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Fresnel-Zone Focused Antenna Arrays: Tolerance
Analysis for Biomedical Applications
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Abstract— A detailed tolerance analysis for antenna arrays
focused on the Fresnel zone is presented in this work, with the aim
to derive the field distribution guaranteeing health safety issues.
In particular, random errors related to the amplitudes and phases
of the radiators, and random element failures, are considered.
As such, the presented tolerance analysis falls within the more
prominent theory of random arrays. A particular stochastic
function related to the electric field distribution is analyzed
and partially characterized by first- and second-order statistics.
Subsequently, a discussion is carried out on the estimation of the
cumulative distribution function (cdf) for the squared magnitude
of the aforementioned random function. This leads to determine
(confidence) level curves inherent to the squared magnitude of the
electric field, representing a crucial aspect, in particular for safety
issues in biomedical applications. The achieved results confirm
the validity of the proposed approach, by extending also the
literature for far-field focused arrays.

Index Terms— Antenna arrays, biomedical applications, Fres-
nel zone, health safety, radiative near-field, tolerance analysis.

I. INTRODUCTION

ANTENNA arrays play an extremely important role in a
variety of applications, including radar systems, radio

astronomy, communication systems, direction finding, electro-
magnetic heating, medical treatments, microwave imaging [1],
[2]. Due to their relevant played role, careful design procedures
should be applied. Anyway, even if proceeding with high
accuracy approaches, thus adequately fixing, for example,
the excitation coefficients and the positions of the elemental
radiators, as well as suitably sizing the feeding network to
obtain high performance, several error sources can cause the
actual electromagnetic field to deviate from the desired one.
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It is generally expensive to realize phased arrays not having
amplitude and phase errors [1]. However, even if properly
managing the so-called correlated errors [3], the presence of
random uncorrelated errors should be properly considered in
the design stage, due to their unpredictable nature. For this
reason, scientific advances in the tolerance theory of antenna
arrays [4] could be strongly beneficial.

To the best of the authors’ knowledge, studies involv-
ing errors have mostly concerned the far-field of antenna
arrays. Indeed, it is worth mentioning the pioneering stud-
ies of Ruze [5], Ashmead [7], Gilbert and Morgan [8],
Rondinelli [9], Elliott [10], Allen [11], and others [12],
[13], [14], [15]. The above studies, even if representing the
foundations of the tolerance theory for antenna arrays, are
also related to the theory of random arrays [4], leading to
deal with the analytical synthesis, in a probabilistic sense,
of aperiodic antenna arrays [16], [17]. Excellent discussions
on the tolerance theory of far-field focused antenna arrays can
be found in [3], [15], and [18]. For the sake of completeness,
it is worth mentioning the work in [19], where some results
related to antenna arrays in the Fresnel zone, subject to random
errors, are presented. The reader may also refer to [20] for
a more comprehensive description of the background of the
above results.

This work aims to contribute to the analysis of focused
antenna arrays in the Fresnel zone, when uncorrelated random
errors occur in the amplitude and phase of the excitation
coefficients, as well as random element failures may be
present. The problem of error characterization in antenna
arrays plays a crucial role, as confirmed by the extensive
literature at regard. However, most existing works have been
focused on the evaluation of the impact the above errors give
on the far-field [3], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [18], [19], [21], while only a few studies have been
addressed to the radiative near-field [20]. This last context
is particularly relevant when considering systems designed for
security, medical and industrial applications [22], [23]. Thus,
the valuable need for the present study can be justified from
various perspectives. The first one is that as both the operating
frequencies and the physical dimensions of the arrays increase,
the relative Fresnel zone becomes more extensive, and there-
fore the far-field approximation for the electromagnetic field
may no longer be valid in the physical region of interest.

An additional, more relevant aspect is that in some appli-
cations, such as those occurring in the biomedical context,
radiating systems are specifically designed to operate in the
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Fresnel zone [20]. Just as an example, Fresnel-zone focusing
is of crucial importance in the framework of microwave hyper-
thermia applications [24], [25]. Here, the field concentration
is required into a specific (focal) point where the treatment
should be applied, while leaving untouched the surrounding
tissues, thus guaranteeing health safety [26]. The Fresnel zone
can be also relevant for biomedical implants, using microwaves
to recharge [27], [28], [29], [30].

In view of the above considerations, two objectives are
pursued in this work. The first one, which turns out to be the
incidental one, can be viewed as pedagogical, i.e., to empha-
size the link between the tolerance theory and the theory
of random arrays, which appear to have been independently
developed by scholars, regardless of the observation zone
(Fresnel or Fraunhofer) of the antenna array field. The present
work basically inherits the methodologies pertinent to the
theory of random arrays [16], [35], [36], [37], [38]. It is worth
specifying that the errors modeling related to element failures
also falls within the scope of the so-called statistically thinned
arrays [15], [39], still represented by random arrays [40], [41].
The second objective, the main one, is to extend some existing
methodologies for far-field focused arrays in the presence of
random errors [18] to the study of focused antenna arrays in
the Fresnel zone. For example, the present study may be more
attractive in the framework of superficial hyperthermia [26],
[27], [28], [29], [30], [31]. In particular, without loss of
generality, our analysis is addressed on linear arrays, even if
the extension to an arbitrary geometry can be easily performed.
Anyway, the choice of linear arrays is coherent with existing
literature, such as the study reported in [26], where linear
arrays of Antipodal Vivaldi antennas are examined. The most
significant concern we are addressing is related to the safety
issues regarding the electromagnetic field levels. In particular,
the purpose of the present work is to provide a methodology
allowing us to predict the behavior of electromagnetic fields
in the presence of errors affecting the radiating systems, so to
safeguard patients against any high levels of harmful radiation.

Considering a specific function related to the electric field
of (Fresnel) focused arrays, a partial first- and second-order
statistical characterization is performed. Subsequently, the
study of the cumulative distribution function (cdf) of the
squared magnitude of the same function is addressed, to deter-
mine suitable (confidence) level curves (level surfaces). These
curves precisely relate to the levels of squared magnitude of
the electric field, to which much attention should be paid in
particular applications, such as, for example, those related to
the biomedical context. Numerical results are presented and
discussed to confirm the validity of the proposed methodology.

II. SYSTEM MODEL

Let us consider a linear array of N similar (only complex
weights differences are assumed) current densities (antenna
elements), immersed into a homogeneous medium, and
directed along the z axis of an orthogonal Cartesian reference
system, with the relative reference points all arranged along
the x axis (Fig. 1). The electric field at a generic point P
belonging to the Fresnel (near-field) zone of the above antenna

Fig. 1. Array configuration in the Fresnel zone.

array, but placed in the far-field of each array element, can be
written as follows:

E(P) =
jωµ

4π

N∑
n=1

In hn(P)
e− jk Rn

Rn

≈
jωµ

4π

e− jk R

R

N∑
n=1

Inhn(P)e jkxn sin θ cos φe− jkx2
n
(1−sin2 θ cos2 φ)

2R

(1)

where In = An e jαn is the complex excitation coefficient (An ∈

R+, αn ∈ [0, 2π ]), k = (2π)/λ , λ is the wavelength in the
medium, Rn =

√
(x − xn)2 + y2 + z2, xn gives the position of

the reference point of the nth antenna element, θ and φ are the
zenithal and azimuthal observation angles, respectively related
to the field associated with the entire array, while hn(P) is the
effective height of the nth antenna element, given as follows:

hn(P)

= θ̂n sin θn

×

∫
x ′

∫
y′

∫
z′

{
J
(
x ′, y′, z′

)
× e jk(x ′ sin θn cos φn+y′ sin θn sin φn+z′ cos θn)

}
dx ′dy′dz′

= hn(θn, φn) θ̂n. (2)

