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Abstract— In electromagnetic inverse scattering, the goal is to
reconstruct object permittivity using scattered waves. While deep
learning has shown promise as an alternative to iterative solvers,
it is primarily used in supervised frameworks which are sensitive
to distribution drift of the scattered fields, common in practice.
Moreover, these methods typically provide a single estimate of
the permittivity pattern, which may be inadequate or misleading
due to noise and the ill-posedness of the problem. In this article,
we propose a data-driven framework for inverse scattering
based on deep generative models (DGMs). Our approach learns
a low-dimensional manifold as a regularizer for recovering
target permittivities. Unlike supervised methods that necessitate
both scattered fields and target permittivities, our method only
requires the target permittivities for training; it can then be
used with any experimental setup. We also introduce a Bayesian
framework for approximating the posterior distribution of the
target permittivity, enabling multiple estimates and uncertainty
quantification (UQ). Extensive experiments with synthetic and
experimental data demonstrate that our framework outperforms
traditional iterative solvers, particularly for strong scatterers,
while achieving comparable reconstruction quality to the state-
of-the-art supervised learning methods such as the U-Net.

Index Terms— Convolutional neural networks, deep learning,
unsupervised learning, inverse problems.
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Ivan Dokmanić is with the Department of Mathematics and Com-
puter Science, University of Basel, 4001 Basel, Switzerland, and also
with the Department of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail: ivan.
dokmanic@unibas.ch).

Data is available on-line at https://github.com/swing-research/scattering_
injective_prior.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2023.3312818.

Digital Object Identifier 10.1109/TAP.2023.3312818

I. INTRODUCTION

ELECTROMAGNETIC inverse scattering is the prob-
lem of determining the electromagnetic properties of

unknown objects from how they scatter incident fields. This
nondestructive technique finds applications in various fields,
such as early detection of breast cancer [1], mineral prospect-
ing [2], detecting defects and cracks inside objects [3], imaging
through the walls [4] and remote sensing [5].

While inverse scattering is well-posed and Lipschitz stable
in theory, when full-aperture continuous measurements are
available [6], it becomes a severely ill-posed inverse problem
for a finite number of measurements. This means that even
a small perturbation in the scattered fields can result in a
significant error in the reconstructed permittivity pattern [7].
In addition, the nonlinearity of the forward operator, caused by
multiple scattering and amplified by higher permittivity con-
trasts [7], further complicates the inversion process. All these
together make inverse scattering a challenging problem, espe-
cially for strong scatterers (objects with large permittivity) and
noisy measurements. To address these challenges, an effective
regularization technique is necessary to constrain the search
space and achieve accurate recovery.

Several optimization-based methods have been proposed to
tackle the nonlinearity and ill-posedness of the inverse scatter-
ing problem. These include the Born iterative method [8], dis-
torted Born iterative method (DBIM) [9], contrast source inver-
sion (CSI) [10], and subspace-based optimization (SOM) [11].
While these methods have demonstrated effectiveness in
reconstructing objects with small permittivity variations, they
often fall short in accurately reconstructing objects with large
permittivity contrasts. These methods typically rely on iterative
optimization of a regularized objective, incorporating manually
designed regularization terms [7].

Deep learning has achieved remarkable success in inverse
scattering. Most deep learning models used for inverse scatter-
ing adopt a supervised learning approach, which trains a deep
neural network to regress the permittivity pattern. Some stud-
ies [12], [13], [14] have used scattered fields as the input of the
neural network. Despite the satisfactory reconstructions [14],
these methods are sensitive to the changes in the experimental
configuration, such as frequency, the number of transmit-
ters and receivers, or other real-world factors. Even slight
variations in the distribution of scattered fields in test time
can lead to a significant degradation in reconstruction quality,
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requiring costly acquisition of new training data. Back-
projections can be used as input to tackle some of these
issues [15], [16], [17]. While this approach yields good
reconstructions for objects with small and moderate permit-
tivity, due to the nonlinearity the quality of back-projections
significantly drops in large permittivity leading to a drop in
the reconstruction quality [14]. Moreover, supervised learning
methods are vulnerable to adversarial attacks [18], which
is problematic in medical applications [19]. Importantly,
incorporating the well-established physics of the scattering
problem (i.e., the forward operator) to improve the general-
ization capability is not straightforward in such deep learning
models [20], [21], [22], [23], [24], [25].

To tackle these issues, we propose a deep learning
approach to inverse scattering using injective generative mod-
els. The proposed method adopts an unsupervised learning
framework—the training phase uses only the target permittiv-
ity patterns, and the physics of scattering is fully incorporated
into the solution. Deep generative models (DGMs) such as
generative adversarial networks (GANs) [26], [27], variational
autoencoders (VAEs) [28], normalizing flows [29], [30], [31],
and diffusion models [32] belong to a class of unsupervised
learning methods and train a deep neural network to transform
the samples of a simple (Gaussian) distribution into samples
that resemble the target data distribution. Recently, DGMs
have been used as a prior for solving inverse problems [33],
[34], [35], [36], [37], [38]. By leveraging a trained generator
on a dataset of target images (the solutions of a given inverse
problem), one can explore the latent space of the generator to
find a latent code yielding a solution that aligns with the given
measurements.

