+

p+t∑
j=p+1

p+t∑
k=p+1

A0, j

· Tk
j,{n}

· Ak,0. (20c)

Note that (17a)–(17d) and (20a)–(20c) (a similar set of equa-
tions can be found in [39] and [40]) together with the proposed
a priori criterion for the aggregation in (19a) and (19b) are the
key expressions for the RACTMA.

C. Improved Criterion for the Aggregation

All the translation matrices and T-matrices in the RACTMA
must be truncated, which yields a truncation error. Following
[43, Lemma 3.1], the truncation errors for the standing cylin-
drical and outgoing cylindrical wave expansions—ξ8 and ξ9 ,
respectively—fulfill the following inequalities:

ξ8 < c
(

R8

R̃8

)N8

, R8 < R̃8 (21a)

ξ9 < c
(

R̃9

R9

)N9

, R9 > R̃9 (21b)

where c is a finite constant, R̃8 (R̃9) is the radius of a circle
that lays in the region where the standing (outgoing) cylindri-
cal wave function expansion is valid, R8 and R9 correspond
to the radius of observation points of the respective fields, and
N8 > ks R̃8, N9 > ks R̃9 are the orders of truncation of the
standing cylindrical and outgoing cylindrical wave expansions.

In (19a) and (19b), we ensured that no addition theorems
are violated. However, the obstacles can approach the invalid
area arbitrarily close, and when following (21a) and (21b),
the truncation error increases. Thus, to keep the RACTMA
numerically stable and avoid the use of a computational
expensive high cluster-centered T-matrix truncation number,
an additional distance δ ≥ 0 is introduced in (19a) and (19b)
yielding the following two modified rules:

d0, j < d0,k − ρk − δ ∀ 1 ≤ j ≤ p and n < k ≤ M (22a)
d0,k > d0, j + ρ j + δ ∀ 1 ≤ j ≤ p and n < k ≤ M. (22b)
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TABLE II
COMPUTATIONAL COMPLEXITY OF (17A)–(17D) AND (20A)–(20C) WITH RESPECT TO n. THE OVERALL COMPLEXITY OF THE nTH RECURSION SCALES

ACCORDING TO THE LARGEST TOTAL COMPLEXITY OF ALL ROWS

The value of δ strongly depends on the geometry of the
problem. It is properly chosen to guarantee accurate results
and is given in Section IV-B for the specific geometries
investigated there.

D. Computational Complexity

From the analysis of Section III-B follows that due to
the proposed aggregation scheme in the RACTMA, the total
number of scatterer-centered and cluster-centered T-matrices to
be determined during the nth computation step reduces from
(n+1)2 [38] (cf. (11a) to (11d)) in the RCTMA to (n− p+2)2

[cf. (17a)–(17d)] in the RACTMA. However, to go deeply into
the analysis of computational complexity of the RACTMA,
we consider M randomly distributed identical cylinders, each
having a radius ρ, as illustrated in Fig. 6. The cylinders are
distributed within a circle with radius RM and the inclusion
density η, i.e., a ratio of the area covered by cylinders to the
total area, is assumed to be a constant within the bounding
circle. The cylinders are characterized by scatterer-centered
T-matrices, whose truncation number is κ . The number of
cylinders distributed within the circles having radii d0,p and
d0,n is p and n, respectively.

A truncation number 3 of the translation matrices appearing
in (15a)–(15c) is calculated in the following form [28]:

3 = C ks d0,p with C > 1 (23)

where ks is the wavenumber in the background medium, and
C is a constant, which as a rule of thumb may vary between
1 and 5. In general, C could change in every recursion step and
should be chosen properly to ensure that 3 does not exceed
the truncation number of the incidence field. Consequently,
the truncation numbers of all the matrices involved in the
RACTMA formalism (17a)–(17d) and (20a)–(20c) are sum-
marized in Table I. To meet the requirements of (22a) and
(22b), the following equality should be fulfilled:

d0,n = d0,p + γ ρ (24)

where γ = 1 + δ/ρ. Taking into account η, d0,p and d0,n can
be expressed through p and n in the following form:

d0,p =
ρ

√
η

√
p (25a)

d0,n =
ρ

√
η

√
n. (25b)

