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Static Surface Mode Expansion for the
Electromagnetic Scattering From Penetrable Objects
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Abstract— We introduce longitudinal and transverse static
surface modes and use them to solve the scattering problem
from penetrable objects with arbitrary shapes. The longitudinal
static modes are the eigenmodes, with zero surface-curl, of the
electrostatic integral operator that determines the tangential
component of the electric field, as a function of the surface
charge density. The transverse static modes are the eigenmodes,
with zero surface-divergence, of the magnetostatic integral oper-
ator that determines the tangential component of the vector
potential, as a function of the surface current density. These
static modes are solely determined by the object’s shape, thus,
the same static basis can be used regardless of the operating
frequency or material properties. We expand the unknown
surface currents of the Poggio-Miller-Chang-Harrington-Wu–
Tsai (PMCHWT) equation in terms of the static modes and solve
it using Galerkin-projections. The static modes expansion allows
for the regularization of the integral operators and also leads
to a significant reduction in the number of unknowns compared
to a discretization based on sub-domain basis functions. As a
consequence, the CPU-time required for the numerical solution
of the scattering problem from arrays of identical particles is
significantly reduced by employing an expansion in terms of static
modes of the isolated particle.

Index Terms— Computational electromagnetics, dielectric res-
onators, eigenvalues and eigenfunctions, electromagnetic scatter-
ing, integral equations, plasmonics, resonance, resonators.

I. INTRODUCTION

THE analysis of the electromagnetic scattering from a col-
lection of mutually coupled objects is of great importance

for many applications, spanning from antenna arrays [1] to
metasurfaces [2] and metalens [3]. In this context, the use
of integral formulations is appealing, since the unknowns are
defined only within the objects’ volume or, if the objects
are spatially piecewise homogeneous, on their boundary and
internal interfaces. Additionally, these formulations naturally
satisfy the radiation condition at infinity. Nevertheless, the
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corresponding discrete problem is characterized by dense
matrices, and their inversion is usually associated with high
computational burden, even when acceleration techniques such
as fast multipole algorithms are implemented [4].

Accurate and efficient solutions of integral formulations
heavily depend on the choice of basis functions. Two main
categories of basis functions can be distinguished: sub-domain
functions, which are nonzero only over a portion of the
object, or entire-domain functions, which extend over the
entire domain of the object. While sub-domain functions may
have wider applicability and are more suitable for objects with
irregular shapes and sharp corners, entire-domain functions are
very appealing when multiple scattering problems are consid-
ered, where the electromagnetic system under investigation is
a collection of mutually-coupled objects [5], [6], [7].

Representative examples of sub-domain functions include
the Rao-Wilton–Glisson functions [8], loop/star functions [9],
[10], [11], [12], loop/tree functions [13], Trintinalia–Ling
functions [14], Buffa–Christiansen functions [15], higher order
vector basis functions of Nédélec type [16], etc.

On the other hand, examples of entire-domain basis
functions include the tangential vector spherical wave func-
tions [17], [18] and the tangential vector spheroidal wave
functions [19]. Specifically, the former functions have been
exploited to carry out a systematic analysis of integral opera-
tors of potential theory [17] and to investigate stability and
preconditioning of multiple traces formulations for electro-
magnetics [18].

Analytical entire-domain bases may be generated in coor-
dinate systems where the Helmholtz equation is separable.
A different strategy to generate entire domain basis func-
tions even in irregular domains is to introduce a convenient
auxiliary eigenvalue problem. This is done for instance with
characteristic modes [20], [21], [22], [23], (see [5], [6] for
arrays of perfectly conductive particles and [24] for perfectly
conductive metasurfaces). The characteristic modes do not
depend on the particular excitation conditions, and they are
effective in the numerical solution of scattering problems from
collections of objects of a given material at a fixed operating
frequency. Nevertheless, characteristic modes do depend on
the frequency, and their interesting properties are lost if they
are used as basis at a frequency different from the one at which
they are computed. Thus, they may not be the best choice when
the scattering problem has to be solved at multiple frequencies
since they have to be recalculated at each frequency.

In this article, we introduce a different set of entire domain
basis functions that we call “static” surface current modes.
These modes are the union of two sets: longitudinal and
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transverse modes, exhibiting vanishing surface curl and sur-
face divergence, respectively. We assemble these two sets by
solving two auxiliary frequency-independent eigenvalue prob-
lems, involving Hermitian and positive-definite surface integral
operators, having the static Green’s function as a kernel.

The representation of the surface current in terms of
longitudinal (irrotational) and transverse (solenoidal) static
modes implements a Helmholtz decomposition on a surface
(e.g., [25]). In the context of electromagnetic problems, the
idea of splitting a field into its irrotational and solenoidal
components has been pioneered by Nédélec [26] and has
emerged as a very powerful tool for theoretical analysis of
integral formulations [17], [18], [27].

The static surface current modes are the low-frequency
limit of the resonance modes of surfaces of finite conduc-
tivity [28]. Their volume counterparts have been presented
in [29] and [30] and in [31] where they have been already
used to expand the electromagnetic field [32], [33], [34], [35].

The static modes can be also considered as “high level
expansion functions”, belonging to the same categories of
the functions introduced in [36], [37], [38], and [39], which
are typically used in the solution of integral equations in
electrically large structure to reduce the number of unknowns.
They are not bound to the conventional discretization limit
of λ/20, to which the local basis function discretization is
constrained. The proposed basis shares similarities with the
one introduced by Vecchi et al. [40], [41] and is used in a
hybrid spectral–spatial method for the analysis of printed
antennas.

We expand the unknown surface currents of the Poggio-
Miller–Chang–Harrington–Wu–Tsai (PMCHWT) equation in
terms of the static surface modes and solve it using the
Galerkin-projection scheme. The PMCHWT equation [21],
[42], [43], [44] is a surface integral formulation of Maxwell’s
equation, belonging to the class of single-trace methods [45].
We demonstrate the following advantages of employing the
static modes: 1) regularization of the scattering integral oper-
ator; 2) “compression” of the matrix equation, which is
associated with a significant reduction of the number of
unknowns compared to sub-domain basis functions while
maintaining solution accuracy; and 3) reduction of the
CPU-time required for the solution of multiple scattering
problems. The static mode basis can be also used in the context
of multiple-trace methods, which were recently proposed for
electromagnetic scattering from composite objects [18], [46],
[47], [48], [49], [50].