The choice of generative model is of paramount importance
to provide an effective regularization for solving ill-posed
inverse problems. While GANs have been used as generative
priors for inverse problems [33], [39], [40], [41], they are
unstable in training [42], [43] and result in local minima in
iterative approaches [33]. Normalizing flows resolve some of
these issues [44], [45], [46]; however, they are computation-
ally expensive to train and often do not provide sufficient
regularization for highly ill-posed inverse problems. Injective
normalizing flows [35], [47], [48], specifically designed for
solving ill-posed inverse problems, alleviated these issues; they
benefit from a low-dimensional latent space which serves as
an effective regularizer for ill-posed inverse problems. In a
related work, Guo et al. [49] used VAEs as generative priors
for inverse scattering.

In this article, we use injective flows as generative priors
for full-wave inverse scattering. The proposed approach has
a significant advantage: it only requires training on the tar-
get permittivity patterns and does not require any training
data from scattered fields. Once the generator is trained,
it can be used to solve inverse scattering problems in arbi-
trary configurations. This property endows the model with
robustness against distribution shifts in the measurements as
well as to adversarial attacks. In contrast to the work of
Guo et al. [49], the invertibility of our generator allows us to
perform optimization in both latent and data spaces, providing
great flexibility in choosing the scattering solver. In addition,

while Guo et al. [49] require a data-driven initialization, our
proposed method can leverage both back-projection and data-
driven initializations (among others), making it adaptable to
different scenarios and reducing dependence on the particular-
ities of a specific starting point. We show that the proposed
framework significantly outperforms the traditional iterative
solvers with reconstructions of comparable or better quality
compared with highly successful supervised methods such as
the U-Net [50].

All the aforementioned methods reconstruct a single point
estimate from the permittivity pattern given the measurements.
A point estimate, however, is often insufficient or misleading
due to the ill-posedness of the inverse scattering problem.
This limitation can be tackled by applying Bayesian frame-
works based on deep learning networks [14], [51], [52] to
generate multiple estimates of the permittivity and perform
uncertainty quantification (UQ). However, these methods are
supervised and suffer from the aforementioned issues. Our
second contribution is to leverage our pretrained injective
generator to develop a Bayesian framework that produces
multiple estimates of the permittivity pattern enabling the UQ.
Crucially, the proposed method does not rely on scattered
fields during training. As we will discuss in Section V, this
framework requires injectivity and is thus not practicable with
noninjective generators such as GANs or VAEs.

This article is organized as follows. Section II provides a
brief review of the forward and inverse scattering problem.
In Section III, we present an overview of normalizing flows
and injective flows. Our proposed methods for maximum a
posteriori (MAP) estimation and posterior modeling in inverse
scattering are introduced in Sections IV and V. Computational
experiments are presented in Section VI. Section VII discusses
the limitations of our approach and provides insights into
future work.

II. FORWARD AND INVERSE SCATTERING

We begin our discussion with equations governing the 2-D
forward and inverse scattering problem. We focus on the 2-D
transverse magnetic (TMz) case, where the longitudinal direc-
tion is along ẑ. As depicted in Fig. 1, we consider nonmagnetic
scatterers with permittivity ϵr situated in the investigation
domain Dinv, which is a D × D square. The scatterers are
surrounded by a vacuum background with permittivity ϵ0 and
permeability µ0. The scatterers are illuminated by Ni plane
waves with equispaced directions, and Nr receivers are uni-
formly positioned on a circle with radius R to measure the
scattered fields. The forward scattering problem can be derived
from the time-harmonic formulation of Maxwell’s equations
and can be expressed as follows [53]:

∇ × (∇ × E t (r))− k2
0ϵr (r)E t (r) = iωµ0 J (r) (1)

where E t represents the total electric field which has only
the Ez component in the TMz case. In addition, k0 = ω

√
µ0ϵ0

denotes the wavenumber of the homogeneous background, and
J corresponds to the contrast current density. The contrast
current density, calculated using the equivalence theorem [54],
is given by J (r) = χ(r)E t (r), where χ(r) = ϵr (r) − 1 and
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Fig. 1. Setup for the inverse scattering problem, red arrows show the incident
plane waves, and green circles are the receivers.

is referred to as the contrast. Throughout this article, the
time-dependence factor exp(iωt) with angular working fre-
quency ω is assumed and will be suppressed for simplicity.

We discretize the investigation domain Dinv into N × N
units. The state equation can be expressed as

E t
= E i

+ GdχE t (2)

where Gd ∈ RN 2
×N 2

and E t , E i are the total and incident
electric fields, respectively; χ is a diagonal matrix with ele-
ments χ(n, n) = ϵr (n) − 1 accounting for the contrast in the
medium. On the other hand, the data equation is given by

E s
= GsχE t

+ δ (3)

where Gs ∈ RNr ×N 2
, E s denotes the scattered electric fields,

and δ is the additive noise in the measurements. It is worth
mentioning that Gd and Gs have closed-form analytical
expressions [7].

