
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 12, DECEMBER 2023 9255

A Time-Domain Volume Integral Equation Solver
to Analyze Electromagnetic Scattering From

Nonlinear Dielectric Objects
Sadeed Bin Sayed , Member, IEEE, Rui Chen , Member, IEEE, Hüseyin Arda Ülkü , Senior Member, IEEE,

and Hakan Bagci , Senior Member, IEEE

Abstract— A time-domain electric field volume integral equa-
tion (TD-EFVIE) solver is proposed for analyzing electromagnetic
scattering from dielectric objects with Kerr nonlinearity. The
nonlinear constitutive relation that relates electric flux and
electric field induced in the scatterer is used as an auxiliary
equation that complements TD-EFVIE. The ordinary differential
equation (ODE) system that arises from TD-EFVIE’s Schaubert–
Wilton–Glisson (SWG)-based discretization is integrated in time
using a predictor–corrector method for the unknown expansion
coefficients of the electric field. Matrix systems that arise from the
SWG-based discretization of the nonlinear constitutive relation
and its inverse obtained using the Padé approximant are used
to carry out explicit updates of the electric field and the
electric flux expansion coefficients at the predictor and the
corrector stages of the time integration method. The resulting
explicit marching-on-in-time (MOT) scheme does not call for
any Newton-like nonlinear solver and only requires solution of
sparse and well-conditioned Gram matrix systems at every step.
Numerical results show that the proposed explicit MOT-based
TD-EFVIE solver is more accurate than the finite-difference time-
domain (FDTD) method that is traditionally used for analyzing
transient electromagnetic scattering from nonlinear objects.

Index Terms— Electric field volume integral equation
(EFVIE), Kerr nonlinearity, marching-on-in-time (MOT),
predictor–corrector scheme, transient analysis.
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I. INTRODUCTION

ELECTROMAGNETIC and optical devices often rely on
materials that exhibit strong Kerr nonlinearity [1], [2],

[3] to induce various interesting physical phenomena, such
as higher order harmonic generation [4], self-focusing [5],
self-phase modulation [6], four-wave mixing [7], and three-
state switching [8], in their response to electromagnetic
excitation. The dielectric permittivity of these nonlinear
materials is mathematically modeled as a power series of the
magnitude of the electric field weighted with susceptibility
coefficients [1], [2], [3].

Due to this complicated dependence of the dielectric per-
mittivity on the electric field, design of the nonlinear electro-
magnetic and optical devices, even when they have simplistic
geometries, has to be carried out using an electromagnetic
simulator. These simulators often rely on time-domain tech-
niques since frequency-domain methods operate under the
assumption of time-harmonic excitation and can not be used
in the presence of strong nonlinearities [1].

Majority of the time-domain solvers developed to simu-
late electromagnetic field interactions on materials with Kerr
nonlinearity are based on the finite-difference time-domain
(FDTD) method [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19]. This can be explained by the fact that
FDTD methods are relatively straightforward to be imple-
mented and they permit easy incorporation of the nonlinear
permittivity function through the use of an auxiliary equa-
tion [9], [11], [20]. This approach calls for iterative updates
between the Maxwell equations and this auxiliary equation,
which is often implemented using a Newton-type nonlinear
solver or by simple explicit updates of the variables in the
equations [9], [20].

Time marching schemes that rely on similar approaches
have also been adopted into time-domain finite-element
method (TD-FEM) [21], [22], [23], [24], [25], [26]. Unlike
FDTD, TD-FEM is not restricted to uniform grids for spatial
discretization, and therefore can be used in the simulation of
devices with complicated geometries without loss of accu-
racy and/or efficiency. That said, both FDTD and TD-FEM
suffer from several well-known drawbacks of the differential
equation solvers: They require the computation domain to be
truncated using absorbing boundary conditions or perfectly
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matched layers, their accuracy is limited by numerical phase
dispersion, and their time step size is often restricted by the
Courant–Friedrichs–Lewy (CFL) condition [1], [9].

Time-domain volume integral equation (TD-VIE)
solvers [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39] do not suffer from these drawbacks
of FDTD and TD-FEM. This is because they rely on a
formulation where the scattered electromagnetic field is
represented as a spatio-temporal convolution between the
Green function of the background medium and current/field
induced in the geometry. However, this convolution operation
(in discretized form) is also the reason why computational
cost and memory requirements of classical marching-on-in-
time (MOT)-based TD-VIE solvers are high [31], [32], [33],
[34], [35]. Furthermore, inaccurate discretization/computation
of the retarded-time integrals relevant to this convolution
cause late-time instabilities in the solution [36]. The former
issue has been addressed by the development of plane
wave time-domain (PWTD) algorithm [31], [32], [33] and
fast Fourier transform (FFT)-based schemes [34], [35].
Late-time instability issue has been mostly alleviated using
highly accurate interpolation functions in the temporal
discretization [36], [40], [41], [42], [43].

These developments have significantly increased the range
of TD-VIE solvers’ applicability and enabled their use in tran-
sient analysis of electromagnetic scattering from electrically
large [33], [34], [35], lossy [31], dispersive [32], and/or high-
contrast [36] scatterers. On the other hand, development of
TD-VIE solvers for scatterers with nonlinear permittivity has
been limited to only 2-D problems [44]. This can be explained
by the fact that this 2-D method uses an implicit MOT
scheme and therefore requires a Newton-like nonlinear solver
at every time step, which limits its computational efficiency
and applicability to 3-D problems.

In this work, an explicit MOT-based time-domain electric
field volume integral equation (TD-EFVIE) solver is proposed
for transient analysis of electromagnetic scattering from 3-D
nonlinear dielectric objects with Kerr nonlinearity. The pro-
posed method represents the scattered electric field in the
form of a (volumetric) convolution between the time-domain
Green function of the background medium and two unknowns,
namely the total electric field and the total electric flux induced
in the scatterer. Then, the time derivative of the fundamental
field relation, i.e., the sum of the incident and the scattered
fields is equal to the total field, is enforced in the scatterer.
This yields TD-EFVIE. The nonlinear constitutive relationship
between the two unknowns is used as an auxiliary equation
that complements TD-EFVIE.