The article is organized as follows: in Section II we
introduce the static basis; in Section III we recall the
PMCHWT formulation and we show that the static mode
expansion regularizes the involved operator and that a
proper rescaling of the unknowns makes this formulation
immune from the low-frequency breakdown. In Section IV,
we validate the introduced method in two resonant scattering
problems, namely the scattering from a metal particle and
high-permittivity particle in the visible/near-infrared spectral
range. Lastly, we demonstrate the application of this method to
solve a multiple-scattering problem. In Section VI we draw the
conclusion.

II. STATIC SURFACE CURRENT MODES

We denote with � a bounded 3-D domain, whose boundary
∂� is “sufficiently regular” [51]; n̂ is the normal to ∂�

pointing outward. A sufficiently smooth vector field j defined
on a regular surface ∂� can be resolved into the sum of
two components [25], [26], [27], [52]: an irrotational and
nonsolenoidal vector field j∥ and a solenoidal and rotational
(nonzero curl) vector field j⊥. The vector fields j∥ and j⊥ are
orthogonal according to the scalar product

⟨C, D⟩ =

∫
∂�

C∗(r) · D(r)d S. (1)

In the following, we introduce a basis for each of the two
components.

A. Longitudinal Static Modes

The longitudinal static surface current modes (called longi-
tudinal static modes in the following for brevity) are nontrivial
solutions to the eigenvalue problem:

T ∥

0

{
j∥k
}
(r) = γ

∥

k j∥k, on ∂� (2)

where

T ∥

0{w}(r) = n̂ × n̂ × ∇

∮
∂�

g0
(
r − r′

)
∇

′

S · w
(
r′
)
d S′ (3)

∇S· denotes the surface divergence, and g0 is the homogeneous
space static Green’s function

g0
(
r − r′

)
=

1
4π

1
|r − r′|

. (4)

Apart from a multiplicative factor, the integral operator (3)
determines the tangential component of the static electric field
generated by a surface charge density distribution. Its spectrum
has the following properties (see [29]).

1) The eigenvalues {γ
∥

k } and the modes {j∥k} depend on the
shape of the object, but are independent of the object
material, and of the frequency of operation.

2) The eigenvalues are real and positive.
3) The modes are orthonormal with respect to the scalar

product (1).
For a spherical surface of unit radius, the eigenvalues have

the analytical expression

γ∥

n =
n(n + 1)

(2n + 1)
, n = 1, 2, 3, . . . (5)

In order to provide the expression of the corresponding
modes, we introduce a spherical reference system. The spheri-
cal coordinates of the point with position vector r are (r, θ, φ)

(with 0 ≤ r < ∞, 0 ≤ θ < π and 0 ≤ φ < 2π ). The basis for
the 3-D vector space is the set (r̂, θ̂ , φ̂), where r̂ is the radial
unit vector, θ̂ is the polar unit vector, and φ̂ is the azimuthal
unit vector. The 2n+1 modes corresponding to the degenerate
eigenvalue γ

∥

n are the vector spherical harmonics Wm
n (θ, φ)

[17], [18] where m is an integer such that −n ≤ m ≤ n

j∥mn = Wm
n = r̂ × Xm

n =
1

√
n(n + 1)

∇Y m
n . (6)
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The spherical harmonic Y m
n (θ, φ) of degree n and order m

is given by

Y m
n (θ, φ) = Cmn P |m|

n (cos θ)eimφ (7)

where Pm
n (cos θ) is the associated Legendre polynomial of

degree n and order m, and Cmn is a normalization coefficient.
The spherical harmonics are orthogonal. We normalize them
in such a way that∫

∂�

∣∣Y m
n (θ, φ)

∣∣2 d S = 1. (8)

The normalization coefficient Cmn is equal to (e.g., [17])

Cmn =

√
2n + 1

4π

(n − |m|)!

(n + |m|)!
. (9)

The degree n also determines the multipolar order of the
vector spherical harmonics (e.g., n = 1 for a dipole, n =

2 for a quadrupole, etc.,). Thus, (5) shows that longitudinal
modes associated with larger eigenvalues γ

∥

n are characterized
by higher multipolar order.

B. Transverse Static Modes

The transverse static surface current modes (called trans-
verse static modes in the following for brevity) are nontrivial
solutions to the eigenvalue problem:

T ⊥

0

{
j⊥k
}
(r) = γ⊥

k j⊥k , on ∂� (10)

with

T ⊥

0 {w}(r) = −n̂ × n̂ ×

∮
∂�

g0
(
r − r′

)
w
(
r′
)
d S′. (11)

Apart from a multiplicative factor, the integral operator (11)
determines the static vector potential generated by a surface
current distribution. Its spectrum has the following properties,
that can be derived using the standard methods of eigenvalue
problems, analogously to [31] and [53].

1) The eigenvalues {γ⊥

k } and the modes {j⊥k } depend on the
shape of the object, but are independent of the object
material and of the frequency of operation.

2) The eigenvalues are real and positive.
3) The modes {j⊥k } are orthonormal with respect to the

scalar product (1).
For a spherical surface of unit radius, the eigenvalues have

the analytical expression

γ⊥

n =
1

(2n + 1)
, n = 1, 2, 3, . . . (12)

The 2n + 1 modes corresponding to the degenerate eigen-
value γ⊥

n are the vector spherical harmonics Xm
n (θ, φ) [17],

[18] where m is an integer such that −n ≤ m ≤ n

j⊥mn = Xm
n =

1
√

n(n + 1)
∇Y m

n × r. (13)

The degree n also determines the multipolar order of the
vector spherical harmonics (e.g., n = 1 for a dipole, n = 2 for
a quadrupole, and so on). Thus, (12) shows that transverse
modes associated with smaller eigenvalues γ⊥

n are character-
ized by higher multipolar order.

C. Computation of the Static Modes for Arbitrary Shapes

Let us introduce a surface triangulation of ∂�, with Np

vertices, Nt elements, and Ne edges. We represent the static
modes in terms of convenient sub-domain basis functions,
namely the loop and star functions [12], [54]. Specifically, any
longitudinal mode j∥h is expanded in terms of (nonsolenoidal)
star basis functions {j⋆p} with coefficients α

∥

h,p. Dually, any
transverse mode j⊥h is expanded in terms of (solenoidal) loop
basis functions {j⟲q } with coefficients α⊥

h,q

j∥h =

Nt −1∑
p=1

α
∥

h,p j⋆p, j⊥h =

Np−1∑
q=1

α⊥

h,q j⟲q . (14)

The loop functions are divergence-free, thus they cor-
rectly represent the transverse static modes. Instead, the
star functions are not curl-free (they are often denoted as
quasi-curl [55]), thus they only approximately represent the
longitudinal static modes. Both star and loop functions admit
a linear representation in terms of Rao–Wilton–Glisson basis
functions [8].