In the above expression, J(x, y, z) = J (x, y, z) ẑ is the current
density taken as a reference for all elements. Accordingly,
Jn(x, y, z) = In J (x, y, z) ẑ for the nth element. Moreover,
θn and φn are the observation angles of the field associated
with the nth element. Of course, θn and φn can be seen as
functions of θ and φ and also of xn . As regarding the phases
{φn}

N
n=1, they can be chosen in such a way to realize a focus-

ing in correspondence with the focal point (R f , θ f , φ f ) [4].
Therefore, in this case, we have

αn = −kxn sin θ f cos φ f + kx2
n

1 − sin2 θ f cos2 φ f

2R f

− ̸ hn
(
θn f , φn f

)
(3)

where θn f and φn f are the values assumed by angles θn and
φn when θ = θ f and φ = φ f . Moreover, for the sake of
clarity, as well as to give more emphasis on the geometric and
parametric properties of the array in the Fresnel zone, let us
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assume that: the directivity diagram of all antenna elements
reaches its maximum for θ = π/2; the focal point is located in
the xy plane (θ f = π/2); let us observe the field in the same
plane (θ = π/2 ⇒ θn = π/2 and θ̂n = θ̂ = −ẑ ∀ n), thereby
studying a mathematical model similar to that in [19] and [42]
(antenna arrays in Fresnel zone), in [4] (continuous sources
in Fresnel zone). It is worth highlighting that this setting
approach is also similar to that considered for the so-called
array factor in near field [2], where the focal point is also in
the xy plane, and the observation is made in the same plane.
Furthermore, it must be considered that for directions θ ̸= 0,
the directivity effects of the antenna elements also begin to
be felt. Therefore, the function to be studied is given by the
following expression:

E(R, π/2, φ)

=
jωµ

4π

e− jk R

R

N∑
n=1

In hn(π/2, φn) e jkxn cos φ e− jkx2
n

sin2 φ

2R
(
−ẑ
)

=
jωµ

4π

e− jk R

R
F(R, φ)

(
−ẑ
)

(4)

deducing that, in this case, it is possible to study a simplified
scalar problem, gathering attention to the function F(R, φ).
For the sake of simplicity, this function is hereinafter referred
to the “radiation function.”

Now, let us suppose that during the (real-time) operation
of the system, the following conditions hold true: 1) the
amplitudes and phases of the excitation coefficients are subject
to errors due to the mutual coupling and fluctuations in the
power supply network and 2) antenna elements can fail with
a given probability. Furthermore, the tolerances of the feeding
network components must be also considered. Consequently,
the actual version of the function F(R, φ) can be modeled,
more realistically, as follows [hn = hn(π/2, φn)]:

F̃(R, φ)

=

N∑
n=1

{
(An + δAn) Fn e j(αn+δαn) hn

× e jk xn cos φ e− jk x2
n

sin2 φ

2R

}
=

N∑
n=1

{
(An + δAn) Fn|hn|

× cos
(

kxn cos φ − kx2
n

sin2φ

2R
+ αn + δαn + ̸ hn

)}
+ j

N∑
n=1

{
(An + δAn) Fn|hn|

× sin
(

kxn cos φ−kx2
n

sin2φ

2R
+αn +δαn + ̸ hn

)}
= F̃R(R, φ) + j F̃I(R, φ) (5)

where F̃R(R, φ) and F̃I(R, φ) are the real and the imaginary
part of the radiation function, respectively. By referring to
the tolerance theory of antenna arrays (in the far-field) [3],
[4], [15], here it is assumed that {Fn}

N
n=1, {δAn}

N
n=1, {δαn}

N
n=1

are all independent random variables. More precisely, in a

similar way as [18], it is assumed that {δAn}
N
n=1 are continuous

independent random variables with zero mean but, in general,
with different variance (i.e., δAn = 0 ∀ n and σ 2

δAn
= δA2

n ̸=

σ 2
δAm

= δA2
m for n ̸= m); the same holds for {δαn}

N
n=1

(δαn = 0 ∀ n, σ 2
δαn

= δα2
n ̸= σ 2

δαm
= δα2

m for n ̸= m;
instead, as regards {Fn}

N
n=1, they are modeled as independent

identically distributed (i.i.d.) binary random variables (Fn = p
and Fn ∈ {0, 1} ∀ n). Therefore, it follows that F̃(R, φ) is a
stochastic process to be studied by means of probability theory.
It is worth mentioning that the considered errors are the most
common ones [3].

In the following, some implicit results are initially pre-
sented for (5), in the sense that no particular geometry for
radiators is considered (i.e., {hn(θn, φn)}

N
n=1 are left implicit).

Subsequently, reference is made to dipole arrays, and then
the results are properly specialized to this type of geometry
for the antenna elements. It is worth emphasizing that this
approach does not invalidate the generality of the presented
methodology, since the directivity of the antenna elements is
a deterministic function, and therefore it does not affect the
various statistical properties that are analyzed.

An important point must be further highlighted. In the
model given by (5), the mutual couplings are assumed to be
weak enough so not to change the vector structure and the
shape of the current densities (or fields) on the radiators, lead-
ing all antenna elements to share the same radiation pattern.
More specifically, it is assumed that the mutual couplings can
only influence the values of the input currents of the radiators,
and such effects are implicitly taken into account through
the errors related to the excitation coefficients, even if in a
simplified way.

III. PARTIAL CHARACTERIZATION OF THE ACTUAL
RADIATION FUNCTION

A. Mean Characteristics of the Actual Radiation Function

The mean of the actual radiation function F̃(R, φ) is given
as follows:

µ(R, φ)

= F̃(R, φ)

=

N∑
n=1

(An +δAn) Fn e jαn e jδαn hn(π/2, φn) e jkxn cos φ e− jkx2
n

sin2 φ

2R

= p
N∑

n=1

Ane jαn hn(π/2, φn) e−
σ2
δαn
2 e jkxn cos φ e− jkx2

n
sin2 φ

2R (6)

in which it has been assumed that the phase errors are zero-
mean Gaussian random variables [15], [18], i.e., e jδαn =

e−(σ 2
δαn /2), taking into account that σ 2

δαn
is the variance of the

nth phase error. As can be seen, amplitude errors do not
affect the mean radiation function, whereas phase errors and
element failures do. In particular, these two errors imply lower
values for the magnitude of the mean of the actual radiation
function with respect to the ideal case [i.e., with respect to
F(R, φ)]. One way to overcome this disadvantage could be to
multiply F̃(R, φ) by a real constant that compensates for the
aforementioned decrease.
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In addition to the mean of the radiation function, it is very
useful to observe the behavior of the mean of the squared
magnitude of F̃(R, φ), which is associated with the radiated
power density, given by (with hn(π/2, φn) = hn)∣∣F̃(R, φ)

∣∣2
=

N∑
n=1

N∑
m=1

{
(An + δAn) (Am + δAm) Fn Fm e j(αn−αm )

× e j(δαn−δαm ) hn h∗

m e jk(xn−xm ) cos φ e− jk(x2
n −x2

m)
sin2 φ

2R

}
= |F(R, φ)|2 +

N∑
n=1

N∑
m=1

{
An Am e j(αn−αm ) e jk(xn−xm ) cos φ

× e− jk(x2
n −x2

m)
sin2 φ

2R hn h∗

m

×

[
Fn Fm e j(δαn−δαm ) − 1

]}
+

N∑
n=1

N∑
m=1

{
δAn δAm Fn Fm e j(αn−αm ) e j(δαn−δαm ) hnh∗

m

× e jk(xn−xm ) cos φ e− jk(x2
n −x2

m)
sin2 φ

2R

}
= |F(R, φ)|2 +

N∑
n=1

{
A2

n |hn|
2 (p − 1)

}
+

N∑
n=1

{
σ 2

δAn
p |hn|

2}
+

∑∑
n ̸=m

{
An Am e j(αn−αm ) e jk(xn−xm ) cos φ

× e− jk(x2
n −x2

m)
sin2 φ

2R hn h∗

m

[
p2 e−

σ2
δαn

+σ2
δαm

2 − 1
]}

(7)

taking into account that, in this framework, F2
n = Fn ∀ n and

δA2
n = σ 2

δAn
is the variance of the nth amplitude error. As can

be seen, random errors are responsible for the appearance of
numerous (error) terms in addition to the squared magnitude
of the desired radiation function.