To numerically solve TD-EFVIE, the scatterer is discretized
into a mesh of tetrahedrons. The electric flux and the electric
field are spatially expanded using “full” and “half” Schaubert-
Wilton–Glisson (SWG) basis functions [31], [32], [37], [45]
defined on these tetrahedrons. Inserting these expansions into
TD-EFVIE and testing the resulting equation using half SWG
functions yield a system of ordinary differential equations
(ODEs) in time-dependent expansion coefficients of the SWG
basis functions. A predictor–corrector scheme, more specifi-
cally a P E(C E)m scheme, is used to integrate this system

of ODEs in time for the unknown electric field expansion
coefficients [38], [39], [43], [46], [47], [48], [49]. Here, P E
and C E refer to the predictor and corrector stages, and m
is the number of corrector updates. Similarly, expansions of
the electric field and the electric flux are inserted into the
nonlinear constitutive relation and its “inverse” obtained using
the Padé approximant [50], [51], [52]. The resulting equations
are tested using full SWG functions at discrete time steps.
This yields matrix systems that relate the electric flux expan-
sion coefficients to those of the electric field. These matrix
equations are used at PE and CE stages of the P E(C E)m

scheme during the time integration for the explicit updates
of the expansion coefficients. This approach does not call for
Newton-like nonlinear solvers as done in the implicit MOT
solvers. Even though it requires linear matrix system solutions
at every time step, the Gram matrices associated with these
systems are always sparse and well-conditioned (independent
of the time step size). Therefore, these systems are efficiently
solved using an iterative solver.

The accuracy and the applicability of the resulting explicit
MOT-based TD-EFVIE solver are demonstrated using several
numerical examples. These results clearly show that the pro-
posed method is more accurate than FDTD that is traditionally
used for analyzing electromagnetic scattering from nonlinear
objects. Note that preliminary versions of the method proposed
in this work have been described in [53] and [54] as conference
contributions.

The remainder of this article is organized as follows. Sec-
tions II-A and II-B present the formulation of TD-EFVIE
and the nonlinear constitutive relation and their discretization.
Section II-C describes the P E(C E)m scheme that is used
for the solution of the discretized TD-EFVIE (in the form
of ODE systems) and the discretized nonlinear constitutive
relation. This is followed by Section II-D where several
comments about the proposed explicit MOT-based TD-EFVIE
solver are provided. Section III presents numerical results that
demonstrate the accuracy, the stability, and the applicability
of the proposed method. Finally, Section IV summarizes this
work and outlines future research directions.

II. FORMULATION

A. TD-EFVIE

Let V denote the volumetric support of a scatterer that
resides in an unbounded background medium with permittivity
ε0 and permeability µ0. Electric field Einc(r, t) is incident on
the scatterer. It is assumed that Einc(r, t) is vanishingly small
for ∀r ∈ V and t ≤ 0, and is essentially band-limited to
frequency fmax. In response to this excitation, the equivalent
volumetric electric current J(r, t) is induced in V , and J(r, t)
generates the scattered electric field Esca(r, t). One can express
Esca(r, t) in terms of J(r, t) using [1]

Esca(r, t) = −
µ0

4π

∫
V

∂t J(r′, t ′)
∣∣
t ′=t−R/c0

R
dv′

+
1

4πε0
∇

∫
V

∫ t−R/c0

−∞

∇
′
· J(r′, t ′)

R
dt ′dv′ (1)
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where ∂t denotes the derivative with respect to time, R =

|r − r′
| is the distance between the source point r′ and the

observation point r, and c0 = 1/
√

ε0µ0 is the speed of light
in the background medium. In V , J(r, t) is expressed in terms
of the total electric field E(r, t) and the electric flux D(r, t)
using

J(r, t) = ∂t D(r, t) − ε0∂t E(r, t), r ∈ V . (2)

Here, E(r, t) satisfies the fundamental field relation

E(r, t) = Einc(r, t) + Esca(r, t). (3)

Inserting (1) and (2) into the time derivative of (3) for r ∈ V
yields the time derivative form of TD-EFVIE [in unknowns
E(r, t) and D(r, t)] [29], [30], [31], [32], [34], [35], [36], [37]
as follows:

∂t E(r, t) + L[E](r, t) −
1
ε0
L[D](r, t) = ∂t Einc(r, t), r ∈ V .

(4)

Here, L[X](r, t) is the volume integral operator defined as
follows:

L[X](r, t) = −
ε0µ0

4π

∫
V

1
R

∂3
t ′X(r′, t ′)

∣∣
t ′=t−R/c0

dv′

+
1

4π
∇

∫
V

1
R

∇
′
· ∂t ′X(r′, t ′)

∣∣
t ′=t−R/c0

dv′. (5)

Note that an additional time derivative is applied to (3) to
obtain (4) because this equation is in the form of an ODE in
time and a P E(C E)m scheme be used to integrate it in time
for the unknown E(r, t) [38], [39], [43], [46], [47], [48], [49].

To discretize (4), first V is divided into a mesh of tetrahe-
drons, and D(r, t) and E(r, t) are discretized using SWG func-
tions that are defined on triangular patches of this mesh [45].
D(r, t) is approximated using

D(r, t) =

N D∑
n=1

{ID(t)}nf D
n (r) (6)

where f D
n (r) represents the SWG basis function set, {ID(t)}n =

I D
n (t) are the unknown time-dependent expansion coefficients,

and N D is the total number of patches in the tetrahedral mesh.
f D
n (r) associated with triangular patch Sn is defined as [45]

f D
n (r) =


f+n (r) =

|Sn|

3|V +
n |

(
r − r+

n

)
, r ∈ V +

n

f−n (r) = −
|Sn|

3|V −
n |

(
r − r−

n

)
, r ∈ V −

n

0, otherwise.