Next, substituting (25a) and (25b) into (24), p and d0,p can
be written as a function of n as

p = η

(√
n

√
η

− γ

)2

(26a)

d0,p = ρ

(√
n

√
η

− γ

)
. (26b)

Substituting (26b) into (23), an asymptotic behavior of 3 with
respect to n can be obtained

3 = O
(√

n
)
. (27)

As the scatterers are assumed to be randomly distributed,
t is independent of n, and accordingly, t = O(1). The com-
putational complexity of (17a)–(17d) and (20a)–(20c) with
respect to n is shown in Table II. The values in the fourth
and sixth columns are obtained using (26a) and (27). The
total complexity at the nth step of the RACTMA is of O(n),
whereas the evaluation of the RCTMA formalism is of O(n2)

(cf. Section II-C).
Finally, we can conclude that since the solution of a problem

with M cylinders requires M − 1 recursions in the RACTMA
and the RCTMA, the computational complexities to solve the
entire problem, KRACTMA and KRCTMA, can be written in the
following form:

KRACTMA = O

(
M−1∑
n=1

n

)
= O

(
M2) (28a)

KRCTMA = O

(
M−1∑
n=1

n2

)
= O

(
M3) (28b)

where the second right-hand side terms are obtained using
[44, (0.121.1.) and (0.121.2.)].
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Fig. 6. M randomly distributed cylinders each having a radius ρ and a
constant inclusion density within the bounding circle of radius RM. During
the nth calculation step, p (dark gray) cylinders are aggregated in a cluster
of a circle with a radius d0,p (dashed circle). Multiple interactions between
n cylinders—dark gray and medium gray—bounded by a dotted circle of
radius d0,n are considered. The next calculation steps take into account the
interaction with the (M − n) light gray cylinders.

IV. NUMERICAL RESULTS AND DISCUSSIONS

To demonstrate the efficiency of the RACTMA formalism,
two geometries—shown in Section IV-A—are analyzed. The
developed RACTMA is implemented in a MATLAB [45]
numerical code using standard double-precision arithmetic.
The results are compared with those based on the RCTMA
and, as an independent method, the commercial FEM solver
COMSOL Multiphysics [41], although we assume results
based on the semianalytical T-matrix approach to be more
accurate. All the tests have been performed on an AMD Ryzen
Threadripper PRO 3955WX 16-Core processor with a base
clock frequency of 3.9 GHz and 245 GB of RAM.

A. Geometries Under Investigation

The first geometry depicted in Fig. 7(a) consists of M
circular cylinders with the same radius ρ distributed within
a circumscribing circle having a radius RM. In the numerical
analysis, up to M = 3159 cylinders are considered. To obtain a
roughly constant inclusion density η within the circumscribing
circle, all the cylinders are arranged using a modification of
the Poisson disk sampling algorithm [46]. The background
medium is the free space with permittivity εs = ε0 and perme-
ability µs = µ0. The cylinders are nonpermeable (µi = µ0),
and approximately 20% randomly selected cylinders (hatched)
are assumed as perfect electric conductors (PECs). The dielec-
tric permittivities of the remaining cylinders randomly vary
according to an equal distribution between εi = 2ε0 and
εi = 10ε0. Plane waves are impinging on the structure,
and the angle of incidence with respect to the x-axis is
denoted by αinc. The dotted circle of radius RNF = 1.5 RM
mimics a near-field receiver, where the scattered fields are
evaluated. To demonstrate that our proposed RACTMA can
also be applied to the scattering analysis of a cluster of
noncircular cylinders, we deformed the circular cross section
of the cylinder in Fig. 7(a) with Chebyshev polynomials
[cf. Fig. 7(b)–(e)]. Thus, the cross sections of Chebyshev

Fig. 7. (a) Cluster of M cylinders distributed within a circumscribing circle
(dashed) having a radius RM using a modification of the Poisson disk sampling
algorithm. The color intensity of the i th cylinder indicates a permittivity
εi ∈ [2ε0, 10ε0], whereas the hatched cylinders are PECs. The dotted circle
of radius RNF shows the position of the receiver to analyze the near-field
characteristics. Plane waves are impinging on the structure and αinc is the
angle of incidence with respect to the x-axis. (b)–(e) Cylindrical Chebyshev
particles of degrees 2–5, respectively, which are also considered as scattering
elements in the cluster.