We combine (2) and (3) to obtain a unified expression for
the forward model [7]

E s
= Gsχ(I − Gdχ)

−1 E i
+ δ (4)

which represents a nonlinear mapping from χ to E s . For
convenience, we define a forward operator A that maps χ
to E s

y = A(x)+ δ (5)

where A(·) corresponds to the nonlinear forward scattering
operator

A(χ) = Gsχ(I − Gdχ)
−1 E i (6)

with y = E s and x = χ . The objective of inverse scattering
is to reconstruct the contrast χ from the scattered fields E s ,
assuming that Gd , Gs , incident electric waves E i , and hence
the forward operator A(·) are known. In Section III, we will
provide a brief overview of DGMs, focusing specifically on
normalizing flows as prior models for inverse problems.

III. NORMALIZING FLOWS

Normalizing flows were introduced by Rezende and
Mohamed [55] in the context of variational inference and by
Dinh et al. [30] for density estimation. A normalizing flow
fθ is an invertible deep neural network, parameterized by a
vector of neuron weights θ , which transforms a simple base
distribution, typically a Gaussian, pZ , into the target data
distribution pX , or an approximation thereof. By transforming
a data sample x back to the latent space z = f −1

θ (x), the
likelihood of x can be evaluated as

log pX (x) = log pZ ( f −1
θ (x))− log | det J fθ | (7)

where pZ = N (0, I ), and J fθ represents the Jacobian matrix
of the neural network fθ evaluated at f −1

θ (x).
Numerous studies have focused on designing invertible

neural networks that admit a computationally efficient inverse
f −1
θ and log det Jacobian. A staple design block that enables

these efficient computations is the so-called coupling layers,
introduced by Dinh et al. [29] and further developed in [30].
The fact that unlike many other generative models normalizing
flows allow for efficient likelihood computation as in (7)
enables training based on maximum likelihood (ML)

θ∗
= arg max

θ

log pZ
(

f −1
θ (x)

)
− log | det J fθ |. (8)

Normalizing flows also have important limitations. They
require bijective neural networks with the same data space
dimension throughout the model, resulting in large net-
works and slow training. Furthermore, as the range of the
bijective network is unconstrained and covers the entire
space, they do not inherently provide strong regularization
for solving ill-posed inverse problems. In Section III-A,
we will provide a brief review of injective normalizing
flows [35], specifically designed for solving ill-posed inverse
problems.

A. Injective Normalizing Flows

While regular normalizing flows have the same dimen-
sion in the latent and data space, injective normalizing
flows [35], [47], [48] map a low-dimensional latent space to
the high-dimensional data space using a set of invertible layers.
Injective flows retain the advantages of regular normalizing
flows, including fast inverses and training based on ML.
As shown in Fig. 2, an injective network fθ (z) = gγ(hη(z))
with weights θ = (γ, η), called a Trumpet, comprises two
subnetworks: a bijective part hη that maps Rd to Rd and an
injective part (with expansive layers) gγ that maps Rd to RD

where d ≪ D. Both the bijective and injective subnetworks
are composed of revnet blocks. A bijective (injective) revnet
block comprises three components: 1) activation normaliza-
tion, 2) bijective (injective) 1 × 1 convolution, and 3) coupling
layers.

1) Activation normalization

FORWARD: x =
z − µ

σ
INVERSE: z = σ x + µ. (9)
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Fig. 2. Injective normalizing flows [35] comprise two submodules, a low-dimensional bijective flow hη and an injective network gγ with expansive layers.
The MOG initialization, z = 0, is illustrated with a red circle in the latent space.

2) 1 × 1 convolution with a kernel w,
a) Bijective version

FORWARD: x = w ∗ z
INVERSE: z = w−1

∗ x . (10)

b) Injective version

FORWARD: x = w ∗ z
INVERSE: z = w†

∗ x (11)

where w ∈ Rcin×cout is a 1 × 1 convolutional fil-
ter, which is simply a matrix multiplication along
the channel dimension, and w† is the pseudoinverse
of w (a nonsquare matrix in the injective dimension-
expanding case).

3) Affine coupling layer

FORWARD: x1 = z1, x2 = s(z1) ◦ z2 + b(z1)

INVERSE: z1 = x1, z2 = s(x1)
−1

◦ (x2 − b(x1))

where z = [z1, z2]
T and x = [x1, x2]

2. The mappings s
and b are, respectively, the scale and the shift networks.

For additional details about the network architecture, refer to
Section A in the Appendix.

The training process for injective normalizing flows involves
two phases, as initially proposed in [47]. In the first phase,
we adjust the range of the injective generator by optimizing
the weights of the injective subnetwork gγ to align with the
training data

LMSE(γ) =
1
N

N∑
i=1

∥∥x (i) − gγ

(
g†

γ

(
x (i)

))∥∥2

2
(12)

where {x (i)}N
i=1 represents the training data, and g† denotes the

layerwise inverse of the injective subnetwork.