(7)

Here, V ±
n are the tetrahedrons on the two sides of Sn , |Sn|

represents the area of Sn , |V ±
n | are the volumes of V ±

n , and
r±

n are the “free” nodes of V ±
n , i.e., r+

n ∈ V +
n , r+

n /∈ Sn and
r−

n ∈ V −
n , r−

n /∈ Sn . Note that if Sn is located on the surface
of V , there is only one tetrahedron attached to it and f D

n (r)
is set to the “half” SWG function f+n (r) defined in this single
tetrahedron represented by V +

n in the first row of (7). Note
that this combination of full and half SWG functions used in
basis set f D

n (r) ensures that the normal component of D(r, t)

across any two tetrahedrons in V is continuous and the normal
component of D(r, t) on the surface of V is properly accounted
for.

On the other hand, E(r, t) should be approximated
using a basis set that allows its normal component
to be discontinuous across any two tetrahedrons in V .
Therefore, E(r, t) is expanded using half SWG basis
functions [31], [32]

E(r, t) =

N E∑
n=1

{IE(t)}nf E
n (r) (8)

where f E
n (r) = f+

n (r) are the half SWG basis functions
associated with triangular patches (there is one half SWG
function for each patch that is located on the surface of V
and two for each “internal” patch), {IE(t)}n = I E

n (t) are the
unknown time-dependent expansion coefficients, and N E

=

2N D
− N B, where N B is the number of patches located on the

surface of V .
Inserting (6) and (8) into (4) and testing the

resulting equation with f E
m(r), m = 1, . . . , N E yield

the spatially discretized time-dependent TD-EFVIE
as follows:

GEE∂t IE(t) = Vinc(t) − Vsca,E(t) − Vsca,D(t). (9)

Here, the elements of the Gram matrix GEE, the tested
incident field vector Vinc(t), and the tested scattered field
vectors Vsca,E(t) and Vsca,D(t) are given by the following
equation:

{GEE
}mn =

∫
V +

m

f E
m(r) · f E

n (r)dv (10)

{Vinc(t)}m =

∫
V +

m

f E
m(r) · ∂t Einc(r, t)dv (11)

{Vsca,E(t)}m =

N E∑
n=1

∫
V +

m

f E
m(r) · L

[
I E
n f E

n

]
(r, t)dv (12)

{Vsca,D(t)}m = −
1
ε0

N D∑
n=1

∫
V +

m

f E
m(r) · L

[
I D
n f D

n

]
(r, t)dv. (13)

The semi-discretized system in (9) is integrated in time
using the P E(C E)m scheme described in Section II-C. This
calls for sampling (9) in time with time step size 1t . To com-
pute the samples of Vsca,E(t) and Vsca,D(t), the retarded-time
integrals L[I D

n f D
n ](r, t) and L[I E

n f E
n ](r, t) have to be evalu-

ated at discrete times t = j1t , which consequently means
IE(t − R/c0) and ID(t − R/c0) (and their temporal derivatives)
should be interpolated from the samples of IE(t) and ID(t),
respectively. This requires expansion of IE(t) and ID(t) as
follows:

IE(t) =

Nt∑
i=1

IE
i Ti (t) (14)

ID(t) =

Nt∑
i=1

ID
i Ti (t). (15)
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Here, IE
i = IE(i1t), ID

i = ID(i1t), Ti (t) = T (t − i1t),
where T (t) is the temporal interpolation function, and Nt is
the number of time steps. Inserting (14) and (15) into (9) and
point-testing the resulting equation in time, i.e., sampling it at
t = j1t , j = 1, . . . , Nt yield the fully discretized TD-EFVIE
as follows:

GEEİE
j = Vinc

j − ZEE
0 IE

j − ZED
0 ID

j

−

j−1∑
i=1

ZEE
j−i I

E
i −

j−1∑
i=1

ZED
j−i I

D
i (16)

where İE
j = ∂t IE(t)|t= j1t , Vinc

j = Vinc( j1t), and the elements
of the matrices ZEE

j−i and ZED
j−i are given by the following

equation:

{
ZEE

j−i

}
mn =

∫
V +

m

f E
m(r) · L

[
f E
n Ti

]
(r, j1t)dv (17)

{
ZED

j−i

}
mn = −

1
ε0

∫
V +

m

f E
m(r) · L

[
f D
n Ti

]
(r, j1t)dv. (18)

One can see from the definition of the SWG function
in (7) that the full SWG functions can be expressed as linear
combinations of the half SWG functions multiplied by the
appropriate signs. In other words, basis set f D

n (r) can be
constructed by linearly combining functions in basis set f E

n (r).
This means that ZED

j−i can be expressed in terms of ZEE
j−i using

ZED
j−i = −

1
ε0

ZEE
j−i P

T (19)

where P is the sparse matrix of linear mapping from the basis
set f E

n (r) to the basis set f D
n (r), and its nonzero entries are

either 1 or −1. Inserting (19) into (16) yields the final form
of the fully discretized TD-EFVIE as follows:

GEEİE
j = Vinc

j + ZEE
0

(
1
ε0

PTID
j − IE

j

)
+

j−1∑
i=1

ZEE
j−i

(
1
ε0

PTID
i − IE

i

)
. (20)

The matrix entries {ZEE
j−i }mn in (17) can be explicitly written

as follows:

{
ZEE

j−i

}
mn = −

ε0µ0

4π

∫
V +

m

f E
m(r) ·

∫
V +

n

1
R

f E
n (r′)

× ∂3
t ′ T (t ′

− i1t)
∣∣
t ′= j1t−R/c0

dv′dv

+
1

4π

∫
V +

m

f E
m(r) · ∇

∫
V +

n

1
R

∇
′
· f E

n (r′)

∂t ′ T (t ′
− i1t)

∣∣
t ′= j1t−R/c0

dv′dv. (21)

The order of the singularity in the second double integral
in (21) is reduced using the chain rule and the divergence

theorem [30], [36], [45], [55], which yields{
ZEE

j−i

}
mn = −

ε0µ0

4π

∫
V +

m

f E
m(r) ·

∫
V +

n

1
R

f E
n (r′)

∂3
t ′ T (t ′

− i1t)
∣∣
t ′= j1t−R/c0

dv′dv

+
1

4π

∫
Sm

∫
V +

n

1
R

∇
′
· f E

n (r′)

∂t ′ T (t ′
− i1t)

∣∣
t ′= j1t−R/c0

dv′ds

−
1

4π

∫
V +

m

∇ · f E
m(r)

∫
V +

n

1
R

∇
′
· f E

n (r′)

∂t ′ T (t ′
− i1t)

∣∣
t ′= j1t−R/c0

dv′dv. (22)

Note that the derivation of the surface integral expression
in (22) uses the fact that the normal component of f E

m(r) is
equal to 1 on Sm and 0 on the other three surfaces of V +

m .