B. Variance of the Actual Radiation Function

The statistical mean of the actual radiation function is not
related to specific realizations of random errors, but it rather
describes the behavior of the above function averaged over
a very large number of statistical realizations of the errors.
Hence, there is a need to obtain more information regarding
even a generic sample path of F̃(R, φ). The variance is a
statistical metric that can contribute to this, being related to the
average distance that the various sample paths of the radiation
function exhibit with respect to the mean. Thus, the variance
of F̃(R, φ) is given as follows:

σ 2(R, φ)

=
∣∣F̃(R, φ) − µ(R, φ)

∣∣2
=
∣∣F̃(R, φ)

∣∣2 −

∣∣∣F̃(R, φ)

∣∣∣2
= p

N∑
n=1

[(
A2

n + δA2
n

)
|hn|

2
]

− p2
N∑

n=1

[
A2

n|hn|
2
∣∣∣e jδαn

∣∣∣2]

=

N∑
n=1

{
p A2

n|hn|
2
[
1 − p e−σ 2

δαn

]}
+

N∑
n=1

[
p σ 2

δAn
|hn|

2]. (8)

Observing (8), it is interesting to note that the variance of
the radiation function does not depend on the distance from
the origin of the reference system, i.e., it does not depend
on R, while it depends on the azimuthal observation angle, φ,
through the angles {φn}

N
n=1.

C. Characterization of the Real and Imaginary Parts of the
Actual Radiation Function

In order to perform an in-depth analysis, it is also advanta-
geous to statistically characterize the real and imaginary parts
of the radiation function. In particular, the functions F̃R(R, φ)

and F̃I(R, φ) are first analyzed separately, and then their
covariance is also taken into account.

The mean and variance of F̃R(R, φ) are given as follows:

µR(R, φ)

= F̃R(R, φ)

= p
N∑

n=1

An|hn|

×cos

[
kxn cos φ − kx2

n
sin2 φ

2R
+ αn + δαn + ̸ hn

]
= p

N∑
n=1

{
Ane−

σ2
δαn
2 |hn|

× cos

[
kxn cos φ−kx2

n
sin2 φ

2R
+αn + ̸ hn(π/2, φn)

]}
(9)

σ 2
R(R, φ)

= F̃2
R(R, φ) − µ2

R(R, φ)

=
p
2

N∑
n=1

{(
A2

n + σ 2
An

)
|hn|

2 e−2σ 2
δαn

× cos

[
2kxn cos φ − 2kx2

n
sin2 φ

2R
+ 2αn + ̸ hn

]}

+
p
2

N∑
n=1

(
A2

n + σ 2
An

)
|hn|

2
−

p2

2

N∑
n=1

A2
n|hn|

2e−σ 2
δαn

−
p2

2

N∑
n=1

{
A2

n|hn|
2e−σ 2

δαn

× cos

[
2kxn cos φ−2kx2

n
sin2 φ

2R
+2αn +2̸ hn

]}
.

(10)

The mean and variance of F̃I(R, φ) can be written as
follows:

µI(R, φ)

= F̃R(R, φ)
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=p
N∑

n=1

An|hn|

×sin

[
kxncosφ−kx2

n
sin2φ

2R
+αn+δαn+ ̸ hn(π/2, φn)

]
= p

N∑
n=1

{
An e−

σ2
δαn
2 |hn|

× sin

[
kxn cos φ−kx2

n
sin2 φ

2R
+αn + ̸ hn(π/2, φn)

]}
(11)

σ 2
I(R, φ)

= F̃2
I(R, φ) − µ2

I(R, φ)

= −
p
2

N∑
n=1

{(
A2

n + σ 2
An

)
|hn|

2 e−2σ 2
δαn

× cos

[
2kxn cos φ − 2kx2

n
sin2 φ

2R

+ 2αn + ̸ hn(π/2, φn)

]}

+
p
2

N∑
n=1

(
A2

n + σ 2
An

)
|hn|

2
−

p2

2

N∑
n=1

A2
n|hn|

2e−σ 2
δαn

+
p2

2

N∑
n=1

{
A2

n|hn|
2e−σ 2

δαn

× cos

[
2kxn cos φ−2kx2

n
sin2 φ

2R
+2αn +2̸ hn

]}
.

(12)

At this point, it is advantageous to consider the following
two cases: 1) the analysis of the behavior of F̃(R, φ) as a
function of φ for R = R f and 2) the analysis of the behavior
of F̃(R, φ) as a function of R for φ = φ f .

Observing the expressions of µR(R, φ) and µI(R, φ),
we note that, if each αn is given by (3), at R = R f and
φ = φ f the function µR(R, φ) assumes the maximum value
while µI(R, φ) is equal to zero. Instead, for R ̸= R f and/or
φ ̸= φ f , µR(R, φ) and µI(R, φ) are given by “incoherent”
sums of cosines and sines, respectively. Consequently, looking
at µR(R, φ) and µI(R, φ) as only functions of φ and for
R = R f , in the region of the main-lobe and near-in side-lobes,
µI(R, φ) assumes negligible values with respect to µR(R, φ).
Instead, in the region away from the main-lobe, µR(R, φ) and
µI(R, φ) have almost the same values. This aspect is all the
more valid the higher the number of antenna elements, as it can
be seen from Fig. 2, in which |µR(R f , φ)| and |µI(R f , φ)|

are shown as the number of antenna elements varies, for
θ f = π/2, φ f = π/2 and R f = (Rmin + RM AX )/2, with
Rmin = 0.62

√
L3/λ (lower boundary of the Fresnel zone),

RM AX = 2 (L2/λ ) (upper boundary of the Fresnel zone),
L = (N −1) (λ/2) (array aperture), xn+1−xn = λ/2 ∀ n (half-
wavelength spacing), and where the antenna elements are short
dipoles. For each n: An = 1 V, σδAn = 0.1 V, σδαn = 0.1 rad

Fig. 2. Magnitudes of µR(R, φ) and µI(R, φ) as functions of φ for R = R f ,
as the number of antenna elements varies.

Fig. 3. Magnitudes of µR(R, φ) and µI(R, φ) as functions of R for φ = φ f ,
as the number of antenna elements varies.

and pn = 0.97. Furthermore, for the construction of the
diagrams the normalization with respect to 1z, i.e., with
respect to the length of the generic short dipole, has been
considered (that is, the behavior of F(R, φ)/1z has been
observed).

Fig. 3 shows the behaviors of |µR(R, φ)| and |µI(R, φ)| as
a function of R for φ = φ f . In this case, even if no main-lobe
and side-lobes appear along R the radiation function, it can
be observed that in the neighborhood of the focal point the
function µI(R, φ) assumes increasingly negligible values with
respect to µR(R, φ) as the number of elements increases.

Figs. 4 and 5 show the standard deviations along φ (for R =

R f ) and along R (for φ = φ f ), respectively, as the number of
antenna elements varies. As can be seen, along φ the standard
deviations take on significantly different values at the ends
of the observation interval and in correspondence with the
focal point, while at the other point they have almost the same
values. And, as can be seen, this aspect is more pronounced
as the number of elements increases. This is consistent with
what is shown in the literature regarding the study of the
far-field of antenna arrays [18]. Indeed, for R = R f , the
radiation function behaves similar to the array factor focused
at φ = φ f . As regards the behavior of the standard deviations
along R, also in this case there is a substantial difference
since σR(R, φ f ) and σI(R, φ f ) are different throughout the
observation interval.