Once the injective subnetwork has been trained for a fixed
number of epochs, we move to the second phase where we
train the bijective subnetwork hη by maximizing the likelihood
of the projected training samples in the intermediate space
(as shown in Fig. 2)

LML(η) =
1
N

N∑
i=1

(
− log pZ (z(i))+ log | det Jhη |

)
(13)

where z(i) = h−1
η (g

†
γ(x

(i))), and pZ = N (0, I ). Upon
completion of training, we can generate random samples
similar to the training data using xgen = f (zgen), where
zgen ∼ N (0, I ). Further investigation on the universality of
density and manifold approximation of injective flows can be
found in [56].

Injective flows, due to their low-dimensional latent space,
parameterize a low-dimensional manifold embedded in the
high-dimensional data space. During training, this manifold
captures plausible samples, making it an effective regularizer
for ill-posed inverse problems. The injective part provides a
projection operator on the range of gγ as Pgγ

(x) := gγ(g†
γ(x))

which maps the data samples x to the intermediate space by
z′

= g†
γ(x) and projects them back to the data space by gγ(z′).

Kothari et al. [35] used this projection operator to project a
sample onto the manifold in iterative reconstruction schemes.
In Section IV, we introduce our methodology for solving
inverse scattering problems using injective normalizing flows.

IV. MAP INFERENCE WITH INJECTIVE FLOWS FOR
INVERSE SCATTERING

Inverse scattering with partial data is a severely ill-posed
inverse problem, which means that a small perturbation in
the measurements of scattered fields can result in a sig-
nificant error in the recovered contrast [7]. As discussed
in Section II, inverse scattering is a nonlinear inverse problem,
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with the degree of nonlinearity being strongly influenced by
the maximum contrast value. Particularly for objects with
large contrasts, the problem becomes highly nonlinear, further
increasing the difficulty of the inversion. In such cases, the
presence of a robust regularizer that effectively constrains the
search space becomes crucially important.

We model the contrast χ = x ∈ X and the scattered fields
E s

= y ∈ Y as random vectors. For simplicity, we assume that
the additive noise δ in (5) is a random vector with Gaussian
distribution δ ∼ N (0, σ 2 I ) although our framework admits
other distributions. With this assumption, the likelihood pY |X

can be expressed as

pY |X = N (A(X), σ 2 I ). (14)

An effective approach for solving ill-posed inverse problems
is to compute the MAP estimate, where we seek the solution x
that has the highest posterior likelihood given a measurement y

xMAP = arg max
x

log pX |Y (x |y) (15)

where pX |Y (x |y) denotes the posterior distribution, represent-
ing the conditional distribution of the image of interest given
the measurements y. The posterior distribution pX |Y can be
computed using Bayes theorem as

pX |Y (x |y) =
pY |X (y|x)pX (x)∫

x pX,Y (x, y)dx
(16)

which leads to the following expression for the MAP estimate

xMAP = arg min
x

− log pY |X (y|x)− log pX (x). (17)

From (14), we get

xMAP = arg min
x

1
2
∥y − A(x)∥2

2 − λ log pX (x) (18)

where the first term represents the data consistency loss
while pX (x) denotes the prior distribution of the contrast
and yields a regularization term. We additionally insert λ as
a hyperparameter to adjust the weight of the regularization
term as its value depends on the unknown noise power.
In general, estimating the prior distribution pX is challenging,
and a commonly used approximation is a Gaussian distribution
with zero mean, leading to Tikhonov regularization. However,
a Gaussian distribution often deviates significantly from the
true prior, resulting in poor reconstructions.

This article explores a data-driven regularization in inverse
scattering based on DGMs. We leverage a training set of
contrast patterns {x (i)}N

i=1 and train a DGM x = f (z) to
produce samples from (approximately) the same distribution
as that of the training set. By sampling from a Gaussian
distribution in the latent space z ∈ Z , we expect the trained
generator f to produce plausible contrast samples. This prop-
erty of DGMs makes them an effective regularizer for solving
inverse problems [33], [49].

In this article, we use injective flows as a generative
prior due to their suitability for addressing ill-posed inverse
problems [35]. We perform optimization in the latent space
to find the latent code which produces a permittivity pattern

compatible with the measurements y. The optimization prob-
lem can be formulated as follows:

zMAP = arg min
z

1
2
∥y − A( f (z))∥2

2 − λ log pX ( f (z)) (19)

where the regularization term log pX is approximated via (7).
The reconstructed contrast is then obtained as xMAP =

f (zMAP). We call this method latent space optimization (LSO).
We note that (19) has been previously proposed by [44]
and [45] for solving compressed sensing inverse problems
using regular normalizing flows.

Unlike the supervised learning methods for inverse scatter-
ing [13], [15], [16], [17], which rely on paired training sets
of contrast and scattered fields {(x (i), y(i))}N

i=1, our framework
is unsupervised, without the need for scattered fields during
training. This eliminates the need to retrain the model when
the distribution of scattered fields changes due to the vari-
ations in the experimental configuration. Once the injective
generator is trained on the contrast samples, we can directly
optimize (19) for new measurements to reconstruct the cor-
responding contrast. In addition, our proposed method fully
leverages the underlying physics of the scattering problem by
optimizing over the complex-valued scattered fields in (19).
Kothari et al. [57] have demonstrated that incorporating wave
physics into the neural network architecture can significantly
enhance the quality of reconstructions, particularly for out-of-
distribution data.