B. Nonlinear Constitutive Relation

In addition to TD-EFVIE in (4), E(r, t) and D(r, t) for
r ∈ V are related to each other via the nonlinear constitutive
relation [3], [9]

D(r, t) = ε(E)E(r, t), r ∈ V . (23)

Here, ε(E) is the electric-field dependent permittivity and
is expressed as follows:

ε(E) = ε0
[
χ (1)

+ χ (3)
|E(r, t)|2

]
(24)

where χ (1) and χ (3) are the linear and the third-order nonlinear
coefficients associated with the Kerr nonlinearity, respectively.

The constitutive relation in (23) complements TD-EFVIE
in (4). Inserting (6) and (8) into (23) and testing the resulting
equation with f D

m (r), m = 1, . . . , N D at t = j1t , j =

1, . . . , Nt yield

GDDID
j = GDE

j IE
j . (25)

Here, the elements of the Gram matrices GDD and GDE
j are

given by the following equation:

{GDD
}mn =

∫
Vm

f D
m (r) · f D

n (r)dv (26)

{GDE
j }mn =

∫
Vm

f D
m (r) · ε(E(r, j1t))f E

n (r)dv (27)

where Vm = V +
m ∪ V −

m is the support of f D
m (r). Using P, the

sparse matrix of linear mapping from the basis set f E
n (r) to the

basis set f D
n (r), one can express GDD in terms of GEE using

GDD
= PGEEPT. (28)

It is assumed that ε(E) is a piecewise constant function
inside the scatterer, with a constant value in each tetrahedron.
This constant value is computed at the center of each tetrahe-
dron. Let rc

n represent the center of V ±
n . Inserting (8) into (24)

and evaluating the resulting expression at r = rc
n and t = j1t

yield

ε
(
E
(
rc

n, j1t
))

= ε0

(
χ (1)

+ χ (3)

∣∣∣∣∑
l

{
IE

j

}
l
fE
l

(
rc

n

)∣∣∣∣2
)

(29)
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where the index l runs over the indices of the half basis
functions defined in V +

n (there are four of them). Let SE
j

represents a diagonal matrix with entries{
SE

j

}
nn = ε(E(rc

n, j1t))

= ε0

(
χ (1)

+ χ (3)

∣∣∣∣∑
l

{
IE

j

}
l
fE
l

(
rc

n

)∣∣∣∣2
)

. (30)

Then, GDE
j can be expressed in terms of GEE as follows:

GDE
j = PGEESE

j . (31)

Inserting (28) and (31) into (25) yields the final form of the
discretized constitutive relation as follows:

PGEEPTID
j = PGEESE

j IE
j . (32)

The P E(C E)m scheme described in Section II-C requires IE
j

to be updated from ID
j (during evaluation steps). This calls for

the “inversion” of the nonlinear constitutive relation in (23).
This is done using the Padé approximant [50], [51], [52]

E(r, t) =
1

ε0χ (1)

[
ε2

0(χ
(1))3

+ 2χ (3)
|D(r, t)|2

ε2
0(χ

(1))3 + 3χ (3)|D(r, t)|2

]
︸ ︷︷ ︸

ε̃(D)

D(r, t). (33)

Inserting (6) and (8) into (33) and testing the resulting
equation with f E

m(r), m = 1, . . . , N E at t = j1t , j =

1, . . . , Nt yield

GEEIE
j = GED

j ID
j . (34)

Here, the elements of the Gram matrix GED
j are given by

the following equation:{
GED

j

}
mn =

∫
V +

m

f E
m(r) · ε̃(D(r, j1t))f D

n (r)dv. (35)

Just like ε(E), it is assumed that ε̃(D) in (33) is a piecewise
constant function inside the scatterer, with a constant value
in each tetrahedron. Inserting (6) into the expression of ε̃(D)

[see (33)] and evaluating the resulting expression at r = rc
n

and t = j1t yield

ε̃
(
D
(
rc

n, j1t
))

=
1

ε0χ (1)

(
ε2

0(χ
(1))3

+ 2χ (3)

∣∣∣∑l

{
ID

j

}
lf

D
l

(
rc

n

)∣∣∣2)(
ε2

0(χ
(1))3 + 3χ (3)

∣∣∣∑l

{
ID

j

}
lf

D
l

(
rc

n

)∣∣∣2) (36)

where the index l runs over the indices of the basis functions
that have V +

n or V −
n as support. Let SD

j represent a diagonal
matrix with entries{

SD
j

}
nn = ε̃(D(rc

n, j1t))

=
1

ε0χ (1)

(
ε2

0(χ
(1))3

+ 2χ (3)

∣∣∣∑l

{
ID

j

}
lf

D
l

(
rc

n

)∣∣∣2)(
ε2

0(χ
(1))3 + 3χ (3)

∣∣∣∑l

{
ID

j

}
lf

D
l

(
rc

n

)∣∣∣2) .