Now, let us study the (linear) correlation between the
quadrature components of the radiation function. Thus, the
covariance function between the real and imaginary parts of
the radiation function must be considered, namely

K(R, φ)

= F̃R(R, φ) F̃I(R, φ) − µR(R, φ) µI(R, φ)
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Fig. 4. Standard deviations of the real and imaginary parts of the radiation
function as functions of φ for R = R f , as the number of antenna elements
varies.

Fig. 5. Standard deviations of the real and imaginary parts of the radiation
function as functions of R for φ = φ f , as the number of antenna elements
varies.

=

N∑
n=1

{
p
2

|hn|
2 e−σ 2

δαn

[(
A2

n + σ 2
δAn

)
e−σ 2

δαn − p A2
n

]
× sin

[
2kxn cos φ−2kx2

n
sin2 φ

2R
+2αn + 2̸ hn

]}
(13)

which leads to the Bravais-Pearson correlation coefficient
ρ(R, φ) = K(R, φ)/[σR(R, φ) σI(R, φ)]. Figs. 6 and 7 show
the behavior of the correlation coefficient with the same array
settings as in the previous figures. In particular, Fig. 6 shows
the behavior of the correlation coefficient as a function of the
azimuthal variable φ (and for R = R f ) for different values of
N . As can be seen, except for a few points of the observation
interval, ρ(R f , φ) assumes increasingly smaller values as the
number of elements increases. Fig. 7, on the other hand, shows
the behavior of the correlation coefficient as a function of R/λ ,
for φ = φ f . In this case, although the correlation coefficient
takes on relatively low values, it is not entirely negligible
even as the number of elements increases. However, it can
be observed that it crosses the zero level with a positive slope
for R ≈ R f , regardless of the number of elements, keeping
low values around this point.

Therefore, it can be observed that the quadrature compo-
nents of the (actual) radiation function are asymptotically (with
respect to N ) uncorrelated for R = R f , while, more generally,
they can be assumed to be uncorrelated around the focal point.

It is worth highlighting that the obtained results could be
quite easily generalized to the case in which the field is
observed in points not belonging to the xy plane.

Fig. 6. Correlation coefficient between the real and imaginary parts of
F̃(R, φ) as a function of φ for R = R f , as the number of antenna elements
varies.

Fig. 7. Correlation coefficient between the real and imaginary parts of
F̃(R, φ) as a function of R for φ = φ f , as the number of antenna elements
varies.

IV. DISTRIBUTION OF THE SQUARED MAGNITUDE OF THE
ACTUAL RADIATION FUNCTION

So far, the obtained analytic results do not depend on the
number of antenna elements. Instead, when the number of
radiators is high enough for the validity of the (multivariate)
central limit theorem (CLT) [43], it is possible to have a more
accurate description of the radiation function behavior. Indeed,
the real and imaginary parts of the radiation function can be
seen as asymptotically (with respect to N ) jointly Gaussian.
Accordingly, their joint probability density function (pdf) can
be written as (with (R, φ) implied)

f
(
F̃R, F̃I

)
=

e
−

1
2(1−ρ2)

[
(F̃R−µR)2

σ2
R

−2 ρ
(F̃R−µR)

σR
(F̃I−µI)

σI
+

(F̃I−µI)2

σ2
I

]

2π σR σI
√

1 − ρ2

(14)

and therefore the distribution of the squared magnitude of the
radiation function, P(R, φ) = |F̃(R, φ)|2, is given by

Pr
{

P(R, φ) ≤ ξ 2}
=

∫ ∫
|F̃(R,φ)|

2
≤ξ 2

f
(
F̃R, F̃I

)
d F̃R d F̃I

(15)

for which, to the best of the authors’ knowledge, there is no
closed-form representation.

A. General Approach

This section proposes a general approach to obtain a lower
bound on the distribution of P(R, φ). Referring to (14), it is
possible to write [44]∫∫

A
f
(
F̃R, F̃I

)
d F̃R d F̃I = 1 − e−

a2
2 (16)
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in which A is the area included within the ellipse of the
following equation (with R and φ implied):(

F̃R − µR
)2

σ 2
R

− 2 ρ

(
F̃R − µR

)
σR

(
F̃I − µI

)
σI

+

(
F̃I − µI

)2

σ 2
I

= a2 (1 − ρ2) (17)

whose center is the point (µx , µy), whose major radius is
a

√
τM AX , whose minor radius is a

√
τmin , with τM AX and τmin

being the largest and smallest eigenvalues of the covariance
matrix, respectively [45]. The parameter a coincides with the
Mahalanobis distance of the point (F̃R, F̃I) from the above
bivariate Gaussian distribution [45]. Consequently, through
(16)–(17) it is possible to determine a lower-bound for (15).
Indeed, if the smallest circle centered in (F̃R, F̃I) = (0, 0)

and encompassing the aforementioned ellipse is considered,
then it is possible to write that

Pr
{

P(R, φ) ≤ ξ 2}
≥ 1 − e−

a2
2 (18)

in which ξ is precisely the radius of the circle. Thus,
considering an “extreme” case, if the area A is such that
(1 − e−(a2/2)) → 100%, then (18) becomes approximately an
equality. Also, from the same (18), it can be obtained a lower
bound for the parameter a. In fact, it can be written that (with
Pr ≡ Pr {P(R, φ) ≤ ξ 2

})

a ≥

√
−2 ln

(
1 − P2

r

)
. (19)

Now, one last piece is missing, i.e., the determination of the
radius of the smallest circle which encompasses the ellipse and
is, therefore, tangent to this last one. To do this, the following
parametric representation of the ellipse can be exploited [45]
(with (R, φ) implied): F̃R = a σR cos t + µR

F̃I = a σI

[
ρ cos t +

√
1 − ρ2 sin t

]
+ µI

(20)

in which t ∈ [0, 2π ]. The variable ξ represents the radius of
the above smallest circle, which is

ξ = max
t

{√
F̃2
R + F̃2

I

}
, t ∈ [0, 2π ]. (21)

The above expressions can be useful for estimating the
punctual [namely, for fixed (R, φ)] percentiles of P(R, φ).
In fact, the η% level curve (in general, level surface) rη(R, φ)

(with 0 ≤ η ≤ 100), which is such that Pr {P(R, φ) ≤

rη(R, φ)} = η%, can be achieved first by setting Pr = η%;
then, by determining the Mahalanobis distance a with the
assumption that (19) is equality; afterward, by computing
F̃R and F̃I as functions of t by means of (20); finally,
by reckoning the radius ξ through (21), taking into account
that, in this circumstance, rη(R, φ) ≈ ξ for the generic point
(R, φ).

For the sake of completeness, it is worth noting that
Chebyshev inequality can also be exploited in the following
way:

Pr
{∣∣P(R, φ) − P(R, φ)

∣∣ < ξ σP(R, φ)
}

≥ 1 −
1
ξ 2 (22)

where P(R, φ) = |F̃(R, φ)|2, while σP(R, φ) is the standard
deviation of the P(R, φ), which can be written as [38] (with
R and φ implied)

σ 2
P(R, φ) = 4µ2

Rσ 2
R + 4µ2

Iσ
2
I + 2σ 4

R + 2σ 4
I − µ2

Rµ2
I

− µ2
Rσ 2

I − µ2
Iσ

2
R − σ 2

Rσ 2
I + 2K [K + 2µRµI].

(23)

Moreover, exploiting the Dharmadhikari result [47], it is
possible to obtain bounds for the percentile surface

P(R, φ) − σP(R, φ)

√
1 − η%

η%
≤ rη(R, φ)

≤ P(R, φ) + σP(R, φ)

√
η%

1 − η%
. (24)

It is worth highlighting that in case the field is observed
in points not belonging to the xy plane, it is possible to
generalize the presented approach considering a multivariate
normal density [45] and therefore dealing with hyperellipsoids
and hyperspheres.