Fig. 8. (a) Cluster of M cylinders within a rectangle having a width
w = 10λ0 and a height h = 3λ0. The radii of the cylinders are randomly
varying ρi ∈ [0.05λ0, 0.1λ0], whereas the material parameters of all the
cylinders are identical, i.e., µi = µ0 and εi = 10ε0. A line source is placed
at a height of 6λ0 above the center of the rectangle (b) generating waves
impinging on the structure under the oblique angle θ with respect to the
z-axis.

cylinders are given by the following expression:

r(α) = (ρ − ς)
(
1 + ς Tn0(cos(α))

)
= (ρ − ς) (1 + ς cos(n0 α)) (29)

where Tn0 is the Chebyshev polynomial of order n0, ς is
the deformation parameter, and ρ the radius of the smallest
circumscribing circle. In the numerical example, n0 and ς

randomly vary between 2 . . . 5 and 0 . . . 0.15, respectively, ρ is
identical for all the cylinders, and the permittivity is randomly
varying between εi = 2 . . . 10.

A second geometry shown in Fig. 8 is composed of
M = 270 cylinders embedded into the free space within a
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Fig. 9. Magnitude of the scattered magnetic field ∥H∥ (dB) for a
TE-polarized plane wave incident on the structure (see Fig. 7) composed of
355 cylinders with a radius ρ = 0.3λ0 placed within an umscribing circle
of radius RM = 9λ0. The magnetic field is evaluated (a) at a distance RNF
from the center of the cluster and (b) in the far-field region. The results are
compared with those obtained based on the RCTMA and the FEM solver
COMSOL Multiphysics.

umscribing rectangle (gray dashed line) having a width w =

10λ0 and a height h = 3λ0. Here, λ0 is the wavelength in
the free space. As in the first example, the distribution of
the cylinders is given using a modification of the Poisson
disk sampling algorithm. The dielectric permittivities of the
cylinders are identical εi = 10ε0, whereas the radii are
randomly varying between 0.05λ0 and 0.1λ0. The TE/TM line
source (magnetic/electric line current) for the excitation of the
impinging cylindrical wave is placed at a height h = 6λ0 above
the center of the rectangular scatterer domain [cf. Fig. 8(a)].
The waves are impinging on the structure under the oblique
angle θ with respect to the z-axis, as illustrated in Fig. 8(b).

B. Numerical Analysis

First, we study the scattering of a TE (Hz, Ex , Ey)-polarized
electromagnetic wave impinging on the structure shown in
Fig. 7. A number of M = 355 circular cylinders with a
radius ρ = 0.3λ0 are distributed within the circle having a
radius RM = 9λ0. The magnitudes of the scattered magnetic
field ∥H∥ at a distance RNF = 1.5RM and in the far-field
region are displayed in Fig. 9. The results show an excellent
agreement between all the three approaches. The CPU time
required to calculate the cluster T-matrix is considerably
reduced from 245 s (RCTMA) to 59 s (RACTMA), whereas
the CPU time required to solve the scattering problem using
the FEM (including setting up the geometry and meshing) was
approximately 414 s. It is important to note that the cluster
T-matrix obtained using the RCTMA and the RACTMA can
directly be used to determine the scattered field for all the
incident fields of same frequency, which can be expanded
into a cylindrical harmonics series, whereas the FEM must
be repeated in case of any change in the incidence field. The
truncation number Ninc of the series expansion of the plane
wave used in the RCTMA and RACTMA is determined by
the equality

Ninc = 2 ks RM. (30)

The truncation number κ of the scatterer-centered T-matrices
is equal to 7, whereas the truncation number of the

Fig. 10. Relative deviation of (a) optical theorem and (b) reciprocity
relationship for different tuples of truncation numbers 3 and κ for geometry 1
composed of 158 Chebyshev cylinders with ρ/λ0 = 0.3 and RM = 6λ0 under
TM-polarized plane wave illumination as a measure to control the truncation
error.

cluster-centered T-matrices 3 is determined using (23) with
C following the relationship:

C = min
(

4,
Ninc

ks d0,p

)
(31)

and δ is chosen as δ = 0.5λ0. The second term in the min
function in (31) limits 3 to the truncation number of the
incidence field, as described in Section III-D.