For closed surfaces with no handles, the number of linearly
independent loop functions is Np − 1, while the number of
linearly independent star functions is Nt − 1 (see [55] for a
discussion on the linear independence of loop and star basis
functions). Thus, the numerical auxiliary eigenvalue problem
for longitudinal static modes [associated with problem (2)] is

T∥⋆⋆

0 J⋆
h = γ

∥

h R⋆⋆ J⋆
h (15)

where (T∥ ⋆⋆

0 )pq = ⟨ j⋆p, T
∥

0 j⋆q⟩, (R⋆⋆)pq = ⟨ j⋆p, j⋆q⟩, and J⋆
h =

[α
∥

h,1, α
∥

h,2, . . . , α
∥

h,Nt −1]
⊺. The numerical auxiliary eigenvalue

problem for transverse static modes [associated with problem
(10)] is

T⊥ ⟲⟲ J⟲
h = γ⊥

h R⟲⟲J⟲ (16)

where (T⊥ ⟲⟲)pq = ⟨ j⟲p , T ⊥

0 j⟲q ⟩, (R⟲⟲)pq = ⟨ j⟲p , j⟲q ⟩,
and J⟲

h = [α⊥

h,1, α
⊥

h,2, . . . , α
⊥

h,Np−1]
⊺.

Since the loop and star functions are not orthogonal [55],
the matrices R⋆⋆ and R⟲⟲ are not identity matrices, thus (15)
and (16) are generalized eigenvalue problems. The involved
matrices are real, symmetric, and positive definite. Thus,
efficient numerical algorithms for the eigenvalue calculation
do apply, such as the Cholesky factorization [56]. Moreover,
the matrices properties also determine the orthogonality, at the
discrete level, of any pair of longitudinal modes, and any
pair of transverse modes. The numerical integration of shape
functions times the Green’s functions or its gradient are
evaluated using the techniques introduced by Graglia [57].

III. PMCHWT SURFACE INTEGRAL EQUATION

A linear, homogeneous, isotropic material occupies the
3-D domain �. The material has permittivity ε+(ω), per-
meability µ+(ω) and it is surrounded by a background
medium with permittivity ε−(ω) and permeability µ−(ω).
The object is illuminated by a time harmonic electromag-
netic field Re

{
Einc(r) eiωt

}
. The equivalent electric je and

magnetic jm surface current densities, defined on ∂�, are
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solutions of the following surface integral problem formulated
by PMCHWT [21], [42], [43]:

Z J = F (17)

where

Z =

(
ζ−T − + ζ+T + K− + K+

−(K− + K+) T −/ζ−
+ T +/ζ+

)
(18)

J =
[
je, jm

]⊺
, F = [e0, h0]⊺, (19)

e0 = −n̂ × n̂ × Einc
∣∣
∂�

, h0 = −n̂ × n̂ × Hinc
∣∣
∂�

. (20)

The operators K± and T ± are the MFIE and EFIE integral
operators

T ±{w}(r) = jk±n̂ × n̂ ×

∫
∂�

g±
(
r − r′

)
w
(
r′
)
d S′

+
1

jk±
n̂ × n̂ ×

∫
∂�

∇g±
(
r − r′

)
∇

′

S · w
(
r′
)
d S′

(21a)

K±{w}(r) = n̂ × n̂ ×

∫
∂�

w
(
r′
)
× ∇

′g±
(
r − r′

)
d S′ (21b)

g± is the homogeneous space Green’s function of the region
�±, i.e.,

g±
(
r − r′

)
=

e− jk±|r−r′|

4π |r − r′|
(22)

k±
= ω

√
µ±ε±, and ζ±

=
√

µ±/ε±.

A. Galerkin Equations

We aim to solve the PMCHWT (17). To do this, we rep-
resent the equivalent electric and magnetic surface currents in
terms of the transverse static modes {j⊥p }p=1,...,N⊥ associated
with the first N⊥ eigenvalues γ⊥

p (sorted in descending order),
and in terms of the longitudinal static modes {j∥q}q=1,...,N ∥

associated with the first N ∥ eigenvalues γ
∥

q (sorted in ascending
order), namely

je(r) ≈

N⊥∑
p=1

α⊥

p j⊥p (r) +

N ∥∑
q=1

α∥

q j∥q(r)

jm(r) ≈

N⊥∑
p=1

β⊥

p j⊥p (r) +

N ∥∑
q=1

β∥

q j∥q(r).

(23)

The choice of sorting the longitudinal eigenvalues accord-
ingly to an ascending order and the transverse eigenvalues
accordingly to a descending order guarantees that low-index
eigenvalues are associated with modes of low-order multipoles
(dipole, quadrupole, octupole, and so on).

Therefore, we define the unknown block vectors

Je =
(
α⊥

|α∥
)T

Jm =
(
β⊥

|β∥
)T

(24)

with αa
= [αa

1 , αa
2 , . . . , αa

Na ]
⊺ and with βa

=

[βa
1 , βa

2 , . . . , βa
Na ]

⊺ and a =∥, ⊥

We find the finite-dimensional approximation of the
PMCHWT problem by substituting (23) in (17) and by pro-
jecting along the same set of modes, accordingly to a Galerkin
projection scheme

Z J =

(
E0
H0

)
(25)

where

J =

(
Je

Jm

)
(26)

Z =

(
ζ−T− + ζ+T+ K− + K+

−(K− + K+) T−/ζ−
+ T+/ζ+

)
(27)

T± =

(
T⊥,⊥

± T⊥,∥
±

T∥,⊥
± T∥,∥

±

)
, K± =

(
K⊥,⊥

± K⊥,∥
±

K∥,⊥
± K∥,∥

±

)
(28)(

Ka b
±

)
pq =

〈
ja

p

∣∣K±

∣∣ jb
q

〉
,

(
Ta b

±

)
pq =

〈
ja

p

∣∣T ±

∣∣ jb
q

〉
(29)

E0 =

(
E⊥

0

∣∣E∥

0

)T
, H0 =

(
H⊥

0

∣∣H∥

0

)T
(30)

and (
Ea

0

)
p =

〈
ja

p, e0
〉 (

Ha
0

)
p =

〈
ja

p, h0
〉

(31)

with a, b =∥, ⊥. The finite-dimensional system has 2(N ∥
+

N⊥) degrees of freedom.
We now decompose the Green’s function as the sum of

the static Green’s function g0, defined in (4), and a regular
difference term gd±

g±

(
r − r′

)
= g0

(
r − r′

)
+ gd±

(
r − r′

)
(32)

where

gd±

(
r − r′

)
=

e− j k±

2 |r−r′|

4π j
k±sinc

{
k±

2

∣∣r − r′
∣∣}. (33)