Finally, for the sake of clarity, it is worth specifying that
F̃R and F̃I appearing in (14)–(17) and (20)–(21) are not the
quadrature components of F̃(R, φ) but variables associated
with them. The same symbols have been used to denote
different quantities in order not to overburden the notation.
The same holds for the other distributions that are presented
below.

B. Study of the Distribution of |F(R, φ)| as Function of φ

for R = R f

So far, the results seen for the distribution of P(R, φ) are
general, in the sense that they hold for any point (R, φ).
However, for the particular cases that are shown below, it is
possible to exploit the arguments of the theory of random
arrays [16], [38] and of the tolerance theory of far-field focused
arrays [3], [12], [18].

Let us analyze the behavior of Pr {P(R, φ) ≤ ξ 2
} for

R = R f . In this case, it has been seen that the correlation
coefficient is (asymptotically) negligible; therefore the quadra-
ture components of the radiation function can be assumed to
be independent. Accordingly, the distribution of P(R, φ) can
be approximated as follows:

Pr
{

P
(
R f , φ

)
≤ ξ 2}

=

∫ ξ

−ξ


Q

−

√
ξ 2− F̃2

R−µI

σI

−Q


√

ξ 2− F̃2
R−µI

σI



×
e
−

(F̃R−µR)2

2σ2
R

√
2π σR

 d F̃R (25)

with Q(z) = (1/
√

2π)
∫

∞

z e−t2/2dt being the Q-function [44].
It is worth noting that, by suitable manipulations such as those
in [48], it is possible to attain closed-form representations of
the Q-functions with very limited approximation errors [44].
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However, as can be seen, (25) still requires numerical inte-
gration, given that, as far as the authors are aware, not even
for it there exists a closed-form representation, though some
approximations can be found in [17]. However, as it has been
shown previously, as N increases, the standard deviations
of FR(R f , φ) and FI(R f , φ) become similar to each other,
except for a limited portion of the domain of φ. Conse-
quently, when σI(R f , φ) ≈ σR(R f , φ), P(R f , φ)/σR(R f , φ)

becomes a non-central χ -square random variables with two
degrees of freedom at point (R f , φ), thus being able to write

Pr

{
P
(
R f , φ

)
σ 2
R
(
R f , φ

) ≤ ξ 2

}
≈ 1 − Q1

(∣∣µ(R f , φ
)∣∣

σR
(
R f , φ

) , ξ) (26)

in which Q1(a, b) is the Marcum Q-function of order 1 [49]
and |µ(R f , φ)| is determined by means (6). This is a result
that can be found in random array theory [38] and implicitly
also in the tolerance theory for arrays in far-field [3]. Also,
following [38], it is possible to determine the following η%
level curve of P(R f , φ)/σ 2

R(R f , φ) (with R f and φ implied):

LC2
η

(
R f , φ

)
≈

(
2 +

|µ|
2

σ 2
R

)

×

νη

√√√√4
9

(
|µ|

2 σ 2
R + σ 4

R
)(

|µ|
2
+ 2σ 2

R
)2 + 1 −

4
9

(
|µ|

2 σ 2
R + σ 4

R
)(

|µ|
2
+ 2σ 2

R
)2

3

(27)

in which νη is the ηth percentile of the standardized Gaussian
random variable. Thus, for the generic point (R f , φ), the
value of LC2

η(R f , φ) represents the approximate ηth percentile
of P(R f , φ)/σ 2

R(R f , φ), without recurring to any inversion.
What is more, the function LC2

η(R f , φ), for φ ∈ [0, 2π ],
represents a level curve for P(R f , φ)/σ 2

R(R f , φ). Accord-
ingly, in this case the estimate of the function rη(R f , φ) is
LC2

η(R f , φ) × σ 2
R(R f , φ).

Finally, at points where even µR(R f , φ) and
µI(R f , φ) can be considered negligible (with respect
to σR(R f , φ) and σI(R f , φ), respectively), the distribution
of P(R f , φ)/σ 2

R(R, φ) becomes

Pr

{
P
(
R f , φ

)
σ 2
R
(
R f , φ

) ≤ ξ 2

}
≈ 1 − e−

ξ2
2 . (28)

C. Behavior of the cdf of |F(R, φ)| Along R for φ = φ f

As it has been shown, along R the behaviors of the
quadratures components of F(R, φ) do not allow to arrive
at a relation similar to (26). Furthermore, also the correlation
coefficient between FR(R, φ f ) and FI(R, φ f ) is not entirely
negligible even as the number of antenna elements increases.
Consequently, also in this case it is necessary to refer to the
more general results given by (16)–(19).

V. CHARACTERIZATION OF THE ERROR BETWEEN THE
ACTUAL RADIATION FUNCTION AND THE IDEAL ONE

The variance given by (8) is a distance metric that exists
between the sample paths and the mean of F̃(R, φ). However,

the mean of F̃(R, φ) does not represent the ideal radiation
function F(R, φ). As a matter of fact, this is contained into
(4). For this reason, it is more appropriate to measure instead
the distance between F(R, φ) and F̃(R, φ), considering the
stochastic process ϵ(R, φ) = F̃(R, φ)−F(R, φ). Accordingly,
it is possible to calculate the following mean squared error:

MSE(R, φ) = |ϵ(R, φ)|2

=
∣∣F̃(R, φ) − F(R, φ)

∣∣2
=
∣∣F̃(R, φ)

∣∣2 − 2 ℜ
{
µ(R, φ) F∗(R, φ)

}
+ |F(R, φ)|2

= |µ(R, φ)|2 + σ 2(R, φ)

− 2 ℜ
{
µ(R, φ) F∗(R, φ)

}
+ |F(R, φ)|2 (29)

in which ℜ{µ(R, φ) F∗(R, φ)} is the real part of
µ(R, φ) F∗(R, φ) and the symbol ∗ stands for complex
conjugation.

It is worth highlighting that, referring to the results pre-
sented in Section IV, a deeper characterization of the stochas-
tic process ϵ(R, φ) can be performed. In fact, it is possible
to apply the same arguments for determining the cdf of the
magnitude of ϵ(R, φ). In this case, (14) has to be modified in
order to obtain the joint pdf between the real and the imaginary
parts of ϵ(R, φ) (with R and φ implied), namely

f (ϵR, ϵI)

=
e
−

1
2(1−ρ2)

[
(ϵR−µR+FR)2

σ2
R

−2ρ
(ϵR−µR+FR)

σR
(ϵI−µI+FI)

σI
+

(ϵI−µI+FI)2

σ2
I

]

2πσRσI
√

1 − ρ2

(30)

where FR(R, φ) and FI(R, φ) are the real and the imaginary
parts of F(Rφ). Accordingly, the following ellipse equation
is associated to (30):

(ϵR − µR + FR)2

σ 2
R

− 2 ρ
(ϵR − µR + FR)

σR

(ϵI − µI + FI)
σI

+
(ϵI − µI + FI)2

σ 2
I

= a2 (1 − ρ2) (31)

and therefore, referring to (18), in this case, the variable ξ

represents the radius of the smallest circle which contains the
ellipse given by (31). Therefore, by proceeding in a similar
way as with (16)–(21), it is possible to obtain a lower bound
for the cdf of |ϵ(R, φ)|2.

Then, studying ϵ(R, φ) as a function of φ and for R = R f ,
it is possible to assume ρ ≈ 0 and therefore, referring to (25),
we can write

Pr

{∣∣ϵ(R f , φ
)∣∣2 ≤ ξ 2

}
=

∫ ξ

−ξ

dϵR
e
−

(ϵR−µR+FR)2

2σ2
R

√
2π σR

×

Q

−

√
ξ 2 − ϵ2

R − µI + FI

σI


− Q


√

ξ 2−ϵ2
R−µI+FI

σI

.