Invertibility of the injective generator allows us to use
an alternative method for (19) proposed by [35] for linear
inverse problems. This method performs the optimization
directly in the data space. We call this method data space
optimization (DSO) and formulate it as follows:

xMAP = arg min
x

1
2
∥y − A(g(g†(x)))∥2

2 − λ log pX (x) (20)

where g(g†(x)) represents the projection operator described in
Section III-A. Similar to LSO, the second term log pX can be
approximated using (7) and acts as an additional regularizer.
In LSO, the reconstructed point x = f (z) always lies on the
learned manifold; this is not the case for the DSO method,
where the reconstructed image may deviate from the manifold.
On the other hand, as we discuss next, DSO offers more
flexibility in the choice of the initial guess.

The choice of initial guess is important for inverse scattering
solvers. A poor initialization may result in convergence to
poor local minima due to nonlinearity. A good initial guess
facilitates efficient convergence to good minima. The authors
of [9] used Born approximation (BA) as the initialization for
the DBIM. A back-propagation (BP) solution was also used
in [10] and [58] as an initial guess of the CSI method. Fig. 3
shows the ground truth, BP, and BA for an object with different
maximum ϵr values. While BP and BA may yield satisfactory
results for objects with small permittivity, their performance
sharply drops for large ϵr (especially numerically) which
makes them a poor initialization for strong scatterers.

To circumvent this issue, we adopt a data-driven ini-
tialization suggested in [44]; the mean of the Gaussian
distribution (MOG) in the latent space is set to 0. The MOG
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Fig. 3. Performance analysis of the BP and BA methods across objects with
different maximum ϵr values. While both BP and BA reconstructions are
visually meaningful for small ϵr , their performance significantly deteriorates
for objects with larger ϵr .

initialization z = 0, depicted in Fig. 2, provides a fixed ini-
tialization with respect to the measurements (scattered fields),
thereby being independent of the maximum contrast value and
the problem configuration. This property leads to more robust
convergence in both (19) and (20) even for objects with large
permittivity. While the DSO method can be initialized with
both BP and MOG, the LSO should exclusively be initial-
ized with MOG. This is due to the possibility of BP being
significantly distant from the range of the injective network,
making inversion to the latent space infeasible. In Section VI,
we will show that the MOG significantly improves the quality
of the reconstructions compared with BP, especially for strong
scatterers.

V. POSTERIOR MODELING AND UQ

Due to ill-posedness, there are an infinite number of con-
trasts that are consistent with the measurements within the
noise level. These diverse solutions can lead to different scien-
tific interpretations, highlighting the need to characterize their
distribution. Relying on a single estimate, such as the MAP
estimate obtained in Section IV, fails to reflect the inevitable
uncertainty and pinpoint features recovered only with low con-
fidence. To address this drawback of point estimates, we adopt
a Bayesian perspective. Rather than solely computing the MAP
estimate, we approximate the full posterior distribution pX |Y

introduced in (16). By doing so, we are able to generate
many posterior samples which explore plausible permittivity
patterns.

The computation of the posterior distribution, as stated
in (16), involves the integral

∫
x pX,Y (x, y)dx which is

intractable for high-dimensional imaging problems. Varia-
tional inference [59], [60] is a promising framework that
approximates the posterior distribution pX |Y (x |y) by defining
a class of distributions qX (x;ψ) parameterized by ψ . The
goal is to find the optimal ψ that ensures the “closeness”
between qX (x;ψ) and pX |Y (x |y) for a given y. Examples
of such approximators include Gaussian mixture models and
distributions induced by DGMs.

In variational inference, a commonly used measure of fit is
the Kullback–Leibler (KL) distance

KL(q∥p) =

∫
X

q(x) log
(

q(x)
p(x)

)
dx

= Ex∼q [log q(x)− log p(x)].

We optimize ψ to minimize the KL distance between qX (x;ψ)

and pX |Y (x |y) for a given y

ψ∗
= arg min

ψ

KL(qX (x;ψ)∥pX |Y (x |y)). (21)

Sun and Bouman [61] parameterized qX (x;ψ) using an
untrained normalizing flow through (7) and directly performed
the optimization over the network’s weights.