In the past, the splitting of the Green’s function into its static
component and a difference term has been used to introduce
well-conditioned and accurate scheme for the low-frequency
analysis of PEC targets with the MFIE [58]. By applying this
decomposition to the operators T ± and K±, defined in (21a)
and (21b), we obtain

T ± = +
1

jk±
T ∥

0− jk±T ⊥

0 + T d±

K± = K0 + Kd± (34)

where T ∥

0 and T ⊥

0 are the static operators defined in (3) and
(11), and

T d±{w}(r) = jk± n̂ × n̂ ×

∫
∂�

gd±

(
r − r′

)
w
(
r′
)
d S′

+
1

jk±
n̂ × n̂ ×

∫
∂�

∇gd±

(
r − r′

)
∇

′

S · w
(
r′
)
d S′

(35)

K0{w}(r) = n̂ × n̂ ×

∫
∂�

w
(
r′
)
× ∇

′g0
(
r − r′

)
d S′ (36)

Kd±{w}(r) = n̂ × n̂ ×

∫
∂�

w
(
r′
)
× ∇

′gd±

(
r − r′

)
d S′. (37)

The above decomposition considerably simplifies the calcu-
lation of the finite dimensional operators Ta b

±
with a, b =∥, ⊥,

which are obtained by projecting the operator T ± along the
longitudinal and transverse static modes because {j∥k} and {j⊥k }
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diagonalize the static operators T ⊥

0 and T ∥

0(
T∥ ∥

±

)
pq

=
〈
j∥p, T ± j∥q

〉
=

γ
∥

p

jk±
δp,q− jk±

〈
j∥p, T ⊥

0 j∥q
〉
+
〈
j∥p, T d±j∥q

〉
(38a)(

T⊥ ∥

±

)
pq

=
〈
j⊥p , T ± j∥q

〉
≈
〈
j⊥p , T d±j∥q

〉
(38b)(

T∥ ⊥

±

)
pq

=
〈
j∥p, T ± j⊥q

〉
≈
〈
j∥p, T d± j⊥q

〉
(38c)(

T⊥ ⊥

±

)
pq =

〈
j⊥p , T ± j⊥q

〉
= − jk±γ⊥

p δp,q +
〈
j⊥p , T d± j⊥q

〉
(38d)

where δp,q is the Kronecker delta, and we have exploited
the fact that ⟨ j∥p, T ∥

0 j⊥q ⟩ = ⟨ j⊥p , T ∥

0 j∥q⟩ = 0, ⟨ j⊥p , T ∥

0 j⊥q ⟩ =

0, ⟨ j∥p, T ∥

0 j∥q⟩ = γ
∥

pδp,q , ⟨ j⊥p , T ⊥

0 j⊥q ⟩ = γ⊥
p δp,q and

⟨ j∥p, T ⊥

0 j⊥q ⟩ ≈ ⟨ j⊥p , T ⊥

0 j∥q⟩ ≈ 0 . The numerical computation
of the terms ⟨ ja

p, T d± jb
q⟩, with a, b =∥, ⊥ is straightforward

since their kernels are regular functions. These terms are
the only ones depending on the operating frequency. The
decomposition of Green’s function into the sum of a static term
and of a regular difference term relieves us from the task of
computing almost all the integrals with (integrable) singularity,
which usually results in longer computational time compared
to their regular counterpart. There are however two exceptions:
⟨ j∥p, T ⊥

0 j∥q⟩ and ⟨ ja
p, K⊥

0 jb
q⟩, with a, b =⊥, ∥. These terms

are frequency-independent, thus when the calculation of the
scattering response of an object for multiple frequencies of
the exciting field is required, they can be conveniently precal-
culated and stored away, while only the regular terms must be
calculated at any frequencies.

B. Low-Frequency Analysis

Surface integral formulations may suffer from
ill-conditioning due to low-frequency breakdown. The
low-frequency breakdown phenomenon manifests when the
operating wavelength is much larger than the dimension
of the object [59], and originates from the different
frequency-scaling of the terms associated with the vector and
the scalar potentials. This is a common scenario that may be
encountered in several applications, including metamaterials
and electromagnetic bandgap (EBG) structures, or in the
analysis of interconnects and packaging. This problem has
been addressed by using quasi-Helmholtz decompositions,
such as loop/star [54], [55], [59], loop-tree [13], [60],
tree-cotree [10], or null-pinv [61] decompositions, followed
by a basis rearrangement [62], [63]. It is also worth pointing
out that some formulations are immune from this problem,
such as the N-Müller formulation [64], or the formulation
obtained by augmenting the traditional EFIE by including
charge as extra unknown [65], [66].

In this section, we summarize the behavior of the PMCHWT
at very low frequencies. In this limit, the frequency depen-
dence of the elements of the matrix Z follows different scaling

laws, which are easily determined by following [63], [67]:(
T⊥ ⊥

±
T∥ ⊥

±

T⊥ ∥

± T∥ ∥

±

)
ω↓0
−−→

(
− jk±0⊥ j

(
k±
)3T∥⊥

2

j
(
k±
)3T∥⊥

2 +0∥/ jk±

)
(39)

(
K⊥⊥

±
K⊥∥

±

K∥⊥

± K∥∥

±

)
ω↓0
−−→

( (
k±
)2K⊥⊥

2 K∥⊥

0
K⊥∥

0 K∥∥

0

)
(40)

where 0⊥ and 0∥ are diagonal matrices, 0⊥
=

diag{γ⊥

1 , γ⊥

2 , . . . , γ⊥

N⊥}, 0∥
= diag{γ

∥

1 , γ
∥

2 , . . . , γ
∥

N ∥}, and

T ∥⊥

2 =
1

8π

∫
∂�

j∥p(r) ·

∫
∂�

∣∣r − r′
∣∣ j⊥q

(
r′
)
d Sd S′ (41)

K ⊥⊥

2 = −
1

8π

∫
∂�

j⊥p (r) ·

∫
∂�

(
r − r′

)
|r − r′|

× j⊥q
(
r′
)
d Sd S′. (42)

Thus, by using (39) and (40) it easy to prove that, in the
static limit, the discrete matrix Z approaches the matrix
Z0 which exhibits the following frequency dependence:

Z0 =


O(ω) O

(
ω3
)

O
(
ω2
)

O(1)

O
(
ω3
)

O
(
ω−1

)
O(1) O(1)

O
(
ω2
)

O(1) O(ω) O
(
ω3
)

O(1) O(1) O
(
ω3
)

O
(
ω−1

)
. (43)

The excitation vector associated with a plane wave exhibits
the following dependencies [63]:[

E⊥

0 , E∥

0, H⊥

0 , H ∥

0

]⊺
= [O(ω),O(1),O(ω),O(1)]⊺. (44)

Following [63], we introduce the rearrangement and scaling
of the basis

Z̃ = D1 Z D2 (45)

where D1 = diag{k−1
− IN⊥ , IN ∥ , k−1

− IN⊥ , IN ∥}, D2 =

diag{IN⊥ , i k−IN ∥ , IN⊥ , i k−IN ∥}, IN⊥ is the N⊥
× N⊥ identity

matrix, and IN ∥ is the N ∥
× N ∥ identity matrix. After the

above rearrangement the matrix Z̃ is well-behaved.