(32)
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Fig. 8. Comparison of the squared magnitude of F(R, φ) (blue line), the
mean squared magnitude of F̃(R, φ) (black line), and the squared magnitude
of a sample path of F̃(R, φ) (red line), for R = R f , as the number of antenna
elements varies. Each function is in dB.

Again, at points where ρ(R f , φ) ≈ 0 and σI(R f , φ) ≈

σR(R f , φ), the function |ϵ(R f , φ)|2/σ 2
R(R f , φ) is a non-

central χ -squared random variable and its ηth percentile is
given by

L̃C2
η

(
R f , φ

)
≈

(
2+

a2

σ 2
R

)νη

√√√√4
9

(
a2σ 2

R+σ 4
R
)(

a2 + 2σ 2
R
)2 +1−

4
9

(
a2σ 2

R + σ 4
R
)(

a2 + 2σ 2
R
)2

3

(33)

in which a2
= {[µR(R f , φ) − FR(R f , φ)]2

+ [µI(R f , φ) −

FI(R f , φ)]2
}.

VI. NUMERICAL RESULTS

In this section, some significant examples are shown to
validate the previous arguments. As before, we consider arrays
of short dipoles for computational convenience, without loss
of generality. Indeed, it is worth noting that the reported
theoretical results do not depend on the type of antenna chosen
for the array. Also, the focal point is given as (R f , θ f , φ f ) =

([0.62
√

L3/λ +2 (L2/λ )]/2, π/2, π/2) and for each n: An =

1 V, xn+1 − xn = λ/2, σδAn = 0.1 V, σδαn = 0.1 rad, and
pn = 0.97.

Fig. 8 is inherent to the behavior of F(R, φ) and F̃(R, φ)

along φ, for R = R f and different values of the antenna
elements. In particular, this figure shows the behaviors of the
squared magnitude of F(R f , φ), the mean squared magnitude
of F̃(R f , φ) and the squared magnitude of a realization (sam-
ple path) of the same F̃(R f , φ). As can be seen, for low values
(case N = 11) of the number of elemental radiators these three
functions show quite superimposable trends. Instead, as this
number increases, the curves gradually separate from each
other (case N = 21). This can be observed quite markedly
for the case N = 101. Indeed, the squared magnitude of
F(RF, φ) decreases as the values of φ move away from φ f ,
similar to what happens for far-field focused arrays; instead,
the mean squared magnitude of F̃(R f , φ) shows a main-lobe
superimposable on that of |F(R f , φ)|2 but then an almost
constant level in the (pseudo) sidelobe region, similar to what
occurs for far-field focused random arrays [4]; finally, the
generic sample path of |F̃(R f , φ)|2 is almost similar to that of
the other two functions in the region containing the main-lobe

Fig. 9. Comparison of the magnitude of F(R, φ) (blue line), the mean
squared magnitude of F̃(R, φ) (black line), and the magnitude of a sample
path of F̃(R, φ) (red line), for φ = φ f , as the number of antenna elements
varies. Each function is in dB.

Fig. 10. Comparison between the magnitude of F(R, φ) and the magnitude
of a sample path of F̃(R, φ), in the whole Fresnel domain, for N = 11.

Fig. 11. Comparison between the magnitude of F(R, φ) and the magnitude
of a sample path of F̃(R, φ) in the whole Fresnel domain, for N = 21.

and near-in side-lobes, while it has a noisy behavior for φ

values far from the main-lobe, once again similar to what
occurs for far-field focused random arrays [4].

Fig. 9 shows the behavior of |F(R, φ)|2, |F̃(R, φ)|2 and a
sample path of |F̃(R, φ)|2 along R for φ = φ f . In this case,
contrary to Fig. 8, the deviation between the various curves
gradually becomes less marked as the number of radiators
increases.

The previous figures allow us to obtain only a partial
view of the functions under examination. For this reason,
in Figs. 10–12 the trends of |F(R, φ)|2 and |F̃(R, φ)|2 are
globally taken into consideration, i.e., in the whole Fresnel
zone of the array under consideration. These figures confirm
that the squared magnitude of the sample path of |F̃(R, φ)|

globally presents higher levels than those related to the squared
magnitude of F(R, φ).

Now, let us evaluate the performance of the estimates of
the cd f of P(R, φ). Fig. 13 shows the mean and a sample
path of |F̃(R f , φ)|2 along with the empirical 99% level curve,
obtained by Monte Carlo analysis, and the theoretical 99%
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Fig. 12. Comparison between the magnitude of F(R, φ) and the magnitude
of a sample path of F̃(R, φ) in the whole Fresnel domain, for N = 101.

Fig. 13. Mean and level curves of |F̃(R f , φ)|2 in dB, as the number of
antenna elements varies.

Fig. 14. Mean and level curves of |F̃(R, φ f )|
2 in dB, as the number of

antenna elements varies.

level curves obtained through the approaches of Section IV,
as the number of antenna elements varies. Considering the
99% level curves helps provide a margin of safety especially
when the arrays are used, for example, in biomedical scenarios.
As can be seen, the theoretical level curves provide a good
estimate even for low values of the number of radiators. In fact,
it is worth noting that they are based on the Gaussianity
assumption between the quadrature component of F̃(R, φ),
which in turn is based on the multivariate CLT. Therefore,
even for such a small number of elements, it is possible
to obtain a good estimate of the level curves by exploiting
the aforementioned Gaussianity assumption. A fortiori, this
methodology can be used to study the performance of large
arrays in their Fresnel zone. However, as it is possible to
observe, the results are also valid in the case of arrays
composed of a moderate number of elements. Indeed, the
methodology shown was positively tested also for N = 11.

Fig. 14 shows the same functions as in Fig. 13 this time
along R for φ = φ f . As can be seen, again there is a
good matching between the empirical 99% level curve and
the theoretical ones.

Fig. 15. Mean and level curves of |ϵ(R, φ f )|
2 in dB, as the number of antenna

elements varies. All curves are normalized with respect to the supremum of
the mean of the squared magnitude of F̃(R f , φ).

Fig. 16. Comparison between the error-free and actual normalized
magnitude squared of the electric field, in dB, in the plane paral-
lel to the xz plane and positioned at y = R f , having dimensions
[−

√
R2

M AX − R2
f ,
√

R2
M AX − R2

f ] × [−

√
R2

M AX − R2
f ,
√

R2
M AX − R2

f ].

Finally, for greater completeness, Fig. 15 also provides an
analysis relating to the error function ϵ(R, φ). In particular,
this figure compares the function M SE(R, φ), given by (29),
a realization of |ϵ(R, φ)|2 and the 99% level curves associated
with the latter, along φ for R = R f . These functions are
all normalized with respect to the supremum of |F̃(R f , φ)|2,
so that the 99% level curves represent a sort of estimate of
the (pseudo) peak sidelobe level of |F̃(R f , φ)|. As becomes
evident, also in this case the theoretical level curves provide
a good estimate of the true (empirical) one. Furthermore, it is
worth noting that as the number of elements increases, the
levels of the sample paths of |ϵ(R, φ)| decrease, and with it
also the levels of the related functions, thus indicating that the
impact of errors decreases. This is similar to what occurs for
random (far-field focused) arrays [38].

Finally, to have a complete view of the performance of the
arrays under investigation, Fig. 16 compares the behavior of
the errors-free and actual electric field magnitudes in the plane
parallel to the xz plane and placed at y = R f . The highest
field values are obtained around the focal point, but, again,
it can be observed that the effect of errors translates into a
general rise in field levels.