We propose to leverage our pretrained injective flow fθ
as a prior to approximate the posterior distribution. Our
approach relies on the following principle: when we apply
an injective mapping to the distributions Q and P , resulting
in new distributions Q′ and P ′, respectively, the KL distance
between Q′ and P ′ remains the same as the KL distance
between Q and P (refer to Section B in the Appendix for
further information). This property of injective mappings moti-
vates us to approximate the posterior distribution in the latent
space instead of the data space. Consequently, we minimize
the KL distance between qZ (z, ψ) and pZ |Y (z|y) as follows:

ψ∗
= arg min

ψ

KL(qZ (z, ψ)∥pZ |Y (z|y))

= arg max
ψ

Ez∼qZ

[
log pY |Z (y|z)

]
− KL(qZ∥pZ )

= arg min
ψ

Ez∼qZ

[
∥y − A( f (z))∥2

2

]
+ β

(
KL(qZ∥pZ )

)
(22)

where pZ = N (0, I ) represents the prior distribution intro-
duced in (7). We consider β as a hyperparameter to control
the diversity of the posterior samples as its value depends on
the unknown noise power.

Now we must select our posterior approximator qZ (z, ψ).
While previous works [35], [62] used an additional normaliz-
ing flow to model qZ (z, ψ), we use a Gaussian distribution for
simplicity and computational efficiency. Specifically, we define
qZ (z, ψ) = N (z;µq , diag(σq)), where ψ = (µq , σq)

represents our variational parameters. This Gaussian param-
eterization of qZ (z, ψ) simplifies the KL term in (22) since
there exists a closed-form expression for the KL distance
between two Gaussian distributions

KL(qZ∥pZ ) =
1
2

d∑
i=1

σq(i)2 + µq(i)2 − 1 − 2 log σq(i) (23)

where µq(i) and σq(i) denote the i th element of µq ∈ Rd and
σq ∈ Rd , respectively. Furthermore, since we have already
obtained the MAP estimate in the latent space through (19),
we set µq = zMAP and only optimize σq .

We cannot directly optimize (22) using gradient-based meth-
ods since optimization variables are inside the expectation.
We thus use the reparameterization trick [28], [63], letting
z = zMAP + σq ⊙ t , where t ∼ N (0, I ) and ⊙ denotes the
elementwise multiplication. By substituting (23) into (22) and
incorporating the above reparameterization

σ ∗

q = arg min
σq

Et∼N (0,I )

[
∥y − A( f (zMAP + σq ⊙ t))∥2

2

]

+β

d∑
i=1

(
σq(i)2 − 2 log σq(i)

)
. (24)
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Fig. 4. Performance evaluation of the trained injective flow on ellipses dataset; ground truth contrasts and their projections on the learned manifold and
generated samples.

Fig. 5. Illustration of the MOG initialization in the data space fθ (z = 0)
for ellipses and MNIST datasets.

To evaluate the expectation, we compute the average over K
iid samples drawn from the standard normal distribution

σ ∗

q ≈ arg min
σq

K∑
k=1

(
∥y − A( f (zMAP + σq ⊙ tk))∥2

2

)

+β

d∑
i=1

(
σq(i)2 − 2 log σq(i)

)
. (25)

Once we obtain the optimal σ ∗
q , we can generate posterior

samples xpost = f (zMAP +σ ∗
q ⊙ t) where t ∼ N (0, I ). In addi-

tion, we can evaluate the empirical minimum mean-squared
error (MMSE) estimate and the associated uncertainty by
calculating the pixelwise average and standard deviation over
multiple posterior samples.

VI. COMPUTATIONAL EXPERIMENTS

We assess the performance of the proposed methods for
MAP estimation and posterior modeling on synthetic and
experimental data. We train the model on two synthetic
large-scale datasets: 1) MNIST [64] with 60 000 training
samples in the resolution N = 32 and 2) a more challenging
dataset we generated comprising 60 000 training samples with
resolution N = 64 of overlapping ellipses used in [14].
Fig. 4 shows example test contrasts, their projections on the
learned manifold, and the samples generated by the injective
network, verifying the ability of the model to produce outputs
of good quality. For additional details about the network
architecture and training, refer to Section A in the Appendix.

A. Synthetic Data

In experiments with synthetic data, the task is to reconstruct
the test samples from the MNIST and ellipses datasets that
have not been “seen” by the injective network during training.
We use Ni = 12 incident plane waves and Nr = 12 receivers,
uniformly distributed on a circle with radius R = 20 cm
around the object with maximum permittivity ϵr and dimen-
sion D = 20 cm. The working frequency is 3 GHz and
we added 30-dB noise to the measurements of the scattered
fields.

1) MAP Estimation: We conduct a comprehensive evalua-
tion of the DSO and LSO methods. We consider the MOG and
BP initializations for DSO while only using the MOG initial-
ization for LSO. We compare the performance of our proposed
methods with a traditional iterative method, DBIM [9]. While
our approach is unsupervised so that the scattered fields are
not used during training, we also compare its performance
with a supervised learning method, the U-Net [50], which has
enjoyed tremendous empirical success in a variety of imaging
inverse problems including inverse scattering [16]. The U-Net
takes the BP image as input and regresses the corresponding
permittivity.