IV. RESULTS AND DISCUSSION

A. Sphere

We first consider the scattering from a sphere. This problem
has an analytical solution [68], [69]. Fig. 1 shows the conver-
gence of the numerical eigenvalues {γ

∥

k } and {γ⊥

k } toward their
analytical counterpart, given by (5) and (12), as a function of
the triangular mesh density. From this point forward, we will
consider the static basis calculated using a triangular mesh
with Np = 1000 nodes and Nt = 1996 triangles. The first
eight longitudinal modes are shown in Fig. 2, the first eight
transverse modes are shown in Fig. 3.

In the discrete problem, the orthogonality between any pair
of longitudinal modes and between any pair of transverse
modes is always guaranteed, because the matrices T⟲⟲ and T⋆⋆

are real and symmetric. This property is indeed verified at the
numerical level with machine precision. Although we expect
the mutual product between a transverse and a longitudinal
static mode to be nearly zero, this is only approximately the
case because the sub-domain basis functions used to represent
the longitudinal modes, namely the “star” functions, are not
rigorously curl-free [55]. Thus, it is clarifying to calculate the
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Fig. 1. Reciprocals of the first 100 eigenvalues (a) γ
∥

k and (b) γ⊥

k associated
with the longitudinal and transverse static modes of the unit radius sphere.
The eigenvalues were computed for several densities of the triangular surface
mesh (filled circles of different colors) having Nt elements and Np nodes and
then compared to their respective analytical values.

“mutual” Gram matrix G, whose occurrences are defined as
ghk = ⟨ j⊥h , j∥k⟩. The maximum occurrence of the mutual Gram
matrix is 0.024 for a sphere with the considered surface mesh,
assuming ∥j∥h∥ = ∥j⊥h ∥ = 1, ∀h.

1) Gold Sphere: We initiate our discussion with the scat-
tering problem from a gold sphere of radius R = 100 nm
operating within the visible and near-infrared spectral range.
We describe the gold permittivity by interpolating experimen-
tal data [70]. At these frequencies, a metal nano-object may
undergo plasmonic resonances, which have an electrostatic
origin [29]. The sphere is excited by a linearly polarized plane
wave of wavelength λ.

The scattering efficiency, defined as the scattering cross
section normalized by the geometrical cross section G (which
is G = π R2 [69] in this case) is plotted in Fig. 4 as a
function of λ. We compare the results of different solutions
that were obtained by incrementally increasing the number
of modes employed in the expansion (23) while keeping
N ∥

= N⊥. The reference Mie solution [69] is included for
reference. For N ∥

= N⊥
= 5, the numerical solution is in

good agreement with the reference solution only in the long-
wavelength regime, while it slightly deviates as λ approaches
R. Increasing the number of modes to N ∥

= N⊥
= 10 delivers

good agreement over the entire investigated spectrum. In this
latter case, the inversion of a 40 × 40 matrix is required at
each frequency.

In Fig. 5, we show the condition number of the PMCHWT
problem with and without the rearrangement of the basis

described in Section III-B as a function of the sphere radius
R, at λ = 620 nm. It is apparent that, without the basis
rearrangement, the condition number exponentially increases,
which is symptomatic of the low-frequency breakdown prob-
lem. By rearranging the basis, the condition number is constant
over the whole investigated range of radii R.

We now present a more comprehensive error analysis.
In particular, we define the relative error in the scattering
efficiency as

ϵ[σsca] =
∣∣σsca − σ̃ sca

∣∣ / σ̃ sca (46)

where σ̃ sca is the reference solution obtained by solving the
PMCHWT problem applying the boundary element method
with N⟲

= 999 loop functions and N ⋆
= 1995 star functions,

associated with the same mesh used for the calculation of
static modes. In Fig. 6(a), we plot ϵ[σsca] as a function of
the wavelength λ, where the number of static modes is varied
keeping N ∥

= N⊥. We note that for N ∥
= N⊥

≥ 10 the
achieved error is lower than 0.02 all over the investigated
spectral range. The error only slowly decreases if the number
of modes N ∥

= N⊥ is increased from 15 to 25.
We proceed to investigate the error in the evaluation of the

equivalent surface currents, which are directly related to the
total electric field on the object’s surface. The relative error is
defined as

ϵ[J] =
∥∥J − J̃

∥∥
2/
∥∥J̃
∥∥

2 (47)

where J̃ is the reference loop/star solution and ∥ · ∥2 is the
Euclidean norm. In Fig. 6(b), we show ϵ[J] as a function of
λ. It’s evident that achieving a prescribed error necessitates
more static basis functions than Fig. 6(a).

In a subsequent test, we assess the convergence of the
static modes solution with a near-field excitation source.
Here, an electric point dipole excites a gold sphere of radius
R = 100 nm. The dipole is placed 30 nm away from the
sphere’s surface and oriented as shown in the inset of Fig. 7.
We evaluate the total scattered power Wsca using an increasing
number of longitudinal/transverse static modes (N ∥

= N⊥
=

5, 10, 15) and compared it with the reference Mie solution.
As soon as N ∥

= N⊥
= 15, the two solutions become

indistinguishable.
In Fig. 8, we investigate the two relative errors ϵ[Wsca] and

ϵ[j], with the loop/star solution as a reference. Fig. 8(a) shows
that the total scattered power evaluated using the static modes
rapidly converges toward the loop/star solution. However,
the convergence of the surface currents, shown in Fig. 8(b),
is considerably slower due to the rapid spatial variations of
the surface current near the exciting dipole. These variations
necessitate higher-order static modes for accurate description.