(37)

Then, GED
j can be expressed in terms of GEE using

GED
j = GEESD

j PT. (38)

Inserting (38) into (34) and eliminating GEE from both sides
of the resulting equation yield the final form of the discretized
Padé approximant as follows:

IE
j = SD

j PTID
j . (39)

C. P E(C E)m Scheme

The fully discretized TD-EFVIE (20) relates unknowns IE
j

and ID
j to the time derivative of the unknown İE

j , and is
integrated in time using a P E(C E)m scheme to yield the
unknown IE

j [39], [46], [47], [48]. This scheme uses the
discretized constitutive relation (32) and the discretized Padé
approximant (39) to update IE

j and ID
j . The steps of the

P E(C E)m are provided as follows.
Loop over j = 1, . . . , Nt.
Step 0: Compute Vfix

j , the part of the right-hand side of (20)
that does not change within the time step j

Vfix
j = Vinc

j +

j−1∑
i=1

ZEE
j−i

(
1
ε0

PTID
i − IE

i

)
. (40)

PE Stage:
Step 1: Predict IE,(0)

j using IE
i and İE

i , i = j − k, . . . , j − 1

IE,(0)
j =

k∑
l=1

[
{p}lIE

j−1+l−k + {p}k+l İE
j−1+l−k

]
. (41)

Step 2: Compute SE,(0)
j by inserting IE,(0)

j into (30)

{
SE,(0)

j

}
nn = ε0

(
χ (1)

+ χ (3)

∣∣∣∣∑
l

{
IE,(0)

j

}
lf

E
l

(
rc

n

)∣∣∣∣2). (42)

Step 3: Compute ID,(0)
j by solving (32) with IE,(0)

j and SE,(0)
j

PGEEPTID,(0)
j = PGEESE,(0)

j IE,(0)
j . (43)

Step 4: Compute SD,(0)
j by inserting ID,(0)

j into (37){
SD,(0)

j

}
nn

=
1

ε0χ (1)

(
ε2

0(χ
(1))3

+ 2χ (3)

∣∣∣∑l

{
ID,(0)

j

}
lf

D
l

(
rc

n

)∣∣∣2)(
ε2

0(χ
(1))3 + 3χ (3)

∣∣∣∑l

{
ID,(0)

j

}
lf

D
l

(
rc

n

)∣∣∣2) . (44)

Step 5: Update IE,(0)
j using ID,(0)

j and SD,(0)
j in (39)

IE,(0)
j = SD,(0)

j PTID,(0)
j . (45)

Step 6: Compute İE,(0)
j by solving

GEEİE,(0)
j = Vfix

j + ZEE
0

(
1
ε0

PTID,(0)
j − IE,(0)

j

)
. (46)

(CE)m Stage:
Step 7: Loop over m = 1, . . . , mmax.
Step 7.1: Correct IE,(m)

j using IE
i and İE

i , i = j−k, . . . , j−1,
and İE,(m−1)

j

IE,(m)
j =

k∑
l=1

[
{c}lIE

j−1+l−k + {c}k+l İE
j−1+l−k

]
+ {c}2k+1İE,(m−1)

j . (47)
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Step 7.2: Apply successive over relaxation (SOR) to IE,(m)
j

with α ∈ [0, 1]

IE,(m)
j = αIE,(m)

j + (1 − α)IE,(m−1)
j . (48)

Step 7.3: Compute SE,(m)
j by inserting IE,(m)

j into (30)

{
SE,(m)

j

}
nn = ε0

(
χ (1)

+ χ (3)

∣∣∣∣∑
l

{
IE,(m)

j

}
lf

E
l

(
rc

n

)∣∣∣∣2). (49)

Step 7.4: Compute ID,(m)
j by solving (32) with IE,(m)

j and
SE,(m)

j

PGEEPTID,(m)
j = PGEESE,(m)

j IE,(m)
j . (50)

Step 7.5: Compute SD,(m)
j by inserting ID,(m)

j into (37){
SD,(m)

j

}
nn

=
1

ε0χ (1)

(
ε2

0(χ
(1))3

+ 2χ (3)

∣∣∣∑l

{
ID,(m)

j

}
lf

D
l

(
rc

n

)∣∣∣2)(
ε2

0(χ
(1))3 + 3χ (3)

∣∣∣∣∑l

{
ID,(m)

j

}
lf

D
l

(
rc

n

)∣∣∣∣2)
. (51)

Step 7.6: Update IE,(m)
j using ID,(m)

j and SD,(m)
j in (39)

IE,(m)
j = SD,(m)

j PTID,(m)
j . (52)

Step 7.7: Compute İE,(m)
j by solving

GEEİE,(m)
j = Vfix

j + ZEE
0

(
1
ε0

PTID,(m)
j − IE,(m)

j

)
. (53)

Step 7.8: Check convergence∥∥∥IE,(m)
j − IE,(m−1)

j

∥∥∥ <

∥∥∥IE,(m)
j

∥∥∥ϵPECE (54)

where ϵPECE is the convergence threshold and ∥x∥ represents
the L2-norm of vector x.

End loop over m.
Step 8: Upon converge, set IE

j = IE,(m)
j , ID

j = ID,(m)
j , and

İE
j = İE,(m)

j .
End loop over j .
In the P E(C E)m scheme described above, p and c are the

predictor and corrector coefficient vectors of length 2k and
2k + 1, respectively [43], [49]. SOR in (48) (Step 7.2) helps
to maintain the stability of the solution [33], [38]. The Gram
matrix GEE is well-conditioned and sparse, and therefore the
matrix systems in (43) (Step 3), (46) (Step 6), (50) (Step 7.4),
and (53) (Step 7.7) are solved efficiently using a linear iterative
solver. The iterations of this solver are terminated when the
following convergence criterion is satisfied:∥∥∥I(n)

j − I(n−1)
j

∥∥∥ < ϵITS
∥b∥. (55)

Here, ϵITS is the convergence threshold, b is the right-hand
side vector, and I(n)

j and I(n−1)
j are the solutions at iterations

n and n − 1, respectively.

D. Comments

Several comments about the formulation and the discretiza-
tion schemes described in Sections II-A and II-B, and the
P E(C E)m scheme described in Section II-C are in order.

1) The second-order nonlinear term (with coefficient χ (2))
is not considered in the expression of ε(E) given by (24)
because it is assumed that the scatterer is centrosymmet-
ric [3]. But the method developed in this work could still
be used for permittivity functions with second-order and
higher order terms.