VII. CONCLUSION

A tolerance analysis applied to Fresnel-zone focused
antenna arrays has been presented in this work, with the
aim to predict the field levels and guarantee safety issues
in biomedical contexts. In particular, amplitude, phase, and
fault errors have been considered, which are modeled as usual
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in terms of independent random variables. Consequently, the
proposed methodology can also be regarded as an important
topic in the framework of random array theory. As a primary
objective, the work has been intended to study the near-
field randomness, by providing relationships to predict the
levels (i.e., confidence curves/surfaces) related to the stochastic
electromagnetic field both in range and azimuth. The study
has been primarily motivated to face the problem of arrays
errors in most common biomedical applications, such as
hyperthermia and implants recharging. Numerical results on
linear arrays have been discussed to confirm the validity of the
proposed approach, which can be easily extended to arbitrary
array geometries.

Finally, it has been assumed that mutual couplings could
only modify the excitation coefficients of the array, but leaving
unchanged the current distribution (or field) on the radiators.
In a simplified way, their influence has been taken into
account through the errors related to the excitation coeffi-
cients. Anyway, the presence of mutual couplings in antenna
arrays represents a serious problem, and future studies will be
addressed to accurately take them into account also in the case
of antenna arrays focused in the Fresnel-zone.

REFERENCES

[1] N. Fourikis, Advanced Array Systems, Applications and RF Technologies
(Signal Processing and its Applications), 1st ed. New York, NY, USA:
Academic, 2000.

[2] R. L. Haupt, Antenna Arrays: A Computational Approach. Hoboken, NJ,
USA: Wiley, 2010.

[3] R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed. Norwood,
MA, USA: Artech House, 2005.

[4] B. D. Steinberg, Principles of Aperture and Array System Design.
New York, NY, USA: Wiley, 1976.

[5] J. Ruze, “Physical limitations on antennas,” M.S. thesis, Dept. Elect.
Eng., Massachusetts Inst. Technol., Cambridge, MA, USA, May 1952.

[6] J. Ruze, “Antenna tolerance theory—A review,” Proc. IEEE, vol. 54,
no. 4, pp. 633–640, Apr. 1966.

[7] D. Ashmead, “Optimum design of linear arrays in the presence of
random errors,” Trans. IRE Prof. Group Antennas Propag., vol. 4, no. 1,
pp. 81–92, Dec. 1952.

[8] E. N. Gilbert and S. P. Morgan, “Optimum design of directive antenna
arrays subject to random variations,” Bell Syst. Tech. J., vol. 34, no. 3,
pp. 637–663, May 1955.

[9] L. A. Rondinelli, “Effects of random errors on the performance of
antenna arrays of many elements,” in Proc. IRE Nat. Conv. Rec., 1959,
pp. 174–189.

[10] R. Elliott, “Mechanical and electrical tolerances for two-dimensional
scanning antenna arrays,” IRE Trans. Antennas Propag., vol. 6, no. 1,
pp. 114–120, Jan. 1958.

[11] J. L. Allen, “Some extensions of the theory of random error effects on
array patterns,” in Phased Array Radar Studies. Nov. 1961, ch. 3.

[12] J. K. Hsiao, “Array sidelobes, error tolerance, gain, and beamwidth,”
Naval Res. Lab., Washington, DC, USA, RL Rep. 8841, 1984.

[13] J. K. Hsiao, “Design of error tolerance of a phased array,” Electron.
Lett., vol. 21, no. 19, p. 834, 1985.

[14] P. D. Kaplan, “Predicting antenna sidelobe performance,” Microw. J.,
vol. 29, no. 9, pp. 201–204, 1986.

[15] M. I. Skolnik, “Nonuniform arrays,” in Antenna Theory, R. E. Collin
and F. Zucker, Eds. New York, NY, USA: McGraw-Hill, 1969.

[16] Y. Lo, “A mathematical theory of antenna arrays with randomly
spaced elements,” IEEE Trans. Antennas Propag., vol. AP-12, no. 3,
pp. 257–268, May 1964.

[17] Y. T. Lo, “A probabilistic approach to the problem of large antenna
arrays,” J. Res. Nat. Bur. Standards D, Radio Sci., vol. 68D, no. 9,
p. 1011, Sep. 1964.

[18] A. K. Bhattacharyya, Phased Array Antennas: Floquet Analysis, Synthe-
sis, BFNs and Active Array Systems, 1st ed. Hoboken, NJ, USA: Wiley,
2006.

[19] Y. S. Shifrin and L. G. Kornienko, “The state-of-the-art of the statistical
theory of antenna arrays,” in Proc. 6th Int. Symp. Antennas, Propag. EM
Theory, 2003, pp. 176–181.

[20] Y. S. Shifrin, “Pioneer award: Statistical antenna theory: Formation and
extension,” IEEE Aerosp. Electron. Syst. Mag., vol. 31, no. 8, pp. 24–36,
Aug. 2016.

[21] Y. Zhang, D. Zhao, Q. Wang, Z. Long, and X. Shen, “Tolerance analysis
of antenna array pattern and array synthesis in the presence of excitation
errors,” Int. J. Antennas Propag., vol. 2017, pp. 1–6, Jan. 2017.

[22] A. Schiessl, A. Genghammer, S. S. Ahmed, and L.-P. Schmidt, “Hard-
ware realization of a 2 m×1 m fully electronic real-time mm-wave
imaging system,” in Proc. Eur. Conf. Synth. Aperture Radar, Nuremberg,
Germany, Apr. 2012, pp. 40–s43.

[23] A. Schiessl, A. Genghammer, S. S. Ahmed, and L.-P. Schmidt, “Phase
error sensitivity in multistatic microwave imaging systems,” in Proc.
Eur. Microw. Conf., Oct. 2013, pp. 1631–1634.

[24] V. R. Gowda, M. F. Imani, T. Sleasman, O. Yurduseven, and
D. R. Smith, “Focusing microwaves in the Fresnel zone with
a cavity-backed holographic metasurface,” IEEE Access, vol. 6,
pp. 12815–12824, 2018.

[25] M. Wang, L. Crocco, S. Costanzo, R. Scapaticci, and M. Cavagnaro,
“A compact slot-loaded antipodal Vivaldi antenna for a microwave
imaging system to monitor liver microwave thermal ablation,” IEEE
Open J. Antennas Propag., vol. 3, pp. 700–708, 2022.

[26] G. Yildiz, T. Yilmaz, and I. Akduman, “Rotationally adjustable hyper-
thermia applicators: A computational comparative study of circular
and linear array applicators,” Diagnostics, vol. 12, no. 11, p. 2677,
Nov. 2022, doi: 10.3390/diagnostics12112677.

[27] Z. Chen, H. Sun, and W. Geyi, “Maximum wireless power transfer to the
implantable device in the radiative near field,” IEEE Antennas Wireless
Propag. Lett., vol. 16, pp. 1780–1783, 2017.

[28] B. J. DeLong, A. Kiourti, and J. L. Volakis, “A radiating near-field patch
rectenna for wireless power transfer to medical implants at 2.4 GHz,”
IEEE J. Electromagn., RF Microw. Med. Biol., vol. 2, no. 1, pp. 64–69,
Mar. 2018.

[29] S. A. A. Shah and H. Yoo, “Radiative near-field wireless power transfer
to scalp-implantable biotelemetric device,” IEEE Trans. Microw. Theory
Techn., vol. 68, no. 7, pp. 2944–2953, Jul. 2020.

[30] T. Shaw and D. Mitra, “Metasurface-based radiative near-field wireless
power transfer system for implantable medical devices,” IET Microw.,
Antennas Propag., vol. 13, no. 12, pp. 1974–1982, Oct. 2019.

[31] P. R. Stauffer, F. Rossetto, M. Leoncini, and G. B. Gentilli, “Radiation
patterns of dual concentric conductor microstrip antennas for superficial
hyperthermia,” IEEE Trans. Biomed. Eng., vol. 45, no. 5, pp. 605–612,
May 1998.