2) High-Permittivity Sphere: We now consider a high per-
mittivity sphere, assumed to be nondispersive in time with
relative permittivity εR = 16. Sub-wavelength objects of suf-
ficiently high permittivity may support scattering resonances,
which have a magnetostatic origin [31], [34].

In Fig. 9, we calculate the scattering efficiency σsca as a
function of the wavelength λ of the exciting, linearly polarized,
plane wave. We consider different solutions computed using an
increasing number of static modes, maintaining N ∥

= N⊥. The
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Fig. 2. Longitudinal static modes of a sphere, displayed in ascending order according to their static eigenvalue. The first eight modes are presented: the
initial three correspond to n = 1 (electric dipole) and the subsequent five to n = 2 (electric quadrupole). The arrows indicate the direction of the surface
current density field, while the varying colors denote the surface charge density.

Fig. 3. Transverse static modes of a sphere, displayed in ascending order according to their static eigenvalue. The first eight modes are presented: the initial
three correspond to n = 1 (magnetic dipole) and the subsequent five to n = 2 (magnetic quadrupole). The arrows indicate the direction of the surface current
density field, the colors denote the magnitude of the current density field.

Fig. 4. Scattering efficiency σsca of a gold sphere with radius R = 100 nm
under the excitation of a linearly polarized plane wave at wavelength λ. σsca is
calculated using the PMCHWT with an incrementing number of longitudinal
and transverse static modes (N ∥

= N⊥
= 5, 10, 15). The reference Mie

solution is also provided for comparison, and is shown by the black dashed
line.

Fig. 5. Comparison of the condition number with and without basis
rearrangement and scaling, as a function of the size parameter 2π R/λ, under
the assumption of N ∥

= N⊥
= 15. The study involves a gold sphere of

varying radius R, excited by a linearly polarized plane wave at wavelength
λ = 620 nm.

analytic Mie solution [68], [69], shown with a black dashed
line, serves as our reference.

While the solution displays a good match with the Mie
solution at lower frequencies when N ∥

= N⊥
= 5, the

accuracy of the solution deteriorates at higher frequencies
and fails to describe some peaks of the scattering response.
However, elevating the number of modes utilized to N ∥

=

Fig. 6. Error made in the evaluation of (a) scattering efficiency ϵ[σsca]

and (b) equivalent surface currents ϵ[j] of a gold sphere R = 100 nm
by using N ∥

= N⊥
= 5, 10, 15, 25 static modes corresponding to

20, 40, 60, 100 degrees of freedom. The reference solutions use the loop/star
method with 999 loop and 1996 star functions, totaling 5998 degrees of
freedom. In both cases, a PMCHWT formulation is used. The sphere is excited
by a linearly polarized plane wave as a function of the wavelength λ.

N⊥
= 15 leads to a remarkable agreement throughout the

entire examined spectrum.
We now quantify the errors in the scattering efficiency and

in the surface currents of the static mode solution. Fig. 10(a)
presents ϵ[σsca] as a function of λ, employing an increasing
number of modes, ensuring N⊥

= N ∥. With N⊥
= N ∥

= 5,
the error remains within an acceptable range provided λ
significantly exceeds the object’s dimensions. However, the
error sharply rises for wavelengths below 600 nm. Adopting
N⊥

= N ∥
= 25 results in a low error all over the investigated

spectrum. The error only slightly exceeds 0.01 at the reso-
nances. A further increase in the number of basis functions
improves the convergence, particularly in the vicinity of the
resonance peaks. In Fig. 10(b), we show ϵ[J] as a function of
λ. Compared to panel (a), the relative error is higher. To verify
the convergence of the static mode expansion, we also tested
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Fig. 7. Plot of the power Wsca scattered by a gold sphere with radius
R = 100 nm, which is excited by an electric point dipole. The dipole is
located at a distance of 30 nm from the surface of the particle, and oriented
as shown in the inset. Wsca is evaluated as a function of the wavelength
λ using the PMCHWT with an increasing number of longitudinal/transverse
static modes (N ∥

= N⊥
= 5, 10, 15). For comparison, The reference Mie

solution is also shown with a black dashed line.

Fig. 8. Error made in the evaluation of (a) scattered power Wsca and
(b) equivalent surface currents ϵ[j] of a gold sphere R = 100 nm by solving
the PMCHWT using N ∥

= N⊥
= 5, 10, 30, 50, 100 static modes. The

reference values were obtained by solving the PMCHWT using 999 loop and
1996 star functions. The sphere is excited by a dipole, located at a distance
of 30 nm from the surface of the particle and oriented as shown in the inset
of Fig. 7.

with N⊥
= N ∥

= 500, leading to numerical errors less than
0.009 for the σsca and less than 0.03 for j across the entire
investigated spectral range.

B. Rod

We now consider a noncanonical shape, namely a 3-D rod.
We model this shape as a superellipsoid, whose boundary has
the implicit equation (x/a)r

+ (y/b)r
+ (z/a)r

= 1, with b =

0.5a, c = 0.25a, and r = 6. We used the public domain
code developed by Per-Olof Persson and Gilbert Strang [71] to
generate a surface mesh with 1000 nodes and 1996 triangular
elements. The first eight longitudinal and eight transverse static
modes are shown in Figs. 11 and 12, respectively.

Fig. 9. Scattering efficiency σsca of a dielectric sphere with R = 100 nm
and εR = 16, excited by a linearly polarized plane wave at wavelength λ.
The evaluation is performed using the PMCHWT with an increasing number
of longitudinal and transverse static modes (N ∥

= N⊥
= 5, 15, 25). The

reference Mie solution is also shown for comparison (black dashed line).

Fig. 10. Error made in the evaluation of (a) scattering efficiency σsca and
(b) equivalent surface currents j of a dielectric sphere with εR = 16 and
R = 100 nm. The evaluation is performed using the PMCHWT equation
with the static mode basis assuming N ∥

= N⊥
= 5, 25, 55, 500. The

reference values are obtained by solving the PMCHWT and using the loop/star
expansion. The sphere is excited by a linearly polarized plane wave as a
function of the wavelength λ.

1) Gold Rod: First, we investigate a gold [70] rod with
a = 100 nm, excited by a plane wave linearly polarized along
the direction (x̂ + ŷ)/

√
2 and propagating along the ẑ axis.

In Fig. 13, we plot the spectrum of the scattering efficiency
σsca , obtained by increasing the number of modes N⊥

=

N ∥
= 5, 10, 15. We take as reference the loop/star solution,

with 5984 total degrees of freedom. Only five longitudinal and
transverse modes (20 total degrees of freedom) are sufficient
to achieve a sufficiently good agreement with the reference
solution over the whole investigated spectrum, demonstrating
a drastic reduction of the total number of unknowns.