Since the aggregation in the RACTMA does not violate the
addition theorems, (17a)–(17d) and (20a)–(20c) are, as (11a)–
(11d) for the RCTMA, in principle exact aiming both the
semianalytical methods to be used as a reference solution.
Thus, if the T-matrices in isolation are known, all the errors in
the numerical analysis are solely caused by a limited machine
precision and by the truncation order of the T-matrices and
translation matrices κ and 3, respectively. Regarding the
impact of δ, we refer to Section III-C.

As a measure for the truncation error, the optical
theorem—the relative deviation between the scattering cross
section and the extinction cross section—can be analyzed
for the cluster T-matrices because the truncation yields a
loss of energy in the higher order harmonics [47]. The
reciprocity relationship [22] can be analyzed as a mea-
sure for the round-off error due to the machine precision.
The reciprocity relationship is the relative deviation between
two differential scattering cross sections σd(αinc, α0) and
σd(α0 + 180◦, αinc + 180◦) at αinc = 0◦ and α0 = 30◦.

The controllability of the truncation error in the RACTMA
due to a proper choice of 3 and κ is demonstrated in Fig. 10.
From the figure follows that the optical theorem converges
to machine precision with increasing truncation numbers,
while the relative deviation of the reciprocity relationship
remains close to the machine precision. Here, we calculated
the cluster T-matrix for the geometry 1 composed of 158
noncircular Chebyshev cylinders (ρ/λ0 = 0.3 and RM = 6λ0
with δ = 0.5λ0) under TM illumination for different values of
3 and κ .

The T-matrices in isolation of the Chebyshev cylinders have
been precalculated following the procedure given in [21] by
placing small circular cylinders with a radius of ρ = 0.03λ0
into free space inside the virtual border of the Chebyshev
cylinder so that the covered area fraction f ≈ 50%. The
permittivity of the small circular cylinders εc is determined so
that the effective permittivity of the composite given by the
weighted average rule equals to that of the solid Chebyshev
cylinder under consideration εi , i.e.,

εi = f εc + (1 − f ) ε0. (32)
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Fig. 11. CPU time to solve geometry 1 (cf. Fig. 7) composed of Chebyshev
cylinders for a TM-polarized plane wave as excitation using the RCTMA
and the RACTMA as a function of the number of Chebyshev cylinders M
for different normalized radii circumscribing the cylinders (a) ρ/λ0 = 0.1,
(b) ρ/λ0 = 0.2, and (c) ρ/λ0 = 0.3. A maximum number of cylinders for
their different radii is chosen so that RM does not exceed 9λ0, and hence,
Ninc is limited to 113 according to (30).

Then, the T-matrix in isolation of the noncircular cylinder
equals the cluster T-matrix of the ensemble, which is efficiently
calculated using the proposed RACTMA.

The superiority in computational efficiency of the RACTMA
compared with the RCTMA is demonstrated in Fig. 11, where
the CPU time required to determine the cluster T-matrix for
the geometry 1 (see Fig. 7)—using the Chebyshev cylin-
ders instead of the circular cylinders—for TM polarization
is depicted as a function of the number of cylinders M
for different normalized radii of the circumscribing circle
ρ/λ0 of the cylinders. The T-matrices in isolation of the
Chebyshev cylinders have been precalculated using the pro-
cedure described in the previous paragraph.

From Fig. 11 follows that even for a moderate number
M—i.e., a few hundred cylinders—RACTMA formalism is
several times faster [see Fig. 11(b) and (c)] than RCTMA. The
truncation number of the scatterer-centered T-matrices, κ (cf.
Table I), is chosen as κ = 5, 7, 8 for ρ = 0.1λ0, 0.2λ0, 0.3λ0,
respectively, and 3 is determined using (23) where C is chosen
according to (31). The truncation number of the incidence field
and thus the truncation number of the final cluster T-matrix
(which is a square matrix) is given by (30). The truncation
number of the T-matrix at the last computation stage and thus
that of the incidence field must be kept moderate to avoid
exceeding the limit of the double-precision variables due to
the highly divergent Hankel functions in particular in C0,n+1

and Cn+1,0 in (17a)–(17d). Thus, we limit the number of
cylinders for ρ0 = 0.1λ0, ρ0 = 0.2λ0 and ρ0 = 0.3λ0 to
M = 3159, M = 764, and M = 349, respectively, which
corresponds to RM < 9λ0, and hence, following (30) limits
Ninc to Ninc ≤ 113.