2) The most common choices for the temporal interpolation
function Ti (t) used in (14) and (15) are the Lagrange
polynomials [56], [57], [58] and the band-limited
approximate prolate spheroidal wave (APSW) func-
tions [36], [40], [41], [42]. Both options can be used
by the MOT solver described in this work. However,
when APSW functions are used, the resulting P E(C E)m

scheme is no longer casual, i.e., “future” samples of IE
i

and ID
i are required to compute the summation on the

right-hand side of (40). In this case, the causality of
the time marching is restored using the extrapolation
scheme described in [36]. This extrapolation scheme is
specifically tailored for the accurate and stable solution
of TD-EFVIE.

3) Similarly, several options exist to generate the predic-
tor and corrector coefficients, p and c. They can be
obtained using polynomial interpolation, which leads to
well-known linear multistep methods such as Adams–
Moulton, Adams–Bashforth, and backward difference
schemes [49]. One can also obtain them numerically
under the assumption that oscillating and/or decaying
exponential functions can be used to approximate the
time dependence of the solution [43].

4) When MOT-based TD-EFVIE solvers are used to ana-
lyze electromagnetic scattering from linear objects, 1t
is selected using 1t = 1/(2γ fmax) where γ is the over-
sampling factor. Ideally, γ can be set to 1.0 due to the
Nyquist sampling criterion, but, in general, it is set to
a value between 2.5 and 15.0 (depending on the desired
level of accuracy). On the other hand, for nonlinear
scatterers, there is no explicit guidance criterion to select
1t . For the numerical examples presented in Section III,
γ is increased to sufficiently resolve the frequency of the
higher harmonics.

5) SOR in (48) (Step 7.2) balances between the stability
and the convergence of the corrector updates (C E)m ,
and it does not affect the accuracy of the solution
(assuming convergence). Reducing the SOR coefficient
α increases the number of corrector updates, which in
return increases the computation time. On the other
hand, increasing α might result in unstable corrector
updates leading to an unstable solution. Additionally, for
stronger nonlinearities, one must reduce α to maintain
the stability, which again comes with increased compu-
tation time.

6) Within the framework of the proposed explicit MOT
solver, a more accurate expansion of E(r, t) can be used.
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For example, the half SWG functions can be replaced
by the fully linear curl-conforming basis functions as
done in [39]. These functions are defined on the edges
of the tetrahedrons and automatically enforce the tan-
gential continuity of E(r, t), leading to a more accurate
solution. Switching to this type of basis functions would
not change how the nonlinearity is accounted for and
the time integration is carried out using a P E(C E)m

scheme during time marching. Having said that, using
SWG and half SWG functions to expand D(r, t) and
E(r, t), respectively, reduces the computational cost of
the solver. This is because full SWG functions can be
constructed by linearly combining half SWG functions
leading to the sparse mappings between the matrices and
the expansion coefficients as shown in (19), (28), (31),
and (38).

III. NUMERICAL RESULTS

This section presents several numerical examples that
demonstrate the accuracy, stability, and applicability of the
proposed explicit MOT solver in characterizing electromag-
netic field interactions on scatterers with Kerr nonlinearity.
In all the examples considered here, the scatterer resides in
free space with permittivity ε0 and permeability µ0. In all
simulations, the excitation is a plane wave with electric field

Einc(r, t) = p̂E0 P(t − r · k̂/c0) (56)

where E0 is the amplitude of the electric field, and p̂ = x̂ and
k̂ = ẑ are the unit vectors that represent the directions of the
electric field and the propagation of the plane wave, respec-
tively. In (56), P(t) is a band-limited pulse that describes the
time dependence of the excitation.

The predictor and corrector coefficient vectors, p and c are
obtained using the sixth-order Adams–Bashforth and backward
difference formulas [49], respectively. The convergence thresh-
old for the corrector updates [(C E)m] is set to ϵPECE

= 10−13

[see (54)]. The matrix equations in (43), (46), (50), and (53)
are iteratively solved using the transpose-free quasi-minimal
residual (TFQMR) method [59]. The convergence threshold of
the TFQMR iterations is set to ϵITS

= 10−12 [see (55)].

A. Linear Sphere

In the first example, electromagnetic scattering from a
“linear” sphere is analyzed using the proposed method. The
sphere is centered at the origin and has a radius of length
1.0 m. The coefficients of the permittivity function of the
sphere are χ (1)

= 2.0 and χ (3)
= 0. The time dependence

of the plane wave excitation in (56) is a modulated Gaussian
pulse expressed as follows:

P(t) = cos(2π f0[t − tp])e−(t−tp)2/(2σ 2). (57)

Here, f0, tp, and σ are the modulation frequency, time delay,
and duration of the pulse, respectively. Let fbw represent the
effective bandwidth, then choosing σ = 3/(2π fbw) ensures
that 99.997% of P(t)’s power is within the frequency band
[ fmin, fmax], where fmin = f0 − fbw and fmax = f0 + fbw [35].

Fig. 1. Scattering from a linear sphere. (a) x-component of E(r, t) computed
by the proposed solver at the center of the sphere [r0 = (0, 0, 0)]. (b) σMie(θ)

and |σMie(θ)−σMOT(θ)|, where σMOT(θ) and σMie(θ) are the RCS computed at
f = 5.0 MHz on the φ = 0 plane using the Fourier-transformed time-domain
solution and the Mie series solution, respectively.

For this example, f0 = 5.0 MHz, fbw = 2.5 MHz,
σ = 0.1910 µs, and tp = 8σ . E(r, t) and D(r, t) induced
inside the sphere are discretized using N E

= 3844 and N D
=

2114 spatial basis functions, respectively. The MOT scheme
is executed for Nt = 1000 time steps with 1t = 6.0 ns. The
SOR coefficient in (48) is selected as α = 0.3.

Fig. 1(a) plots the x-component of E(r, t) computed by
the proposed solver at the center of the sphere (the sphere
is centered at the origin). The figure shows that the pro-
posed solver provides stable results for the entire simulation
duration. After the time-domain simulation is completed, the
Fourier-transformed solution is used to compute the radar cross
section (RCS) σMOT(θ) at f = 5.0 MHz on the φ = 0 plane
(θ ∈ [0◦, 180◦

]). Let σMie(θ) represent the RCS computed at
the same frequency and on the same plane using the Mie series
solution [1]. Fig. 1(b) plots σMie(θ) and |σMie(θ) − σMOT(θ)|

versus θ . The figure clearly shows that the result obtained
using the proposed solver is accurate.