In Fig. 14, we carry out a more systematic analysis of
the error on the scattering cross section ϵ[σsca] (a), and on
the equivalent surface currents ϵ[j] (b). In comparison to the
sphere case, these errors appear to be slightly higher. How-
ever, similar to our previous numerical experiments, we can
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Fig. 11. First eight longitudinal static modes of a rod with semi-axis 1:0.5:0.25. Modes are presented in ascending lexicographic order, sorted according to
their respective static eigenvalues. The arrows represent the direction of the surface current density field, the colors represent the surface charge density.

Fig. 12. First eight transverse static modes of a rod with semi-axis 1:0.5:0.25. Modes are presented in ascending lexicographic order, sorted according to
their respective static eigenvalues. The arrows represent the direction of the surface current density field, the colors represent the magnitude of the current
density field.

Fig. 13. Scattering efficiency σsca of a gold rod with semi-axis a = 100 nm,
b = 0.5a, and c = 0.25a evaluated with an increasing number of longitudinal
and transverse static modes N ∥

= N⊥
= 5, 15, 25, 35, 55. The rod is excited

by a linearly polarized plane wave. The reference loop/star solution (black
dashed line) is also shown for comparison.

conclude that: 1) the errors associated with the surface currents
are an order of magnitude higher than the errors related to
scattering efficiency and 2) the rate of convergence is not
uniform as a function of the number of employed modes and
it slows down as N ∥

= N⊥ increases.
2) High-Permittivity Rod: Next, we examine a high-

permittivity rod, assuming a constant relative permittivity over
the investigated frequency spectrum, with a value of εR =

16. The scattering efficiency spectrum (σsca) is presented in
Fig. 15, where it’s calculated using an increasing number of
static modes. We use as reference the loop/star solution, with
a total of 5984 degrees of freedom. If the wavelength is much
larger than the dimension of the rod, N⊥

= N ∥
= 15 suffices

to accurately describe the scattering cross section. However,
the precision deteriorates when the wavelength is comparable
to the rod’s linear dimensions, especially near high-frequency
resonance peaks. Only by increasing the number of modes
N⊥

= N ∥ to 55, all the resonance peaks, including the high-
frequency ones, are correctly described.

Fig. 16 offers a more quantitative analysis of the errors (a)
ϵ[σsca] and (b) ϵ[j]. We observe that, for larger wavelength an
error below ϵ[σsca] < 0.01 and ϵ[j] < 0.2, can be achieved
with N⊥

= N ∥
= 25 modes. However, when the wavelength

becomes comparable to the rod’s largest dimension, as many
as 55 longitudinal and transverse static modes are necessary to
contain the error. Even then, the precision deteriorates near the
resonance peaks. To verify the convergence of the static mode

Fig. 14. Error ϵ in the evaluation of (a) scattering efficiency σsca and
of (b) equivalent surface current density of a gold rod with semi-axis
a = 100 nm, b = 0.5a, and c = 0.25a by solving the PMCHWT using
the static mode basis with N ∥

= N⊥
= 5, 15, 20, 25. Reference values are

derived from the PMCHWT solution using loop/star expansion.

Fig. 15. Scattering efficiency σsca of a dielectric rod with εR = 16 and
semi-axis a = 100 nm, b = 0.5a, and c = 0.25a. The evaluation is
performed for an increasing number of longitudinal and transverse static
modes N ∥

= N⊥
= 5, 15, 25, 35, 55. The rod is excited by a linearly

polarized plane wave. The reference loop/star solution (black dashed line)
is also shown for comparison.

expansion, we also tested with N⊥
= N ∥

= 500. We obtained
errors less than 0.0015 for σsca and less than 0.0068 for j
across the entire investigated spectral range.
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Fig. 16. Error ϵ in the evaluation of (a) scattering efficiency σsca and of
(b) equivalent surface current density of a dielectric rod with εR = 16 with
semi-axis a = 100 nm, b = 0.5a, and c = 0.25a by solving the PMCHWT
using an increasing number of longitudinal and transverse static modes
N ∥

= N⊥
= 5, 25, 55, 500. The reference values are obtained by solving

the PMCHWT using the loop/star expansion.

To conclude, while a higher number of modes is needed to
accurately describe the unknown current densities compared
to previous scenarios, the required count remains significantly
lower than the number of loop/star functions needed to achieve
comparable accuracy.

C. Solution of Multiple Scattering Problems

The use of static mode basis may be particularly convenient
for numerically solving multiple scattering problems from
arrays of objects of the same shape but varying in size and
orientation. In this section, we examine finite-size periodic
arrays of n particles, composed of spheres and triangular
prisms. In both cases, the particles are placed at the nodes
of a

√
n ×

√
n square grid of pitch 250 nm. These arrays

are excited by a plane wave linearly polarized in the plane of
the array, and propagating in the direction orthogonal to the
array’s plane with a wavelength λ = 600 nm.

Table I displays the errors made in the evaluation of the scat-
tering efficiency and of the surface currents via the static mode
solution of electromagnetic scattering from several arrays of
spheres. We assume the loop/star solution as a reference. The
arrays consist of n = 1, 4, 9, 16, 25 spherical particles of
radius R = 100 nm, and are excited by a plane-wave linear
polarization along an array’s axis. The single sphere’s surface
mesh has 200 nodes and 396 triangles, which corresponds
to a maximum edge length of the mesh’s triangles ≈λ/17.
A loop/star description results in 1188 n unknowns. We instead
utilized N ∥

= 10 longitudinal and N⊥
= 10 transverse modes

to describe the electric and magnetic surface currents on each
nanoparticle, leading to 40 n unknowns. The errors achieved
consistently remain below 4% for both the scattering efficiency
and the currents.

Fig. 17. Magnitude of the electric field on the particles’ surface of a finite-size
13 × 13 periodic array of 169 gold spheres with radius R = 100 nm and
edge-edge distance 50 nm. The edge of the array is 3.2 µm. The array is
excited by a linearly polarized plane of wavelength λ = 600 nm, with unit
intensity. The solution has been computed by using the static mode expansion
with N ∥

= N⊥
= 10.

Fig. 18. Magnitude of the electric field on the particles’ surface of a finite-size
13 × 13 periodic array of 169 gold triangular prisms with base edge 170 nm,
basis height 153 nm, thickness 50 nm, and center-center distance 250 nm.
The edge of the array is 3.2 µm. The array is excited by a plane wave of
wavelength λ = 600 nm, linearly polarized in the arrays’ plane along the
basis height, with unit intensity. The solution has been computed by using
the static mode expansion with N ∥

= N⊥
= 10.