As the counterpart to Fig. 9, the magnitudes of the scattered
electric field ∥E∥ for TM polarization and noncircular cylin-
ders at a distance RNF = 1.5 RM and in the far-field region
calculated using the RACTMA, the RCTMA and COMSOL
are displayed in Fig. 12 demonstrating again an excellent
agreement.

Fig. 12. Magnitude of the scattered electric field ∥E∥ (dB) for a
TM-polarized plane wave incident on the structure (see Fig. 7) composed
of 349 noncircular Chebyshev cylinders with a radius of the circumscribing
circle ρ = 0.3λ0 placed within an umscribing circle of radius RM = 9λ0. The
electric field is evaluated (a) at a distance RNF from the center of the cluster
and (b) in the far-field region. The results are compared with those obtained
based on the RCTMA and the FEM solver COMSOL Multiphysics.

Fig. 13. (a) Relative deviation between the scattering cross section and
the extinction cross section (optical theorem). (b) Relative deviation between
two differential scattering cross sections σd(αinc, α0) with αinc = 0 ◦ and
αinc = 210 ◦ evaluated at α0 = 30◦ and α0 = 180◦ (reciprocity relation-
ship). The number of Chebyshev cylinders is taken up to M = 3159 and
ρ/λ0 = 0.1, 0.2, and 0.3. A TM-polarized plane wave impinging on
geometry 1 (see Fig. 7) with Chebyshev cylinders as scattering elements is
considered.

The results depicted in Fig. 13 demonstrate that both the
optical theorem and reciprocity relationship are satisfied with
a very high accuracy using the RCTMA and the proposed
RACTMA.

The magnitudes of the scattered electric (magnetic) fields
evaluated in the far-field for the TM (TE)-polarized waves
[excited by the line source in the Geometry 2 in Fig. 8(a)]
impinging under an oblique angle θ = 60◦ [see Fig. 8(b)]
based on the formalism of the hybrid waves given in Appendix
are depicted in Fig. 14. The results show perfect agreement
between the RACTMA, the RCTMA, and the FEM with
COMSOL Multiphysics. The CPU time to determine the
cluster T-matrix is reduced from 115 s (171 s) [RCTMA] to
40 s (49 s) [RACTMA] for TM (TE) polarization, and we used
Ninc = 100, δ = 0.5λ0, and κ = 3(4). For comparison, the
CPU time required using the FEM (including setting up the
geometry and meshing) was 891 and 722 s for TM and TE
polarizations, respectively. The results for the optical theorem
and the reciprocity relationship are given in Table III. Here,
the optical theorem is analyzed for a plane wave propagating
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TABLE III
OPTICAL THEOREM AND THE RECIPROCITY RELATIONSHIP FOR THE

CLUSTER T-MATRIX FOR GEOMETRY 2 (CF., FIG. 8) CALCULATED
USING THE RACTMA AND THE RCTMA. FOR THE

OPTICAL THEOREM, A PLANE WAVE WITH αINC = 0, WHEREAS
FOR THE RECIPROCITY RELATIONSHIP, A PLANE WAVE

WITH αINC = 0 AND αINC = 210◦ EVALUATED
AT α0 = 30◦ AND α0 = 180◦ IS CONSIDERED.

THE RECIPROCITY RELATIONSHIP IS
EVALUATED FOR CO-POLARIZATION

AND CROSS-POLARIZATION, SEPARATELY

Fig. 14. Magnitude of the scattered far-field (dB) of 270 cylinders with
a radius varying between 0.05λ0 and 0.1λ0 and permittivity εi = 10ε0 dis-
tributed in a rectangular frame (cf., Fig. 8). (a) Scattered electric field ∥E∥ for
TM-polarized incidence and (b) scattered magnetic field ∥H∥ for TE-polarized
incidence, respectively. The background field is produced by a line source at
a height of 6λ0 above the center of the cluster and the field impinges on
the structure under the oblique angle θ = 60◦. The far-field is calculated
using the RCTMA, the RATMA, and the commercial FEM solver COMSOL
Multiphysics.

in the direction of the x-axis (αinc = 0), and the reciprocity
relationship is analyzed for two plane waves with αinc = 0 and
αinc = 210◦ evaluated at α0 = 30◦ and α0 = 180◦ for cross-
and co-polarization, separately.