B. Nonlinear Cube

In the second example, electromagnetic scattering from a
nonlinear cube is analyzed using the proposed solver. The cube
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Fig. 2. Scattering from a nonlinear cube. (a) x-component of D(r0, t) computed by the proposed solver (MOT) and the FDTD-based solver MEEP at the
center of the cube [r0 = (0, 0, 0)]. (b) Zoomed version of (a) in the time range [32.5, 41.5] ns. (c) Fourier transform of the x-component of D(r0, t) computed
by the proposed solver (MOT) and the FDTD-based solver MEEP. (d) Convergence in err defined by (58) with increasing mesh density (decreasing average
edge length lav).

is centered at the origin and has an edge of length 0.1 m.
The coefficients of the permittivity function of the cube are
χ (1)

= 2 and χ (3)
= 0.01. The time dependence of the plane

wave excitation is given by (57) with f0 = 1498.96 MHz,
fbw = 149.90 MHz, σ = 3.1853 ns, and tp = 10σ .

E(r, t) and D(r, t) induced inside the cube are discretized
using N E

= 7596 and N D
= 4002 spatial basis functions,

respectively. The MOT scheme is executed for Nt = 6000 time
steps with 1t = 13.343 ps. The SOR coefficient in (48) is
selected as α = 0.3.

To verify the results of the proposed solver, this scattering
scenario is also analyzed using the open-source FDTD-based
solver MEEP [50]. The dimension of the FDTD computation
domain is 1 × 1 × 2 m and the thickness of the perfectly
matched layer (PML) is 0.3 m. The computation domain and
the PML are discretized using Yee cells of dimension 5 mm
and the time discretization uses a time step of size 1t =

8.33 ps.
Fig. 2(a) compares the x-component of D(r, t) computed

by the proposed solver and MEEP at the center of the cube.
Fig. 2(b) zooms to the time range [32.5, 41.5] ns of the curves

in Fig. 2(a). Both figures show that the results agree very well
for t > 12 ns and t < 50 ns. The discrepancy between the
results outside this range is because MEEP cannot capture the
solution accurately when it is small. Ideally, both solutions
should decay to zero. From this perspective, one can argue
that the accuracy of the proposed solver is actually higher than
MEEP since the late-time solution obtained by the proposed
solver reaches a lower level [39], [47], [48], [60]. This is
further investigated by studying the Fourier transform of the
solutions as described next.

Fig. 2(c) compares the Fourier transform of the solutions
in Fig. 2(a) in the frequency range f ∈ [0, 30.0] GHz.
The figure clearly shows that several higher-order harmon-
ics are generated due to the nonlinearity of the dielectric
permittivity. Fourier transformed solutions match well up to
frequencies where the numerical error in the MEEP solution
becomes high enough to significantly effect the solution.
Indeed, the mismatch between the two Fourier transformed
solutions around the fifth harmonic is on the order of the
difference in the levels of the two solutions in the late time as
shown in Fig. 2(a).
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Fig. 3. Four-wave mixing frequency conversion. (a) Time dependence of the plane wave excitation, P(t) given by (59) and (b) its Fourier transform.
(c) x-component of D(r0, t) computed by the proposed solver at the center of the sphere in the first (linear sphere with χ (1)

= 1.5, χ (3)
= 0) and the second

(nonlinear sphere with χ (1)
= 1.5, χ (3)

= 0.075) simulations [r0 = (0, 0, 0)]. (d) Fourier transform of the x-component of D(r0, t) computed in the two
simulations.

Next, it is demonstrated that the solution obtained
by the proposed solver converges with increasing mesh
density. Four different meshes with average edge length
lav = {1.896, 1.716, 1.634, 1.553} cm are considered. This
results in N E

= {5860, 7596, 9108, 10 784} and N D
=

{3110, 4002, 4812, 5668} for four simulations, respectively.
All other parameters are kept the same. After each time-
domain simulation, Fourier transformed solutions are used to
compute the scattered electric far-field Esca

2n−1,k for φ = 0 and
θ = k1θ , 1θ = 1.0◦, k = 1, 2, . . . , 180 at the center frequen-
cies of the first ten harmonics (2n − 1) f0, n = 1, 2 . . . , 10.
The following error is used as a measure of the convergence:

err =

√√√√ 1
10

10∑
n=1

1
180

180∑
k=1

∣∣∣Esca
2n−1,k − Esca,ref

2n−1,k

∣∣∣2 (58)

where Esca,ref
2n−1,k is the scattered electric far-field computed

by the simulation with the densest mesh. Fig. 2(d) plots
err versus lav and shows that the solution obtained by the
proposed solver converges with increasing mesh density.

C. Four-Wave Mixing

In this example, four-wave mixing frequency conversion of
electromagnetic fields [15] is analyzed using the proposed

method. The scatterer is a sphere that is centered at the
origin and has a radius of length 1.0 m. Two simulations
are carried out to clearly demonstrate that the nonlinearity
results in four-wave mixing. In the first simulation, the sphere
is linear and the coefficients of its permittivity function are
χ (1)

= 1.5 and χ (3)
= 0. In the second simulation, the sphere

is nonlinear and the coefficients of its permittivity function
are χ (1)

= 1.5 and χ (3)
= 0.075. In both simulations, the time

dependence of the plane wave excitation in (56) is a sum of
two modulated Gaussian pulses and is expressed as follows:

P(t) =
(
0.25 cos

[
2π f1

(
t − tp

)]
+ 0.5 cos

[
2π f2

(
t − tp

)])
e−(t−tp)2/(2σ 2) (59)

where f1 = 8.0 MHz, f2 = 12.5 MHz, fbw = 1.0 MHz,
σ = 0.4775 µs, and tp = 14σ . P(t) and its Fourier transform
are plotted in Fig. 3(a) and (b), respectively. Both simulations
use the same mesh, and E(r, t) and D(r, t) induced inside
the sphere are discretized using N E

= 4444 and N D
=

2686 spatial basis functions, respectively. The simulations are
executed for Nt = 15 000 with 1t = 1.0 ns. The SOR
coefficient in (48) is selected as α = 0.3.