We have fully implemented the forward operator in Ten-
sorFlow [65], enabling efficient GPU utilization for parallel
reconstruction of multiple samples. Moreover, it allows us to
use a variety of optimizers provided in TensorFlow including
Adam [66] and L-BFGS [67]. In these experiments, we opti-
mize (19) and (20) using the Adam optimizer with a learning
rate of 0.05 for 300 iterations as it leads to more accurate
reconstructions compared with L-BFGS. We set λ = 0.01 for
BP and λ = 0 for MOG. For the MOG initialization, we begin
from high-likelihood regions (mean of the Gaussian), viewed
as a hidden regularizer and we thus set λ = 0. Fig. 5
illustrates the MOG initializations for the ellipses and MNIST
datasets.

Fig. 6 shows the performance of various methods for
ϵr = 4 using five test samples from the MNIST and ellipses
datasets. While DBIM falls short in this challenging task
with a high contrast and 30-dB noise, DSO and LSO exhibit
much better reconstructions. Moreover, the MOG initializa-
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Fig. 6. Performance comparison of different methods for objects with maximum ϵr = 4. (a) MNIST in resolution 32 × 32. (b) Ellipses in resolution 64 × 64.

TABLE I
PERFORMANCE OF DIFFERENT METHODS FOR SOLVING INVERSE

SCATTERING (ϵr = 4) AVERAGED OVER FIVE TEST SAMPLES

tion, as expected, yields superior reconstructions compared
with BP. Notably, LSO outperforms DSO, demonstrating the
advantages of running optimization in the latent space as
discussed in Section IV. Despite not using scattered fields
during the training phase, LSO produces reconstructions of
comparable or even superior quality to the supervised method
U-Net. Table I lists the numerical results in PSNR and SSIM
averaged over five test samples.

Fig. 7. Performance of various methods across objects with different
maximum ϵr values on the MNIST dataset.

As discussed in Section IV, the maximum ϵr of the
object plays a significant role in the performance of inverse
scattering solvers. Fig. 7 shows the performance of various
methods across different maximum ϵr values on MNIST.
This analysis shows that LSO, combined with the MOG
initialization, remains effective even for objects with high ϵr ,
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Fig. 8. Posterior samples, UQ, MMSE, and MAP estimates for an object with ϵr = 4 for β = 0.01 and β = 0.05; as expected, larger β values lead to more
diverse posterior samples.

Fig. 9. Reconstructions and UQ for out-of-distribution samples with ϵr = 4. Despite being trained solely on MNIST digits 0–5, the proposed method exhibits
excellent generalization by accurately reconstructing digits 6–9.

which highlights the significance of data-driven initialization
and optimization in the latent space.

Regarding the computational efficiency, we used a single
Tesla V100 GPU for training and solving the inverse scattering
problem where each iteration of LSO (or DSO) takes 0.08 s
at the resolution of N = 32 and 0.25 s at the resolution of
N = 64. Although good estimates can be obtained with much
fewer iterations, we empirically determined that 300 iterations
ensure good convergence.

2) Posterior Sampling and UQ: As explained in Section V,
we approximate the posterior distribution of contrast as a
pushforward of a Gaussian around the MAP estimate in the
latent space; the covariance is chosen to obtain the best
variational approximation of the posterior in the sense of
the KL divergence. We use the MAP estimate obtained from
the LSO method in Section VI-A1 and optimize (25) using
the Adam optimizer with a learning rate of 0.01. The initial
value for σq is set as an all-one vector, and we use K =

25 random samples drawn from the standard Gaussian in
each iteration. To compute the MMSE estimate and UQ,
we calculate the pixelwise average and standard deviation over
25 posterior samples. Fig. 8 showcases four posterior samples
along with UQ and MMSE estimates for β = 0.01 and
β = 0.05. As expected, larger β values lead to more diverse
posterior samples. The UQ map identifies regions with higher
uncertainty visually represented in red. This information is
highly valuable for conducting a more thorough and informed
analysis. Finally, the MAP estimate is sharper than the MMSE
as expected.

Fig. 10. Experimental Fresnel data [68]. (a) FoamDielExt. (b) FoamTwinDiel.

3) Generalization: In this section, we evaluate the gen-
eralization performance of the proposed method under out-
of-distribution changes in the permittivity patterns. We train
injective flows exclusively on MNIST digits 0–5 and use the
remaining digits for testing. The LSO solver is configured with
the same setup as in Section VI-A1. Fig. 9 shows the posterior
samples, UQ, MMSE, and MAP estimates for two test samples
of digits 6 and 8 with β = 0.05. This experiment clearly
shows the effectiveness of the proposed method in handling
out-of-distribution data. We should point out that there exists
a tradeoff between regularization power and generalization
performance, governed by the dimension of the latent space.
Larger latent space dimensions yield better generalization but
less effective regularization. This has also been observed in
regular normalizing flows, where matching dimensions in the
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Fig. 11. Posterior samples, UQ, MMSE, and MAP estimates for experimental Fresnel data. The uncertainty maps clearly signify the importance of posterior
modeling by assigning higher uncertainty to wrongly reconstructed areas (red regions). (a) Resolution 32 × 32. (b) Resolution 64 × 64.

latent and data space result in excellent generalization over
out-of-distribution data but less effective regularization [44],
[46].