V. CONCLUSION

A recursive T-matrix algorithm including a tailored a priori
criterion for the aggregation has been proposed to efficiently
analyze the electromagnetic scattering by many randomly
distributed cylinders. The formalism does not require any
discretization of the cylinders and does not pose any restric-
tions on their position except that the smallest circumscribing
circles must not intersect. High computational efficiency is
achieved as the number of matrices to be determined in each
recursion step is significantly reduced due to the application
of an aggregation approach, where the aggregated elements
are properly chosen during each calculation step to avoid a
violation of the addition theorems.

In the numerical results, the proposed algorithm was up to
17.5× faster compared with an existing T-matrix algorithm

and, for two selected examples, up to 22× faster compared
with the time required using the FEM. The 2-D scattering by
both circular and noncircular cylinders is studied under normal
and oblique incidences to demonstrate the usefulness and
validity of the formalism. Its extension to 3-D geometries is
straightforward. Due to the very high computational efficiency
of the RACTMA, it can not only be applied to analyze
the scattering of a given geometry but also in the struc-
tural optimization of structures composed of many irregularly
arrange scattering elements, as it is required in the design of
nonperiodic metamaterials.

APPENDIX
RACTMA FOR THE SCATTERING ANALYSIS UNDER

OBLIQUE INCIDENCE

For the scattering analysis of 2-D geometries illuminated
under oblique incidence with a e−jkzz dependence along the
z-direction, where kz = ks cos(θ) and θ is the angle with
respect to the z-axis as indicated in Fig. 8(b), the existence
of hybrid waves must be taken into account [34], [48]. In this
case, an illuminating TM (TE) wave causes both a co-polarized
TM (TE) scattered wave and a cross-polarized TE (TM)
scattered wave. Thus, a coupling of both the polarizations must
be considered.

As under normal incidence [cf., (1a) and (1b)], the leading
Ez field for TM polarization and Hz field for TE polarization
are expanded into a series of cylindrical space harmonics given
by the following expressions:

Φ = [Jν(krr)e jνα
] (33a)

Ψ = [H (2)
ν (krr)e jνα

] (33b)

where kr =
√

k2
s − k2

z is the propagation constant in the xy
plane. To distinguish between the polarizations, aM (aE) and
pM ( pE) are the amplitude vectors of the incidence and scat-
tered fields for TM (TE) polarization, respectively. Taking into
account the scattering into co-polarized and cross-polarized
waves, the amplitudes of the scattered fields are related to
the amplitudes of the incident field through the following
relationships:

pM
= TMM

· aM
+ TME

· aE (34a)

pE
= TEE

· aE
+ TEM

· aM (34b)

where the first and second terms on the right-hand side of
(34a) and (34b) represent the co-polarized and cross-polarized
scattering, respectively. Equations (34a) and (34b) can be
compressed into a single matrix equation[

pM

pE

]
=

[
TMM

n TME
n

TEM
n TEE

n

]
·

[
aM

aE

]
. (35)

Both the leading field components of the incidence field
(E inc

z and H inc
z ) and scattered field (E sca

z and H sca
z ) can now

be written in a similar form as in (1a) and (1b)[
E inc

z
H inc

z

]
=

[
ΦT 0
0 ΦT

]
·

[
aM

aE

]
· e−jkzz (36a)[

E sca
z

H sca
z

]
=

[
Ψ T 0
0 Ψ T

]
·

[
aM

aE

]
· e−jkzz . (36b)
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Comparing (35) with (2) and (36a), (36b), with (1a),
(1b), and (3a)–(3c), it can be easily seen that the proposed
RACTMA can be directly used for the scattering analysis
under the oblique incidence by following substitutions into
(17a)–(17d) and (20a)–(20c):

Tn →

[
TMM

n TME
n

TEM
n TEE

n

]
(37a)

Ak,ℓ
→

[
Ak,ℓ 0

0 Ak,ℓ

]
(37b)

Ck,ℓ
→

[
Ck,ℓ 0

0 Ck,ℓ

]
(37c)

p →

[
pM

pE

]
(37d)

a →

[
aM

aE

]
(37e)

ks →

√
k2

s − k2
z . (37f)

Finally, note that all the cluster-centered and scatterer-
centered T-matrices in the formalism take the same form as
(37a).
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