Fig. 3(c) compares the x-component of D(r, t) computed
by the proposed solver at the center of the sphere in the first
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Fig. 4. Transmission through a Bragg grating. (a) Description of the grating geometry. (b) Time dependence of the plane wave excitation, P(t) given by (60).
(c) x-component of E(r, t) computed at the feeding end [r0 = (0, 0, −2.6 µm)] and the trailing end [r0 = (0, 0, 2.6 µm)] in the first simulation, where both
layers are linear. (d) x-component of E(r, t) at the trailing end [r0 = (0, 0, 2.6 µm)] computed by the proposed solver in the first (both layers are linear) and
the second (one layer is linear, the other one is nonlinear) simulations.

(χ (1)
= 1.5, χ (3)

= 0) and the second (χ (1)
= 1.5, χ (3)

=

0.075) simulations. The figure shows that both solutions are
stable. Fig. 3(d) compares the Fourier transform of these
solutions in the frequency range f ∈ [0, 20] MHz. The
two peaks observed at frequencies f = f1 and f = f2
in both solutions match the peaks in the Fourier transform
of the excitation pulse shown in Fig. 3(b) [ f1 and f2 are
the modulation frequencies of the two Gaussian pulses added
in (59)]. However, the Fourier transform of the solution in
the second simulation has two extra peaks at frequencies
f = 2 f1 − f2 and f = 2 f2 − f1. These peaks are observed in
the electromagnetic response because of the four-wave mixing
frequency conversion generated as a result of the χ (3)-term in
the permittivity function (i.e., Kerr nonlinearity) [15].

D. Nonlinear Bragg Grating

In the last example, electromagnetic scattering from a
nonlinear Bragg grating is analyzed using the proposed solver.
The grating consists of 40 alternating layers of dielectric
materials with permittivity functions ε1(r, t, E) = ε0[χ

(1)
1 +

χ
(3)
1 |E(r, t)|2] and ε2(r, t, E) = ε0[χ

(1)
2 + χ

(3)
2 |E(r, t)|2]

[Fig. 4(a)]. All layers have the same thickness and the dimen-
sion of the whole grating is 1 × 1 × 5 µm. Two simulations
are carried out. In the first simulation, both layers are linear
with {χ

(1)
1 = 2.25, χ

(3)
1 = 0} and {χ

(1)
2 = 4.5, χ

(3)
2 = 0}.

In the second simulation, first layer is linear with {χ
(1)
1 =

2.25, χ
(3)
1 = 0} but the second layer is nonlinear with {χ

(1)
2 =

4.5, χ
(3)
2 = −0.06}. In both simulation, the time dependence

of the plane wave excitation in (56) is expressed as follows:

P(t) =


cos
[
2π f0(t − t1)

]
e−(t−t1)2/2σ 2

, t < t1
cos
[
2π f0(t − t1)

]
, t1 ≤ t < t2

cos
[
2π f0(t − t2)

]
e−(t−t2)2/2σ 2

, t ≥ t2

(60)

where f0 = 353.0 THz, fbw = 200.0 THz, σ = 2.3873 fs, t1 =

6σ , and t2 = 17.87σ . Fig. 4(b) plots P(t). Both simulations
use the same mesh, and E(r, t) and D(r, t) induced inside
the grating are discretized using N E

= 22 680 and N D
=

13 787 spatial basis functions, respectively. The simulations
are executed for Nt = 1000 with 1t = 0.13 fs. The SOR
coefficient in (48) is selected as α = 0.4.
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Fig. 4(c) compares the x-component of E(r, t) computed
at the feeding end [r0 = (0, 0, −2.6 µm)] and the trailing
end [r0 = (0, 0, 2.6 µm)] in the first simulation, where both
layers are linear. The figure clearly shows that the electric field
at the trailing end is much smaller than the one at the feeding
end. This is due to the fact that the linear Bragg grating has a
stopband between 300 and 370 THz [12] and the significant
part of excitation’s power is within this stopband. Fig. 4(d)
compares the x-component of E(r, t) at the trailing end [r0 =

(0, 0, 2.6 µm)] computed by the proposed solver in the first
(both layers are linear) and the second (one layer is linear,
the other one is nonlinear) simulations. The figure shows that
with the introduction of the nonlinearity, the electric field at
the trailing end is enhanced. This can be explained by the fact
that the stopband for the linear Bragg grating can be partially
closed by introducing a negative Kerr nonlinearity [12].

IV. CONCLUSION

An explicit MOT-based TD-EFVIE solver is developed
to analyze electromagnetic scattering from dielectric objects
with Kerr nonlinearity. The nonlinear constitutive relation that
relates electric flux and electric field induced in the scatterer
is used as an auxiliary equation that complements TD-EFVIE.
Discretizing TD-EFVIE using SWG functions yields a system
of ODEs in time-dependent SWG expansion coefficients. This
system is integrated in time using a P E(C E)m scheme to
obtain the expansion coefficients of the electric field. Similarly,
the nonlinear constitutive relation and its inverse obtained
using the Padé approximant are discretized using SWG func-
tions. The resulting matrices are used to carry out explicit
updates of electric field and electric flux expansion coefficients
at the predictor (PE) and the corrector (CE) stages. This
approach produces an explicit MOT scheme that does not
call for any Newton-like nonlinear solver but only requires
solution of sparse and well-conditioned Gram matrix systems
at every step. These solutions are done very efficiently using
an iterative solver.

The accuracy and the applicability of the explicit
MOT-based TD-EFVIE solver are demonstrated using several
numerical examples. These results clearly show that the pro-
posed method is more accurate than FDTD that is traditionally
used for analyzing electromagnetic scattering from nonlinear
objects.

Extension of the proposed scheme to analyze nonlinear
problems involving high-contrast dielectric scatterers is under-
way.
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