B. Experimental Data

We finally evaluate our proposed model on FoamDielExt
and FoamTwinDiel: real experimental data for two phantoms
provided by the Institute Fresnel in Marseille, France [68].
In these experiments, there are Ni = 8 transmitters and
241 receivers located on a circle with radius R = 1.67 m.
Out of those, we only use Nr = 20 receivers to make the
inversion more challenging. Additional details about the setup
are discussed in [68]. As shown in Fig. 10, FoamDielExt
and FoamTwinDiel consist of dielectric cylinders in a vac-
uum background. We use the measurements at the working
frequency of 3 GHz, and the side length of the investigation
domain is D = 20 cm.

We use two pretrained injective flows on the ellipses dataset
for resolutions N = 32 and N = 64. The inverse scattering
problem is solved using (19) for MAP estimation and (25) for
posterior modeling. We added the total-variation (TV) regular-
ization term to (19) and (25) to further improve the quality of
the reconstruction. The TV-norm multiplier is 0.1 and 0.08 for
resolutions N = 32 and N = 64, respectively. Fig. 11 shows
posterior samples, UQ, MMSE, and MAP estimates. Despite
the idealized forward operator and the substantial dissimilarity
between the ground truth (two or three circles) and the training
data (combinations of four ellipses with random positions
and contrasts), the proposed framework produces satisfactory
reconstructions. This experiment illustrates the robustness of

the proposed method to noise and variations in experimental
configuration. It also showcases the importance of posterior
modeling: while the MAP and MMSE estimates in Fig. 11(a)
wrongly reconstruct the larger circle when compared with the
ground truth, the uncertainty maps clearly signal that this part
of the recovered contrast is not reliable.

VII. LIMITATION AND CONCLUSION

We proposed a data-driven framework for inverse scat-
tering using an injective prior. The proposed method fully
exploits the physics of wave scattering while benefiting from a
data-driven initialization resulting in a powerful solver even for
objects with a large contrast. The invertible generator admits
optimization in both latent and data spaces and uses either
a data-driven initialization or a back-projection. We showed
that optimization in the latent space and with the latent
Gaussian center as the initial guess significantly outperforms
the traditional iterative methods and even gives reconstructions
comparable to a strong supervised method, the U-Net.

Limitations and Future Work: The proposed framework
has several key limitations. It requires running an iterative
method at test time, which is slow and impractical for real-
time applications. Moreover, iterative methods can converge
to local minima even with clever initialization. To speed up
convergence, one may consider a more accurate initial guess
by exploiting physics in the data-driven initialization via a
combination of traditional back-projection (such as BP) and
data-driven initializations (such as MOG). Furthermore, while
the L-BFGS optimizer did not improve the convergence rate
in our experiments, other Newton’s family optimizers may
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improve the convergence rate as shown in [49]. In addition,
forcing the reconstruction to be within the range of an injective
flow can introduce undesired bias and artifacts in certain appli-
cations. Recently, Hussein et al. [41] optimized the generator
weights with a small rate after finding the optimal latent
code in (19) to further improve the reconstructions; this idea
might be adapted to our framework. We leave addressing these
limitations for future work.

APPENDIX

A. Network Architecture and Training Details

The injective subnetwork gγ is composed of six injective
revnet blocks described in Section III-A, each increasing the
dimension by a factor of 2. To enhance the expressiveness of
the model, we insert 36 bijective revnet blocks between them.
We choose a latent space of dimension 64 which provides
a compression rate of 98.5% for resolution N = 64 and
93.7% for resolution N = 32. The bijective subnetwork hη
is constructed using 20 bijective revnet blocks.

We normalize the training data between 0 and 1 before
training the model. We then multiply the output of the trained
network by the maximum contrast of the dataset before using
it as the generative prior. We train the injective subnetwork gγ

for 150 epochs to ensure the training samples (contrast pat-
terns) align with the generator’s range. Following this, we train
the bijective subnetwork hη for 150 epochs to maximize the
likelihood of the training samples in the intermediate space.

B. Invariance of KL Distance Under Injective Mappings

Here, we show that the KL distance is invariant under
injective maps. Assume that probability distributions qZ and
pZ have the same support. Let qX = f#qZ and pX = f# pZ

where f# p denotes the pushforward of p via mapping f ,
i.e., if x is distributed according to p, f (x) is distributed
according to f# p.1

The change in variable for the injective mapping f
yields [69]

log pX (x) = log pZ (z)−
1
2

log
∣∣det[J f (z)T J f (z)]

∣∣ (26)

where z = f †(x) and is valid for x ∈ Range( f ). We can now
compute as follows:

KL(qX∥pX ) = Ex∼qX [log qX (x)− log pX (x)]

= Ex∼qX [log qZ (z)−
1
2

log | det[J f (z)T J f (z)]|

− log pZ (z)+
1
2

log | det[J f (z)T J f (z)]|]

= Ex∼qX [log qZ (z)− log pZ (z)]
= Ez∼qZ [log qZ (z)− log pZ (z)]
= KL(qZ∥pZ )

which is what we wanted to show.

1For simplicity, we lightly abuse notation by identifying a probability
measure and its density.
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