[32] P. R. Stauffer, D. Neuman, C. Hwang, F. Rossetto, and C. J. Diederich,
“Microwave vest for hyperthermia treatment of large area superficial dis-
ease,” in Proc. 1st Joint BMES/EMBS Conf. IEEE Eng. Med. Biol. 21st
Annu. Conf. Annu. Fall Meeting Biomed. Eng. Soc., vol. 2, Oct. 1999,
p. 1275.

[33] H. D. Trefná et al., “Quality assurance guidelines for superficial hyper-
thermia clinical trials,” Strahlentherapie Onkologie, vol. 193, no. 5,
pp. 351–366, 2017.

[34] S. P. Singh, “Microwave applicators for hyperthermia treatment
of cancer: An overview,” in Proc. 3rd Int. Conf. Microw.
Photon. (ICMAP), Dhanbad, India, Feb. 2018, pp. 1–3, doi:
10.1109/ICMAP.2018.8354467.

[35] G. Buonanno and R. Solimene, “Generalised random binned antenna
arrays,” Prog. Electromagn. Res. C, vol. 78, pp. 129–143, 2017.

[36] G. Buonanno and R. Solimene, “Unequally-excited linear totally random
antenna arrays for multi-beam patterns,” IET Microw., Antennas Propag.,
vol. 12, no. 10, pp. 1671–1678, Aug. 2018.

[37] G. Buonanno and R. Solimene, “Comparing different schemes for
random arrays,” Prog. Electromagn. Res. B, vol. 71, pp. 107–118, 2016.

[38] G. Buonanno, S. Costanzo, and R. Solimene, “Broadband statisti-
cally designed thinned-binned array antennas,” IEEE Trans. Antennas
Propag., vol. 71, no. 3, pp. 2454–2466, Mar. 2023.

[39] M. Skolnik, J. Sherman, III, and F. Ogg Jr., “Statistically designed
density-tapered arrays,” IEEE Trans. Antennas Propag., vol. AP-12,
no. 4, pp. 408–417, Jul. 1964.

[40] Y. T. Lo, “Random periodic arrays,” Radio Sci., vol. 3, no. 5,
pp. 425–436, May 1968.

[41] G. Buonanno and R. Solimene, “Global characterization of linear statisti-
cally thinned antenna arrays,” IEEE Access, vol. 9, pp. 119629–119640,
2021.

http://dx.doi.org/10.3390/diagnostics12112677
http://dx.doi.org/10.1109/ICMAP.2018.8354467


7272 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 9, SEPTEMBER 2023

[42] K. Buchanan, O. Sternberg, S. Wheeland, and J. Rockway, “Examination
of the near field response of circular antenna arrays,” in Proc. United
States Nat. Committee URSI Nat. Radio Sci. Meeting (USNC-URSI
NRSM), Jan. 2017, pp. 1–2.

[43] W. Feller, An Introduction to Probability Theory and its Applications,
vol. 2. New York, NY, USA: Wiley, 1966.

[44] M. Zelen and N. C. Severo, “Probability functions,” in Handbook of
Mathematical Functions With Formulas, Graphs, and Mathematical
Tables (National Bureau of Standards Applied Mathematics Series),
M. Abramowitz and I. A. Stegun, Eds. Dec. 1972.

[45] M. Bensimhoun, “N-dimensional cumulative function, and other use-
ful facts about Gaussians and normal densities,” Jerusalem, Israel,
Tech. Rep., 2009.

[46] C. Mallows, “Another comment on O’Cinneide,” Amer. Statistician,
vol. 45, no. 3, p. 257, Aug. 1991.

[47] D. Gilat and T. P. Hill, “Quantile-locating functions and the distance
between the mean and quantiles,” Statistica Neerlandica, vol. 47, no. 4,
pp. 279–283, Dec. 1993.

[48] G. Buonanno and R. Solimene, “Large linear random symmetric arrays,”
Prog. Electromagn. Res. M, vol. 52, pp. 67–77, 2016.

[49] A. Nuttall, “Some integrals involving the QM function (corresp.),” IEEE
Trans. Inf. Theory, vol. IT-21, no. 1, pp. 95–96, Jan. 1975.

Giovanni Buonanno (Member, IEEE) received the
M.S. degree (summa cum laude) in electronic engi-
neering from Seconda Università degli Studi di
Naples (SUN), Aversa, Italy, in 2014, and the Ph.D.
degree in industrial and information engineering
from the University of Campania, Caserta, Italy,
in 2018.

Then, he joined the Research Group in Applied
Electromagnetics, SUN. He defending the Ph.D.
thesis, in January 2019. He is currently a Research
Fellow with the University of Calabria, Rende, Italy.

His research interests include analysis and design of nonuniformly-spaced
antenna arrays, biomedical applications, signal processing, and machine
learning.

Sandra Costanzo (Senior Member, IEEE) received
the Laurea degree (summa cum laude) in com-
puter engineering from the Università della Calabria,
Rende, Italy, in 1996, and the Ph.D. degree in
electronic engineering from the Università Mediter-
ranea di Reggio Calabria, Reggio Calabria, Italy,
in 2000.

Since 2019, she has been an Associate with
the Institute for Electromagnetic Sensing of the
Environment-National Research Council of Italy
(IREA-CNR), Naples, Italy. She is currently an

Associate Professor with the Università della Calabria, where she is the Coor-
dinator of master’s degree in telecommunication engineering and the Rector’s
Delegate for Health Safety. She teaches courses on electromagnetic waves
propagation, antennas, remote sensing, radar, sensors, and electromagnetic
diagnostics. She has authored or coauthored over 200 contributions in inter-
national journals, books, and conferences. Her research interests are focused
on near-field/far-field techniques, antenna measurement techniques, antenna
analysis and synthesis, numerical methods in electromagnetics, millimeter
wave antennas, reflectarrays, synthesis methods for microwave structures,
electromagnetic characterization of materials, biomedical applications, and
radar technologies.

Dr. Costanzo is a member of the IEEE MTT-28 Biological Effects and
Medical Applications Committee, IEEE South Italy Geoscience and Remote
Sensing Ear, Consorzio Nazionale Interuniversitario per le Telecomunicazioni
(CNIT), Società Italiana di Elettromagnetismo (SIEM), and Centro Interuni-
versitario sulle Interazioni fra Campi Elettromagnetici e Biosistemi (ICEMB).
She is a Board Member of the IEEE AP/ED/MTT North Italy Chapter.
She received the Telecom Prize for the Best Laurea Thesis, in 1996,
and the 2013 Best Academia and Research Application in Aerospace and
Defense Award for the Application Software Defined Radar Using the
NI USRP 2920 Platform. In 2017, she was awarded the Italian National
Scientific Qualification for the Full Professor position. She is an Associate
Editor of IEEE ACCESS, IEEE JOURNAL OF ELECTROMAGNETICS, RF AND
MICROWAVES IN MEDICINE AND BIOLOGY, and ELECTRONICS (section
“Microwave and Wireless Communications”). She is an Editorial Board
Member of Radioengineering and International Journal of RF and Microwave
Computer-Aided Engineering. She is an Editor of the books Microwave Mate-
rials Characterization (INTECH, 2012) and Wave Propagation Concepts for
Near-Future Telecommunication Systems’ (INTECH, 2017). She was the Lead
Editor of the Special Issues on Reflectarray Antennas: Analysis and Synthesis
Techniques, in 2012, Advances in Radar Technologies, in 2013, COMPRESSED
SENSING: APPLICATIONS IN RADAR AND COMMUNICATIONS, in 2016,
Bioengineering Applications of Electromagnetic Wave Propagation, in 2019,
and Microwave Sensors for Biomedical Applications, in 2020.

Open Access funding provided by ‘Università della Calabria’ within the CRUI CARE Agreement