TABLE I
ERRORS IN THE SOLUTION OF THE SCATTERING PROBLEM BY A PERIODIC

ARRAY MADE BY n SPHERES

In Fig. 17, we show the magnitude of the electric field on
the particles’ surface of a 13 × 13 finite size array calculated
using the static mode expansion.

In addition, in Fig. 18, we show the magnitude of the
electric field on the particles’ surface of a 13 × 13 array
made of equilateral triangular prisms with a base edge of
170 nm, a height of 153 nm, and a thickness of 50 nm. The
plane wave exhibits linear polarization along the height of
the base of the triangles, with unit intensity. The individual
prism is characterized by a surface mesh with 182 nodes
and 360 triangles. We considered N ∥

= 10 longitudinal and
N⊥

= 10 transverse modes to describe the electric and
magnetic surface currents on each nanoparticle, achieving a
reduced count of 6760 unknowns.
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Fig. 19. (a) CPU-time (in seconds) of the different stages of the numerical
solution of the scattering problem from a gold sphere with R = 100 nm
excited by linearly polarized plane wave with λ = 620 nm as a function of
the number of modes N⊥

= N ∥, for a given mesh Np = 500, Nt = 996.
(b) Ratio between the total CPU-time for the computation of the PMCHWT
solution using the loop/star basis tloop/star and using the static mode basis
tmodes . This ratio is evaluated as a function of the number of static modes
N⊥

= N ∥ for different meshes with different number of nodes Np .

V. COMPUTATIONAL COSTS

The execution of our numerical algorithm consists of four
distinct stages: 1) the “assembly” stage, during which the
matrices T±, K± and of the vectors E0, H0 are constructed
in the loop/star basis; 2) the “static mode generation” stage,
where the longitudinal/transverse static modes of an isolated
object are computed by solving the eigenvalue problems
(15) and (16); 3) the “compression” stage, which involves
transforming matrices T±, K± from a loop/star representation
into a static modes representation; and 4) the “inversion” stage,
during which direct inversion of the compressed matrices is
performed using LU decomposition. In the following, we pro-
vide a time-analysis of the various phases of the numerical
algorithm for two test cases: an isolated sphere, and an array
of spheres. The FORTRAN code used for this analysis operates
on a single CPU (Intel Xeon-Gold 6140 M 2.3 GHz).

A. Isolated Sphere

Fig. 19(a) illustrates the CPU-time (in seconds) taken by
each stage of the numerical solution for the scattering problem
from the isolated gold sphere of Section IV-A1. This is mea-
sured against the number of longitudinal and transverse static
modes N ∥

= N⊥, for a predetermined mesh (Np = 500, Nt =

996). Within the examined range (N ∥
= N⊥

= 1, . . . , 100)
the time taken for the “inversion” and the “static mode
generation” stages remains always negligible if compared with
the “assembly” and “compression” stages. The compression
stage typically demands the most time, increasing linearly with
the number of transverse/longitudinal modes used.

Fig. 19(b) shows the ratio of CPU-time needed for the
PMCHWT solution using the loop/star basis (tloop/star) to

Fig. 20. (a) CPU-time (in seconds) of the different stages of the numerical
solution of the scattering problem from a gold sphere with R = 100 nm
excited by linearly polarized plane wave with λ = 620 nm, as a function of
the mesh density (number of number of nodes Np), for a prescribed number
of static modes N⊥

= N ∥
= 10. (b) Ratio between the total CPU-time for

the computation of the PMCHWT solution using the loop/star basis tloop/star
and using the static mode basis tmodes . This ratio is evaluated as a function
of the mesh density, for different number of static modes.

Fig. 21. CPU-time (in seconds) of the different stages of the numerical
solution of the scattering problem from a square array of n spheres (radius
100 nm, edge-edge distance 250 nm): assembly of the matrices using
the loop/star basis; generation of the longitudinal/transverse static modes;
compression, by passing from loop/star to static modes; direct inversion (LU);
total time. The code is implemented in FORTRAN, and run on a single CPU.

Fig. 22. Total execution CPU-time (in seconds) of the numerical solution
of the scattering problem from an array of n spheres by using loop/star basis
functions and by using the static modes basis. Both codes are implemented in
FORTRAN and run on a single CPU. The two fitting curves are shown with
a continuous line. The same sphere’s mesh (Np = 200, Nt = 396) is used
both for calculating the static modes and for the loop/star solution.

that needed for a solution using N⊥
= N ∥ static modes

(tmodes). This analysis was repeated across various mesh
densities, which are defined by the number of nodes Np.
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The same mesh was used to calculate both the static modes
and the loop/star solution.

Fig. 20(a) presents the CPU-time (in seconds) of the differ-
ent stages of the numerical solution of the scattering problem,
but this time as a function of the mesh density, i.e., the number
of nodes Np, with a prescribed number of modes N ∥

=

N⊥
= 10. Within the investigated range (Np ≤ 2100), the

time taken for the matrix inversion using LU decomposition
remains negligible compared to the time required for the
assembly of the matrices K± and T± and for their compression.
Both assembly and compression times are proportional to N 2

p.
Compression is still typically the most time-consuming stage,
although for very dense meshes, the time spent for static mode
calculation becomes comparable, as it is proportional to N 3

p.
Fig. 20(b) displays the ratio of tloop/star to tmodes as

a function of the mesh density. This analysis was repeated
for different numbers of modes. The same mesh was used
for calculating the static modes and the loop/star solution.
We found that the static mode solution is advantageous, i.e.,
tloop/star > tmodes, only for sufficiently dense meshes.

B. Particles’ Array

In Fig. 21, we show the CPU-time (in seconds) of the dif-
ferent stages of the PMCHWT solution of the electromagnetic
scattering problem a finite-size periodic array of spheres, as a
function of the number n of spheres (n = 1, 4, 9, 16, . . . , 169).
The geometry and mesh are identical to those detailed in
Section IV-C. We represent the electric and magnetic surface
currents on each nanoparticle using N ∥

= 10 longitudinal and
N⊥

= 10 transverse modes, thus 40 n unknowns.
In the investigated range (n ≤ 169), the total computational

time is always dominated by the compression time, which
scales as ∝ n2. The assembly time, which also scales as ∝ n2,
contributes significantly to the total execution time. The time
required for the computation of the static modes of the isolated
sphere, which are used as basis, is negligible and it does not
depend on the array’s size. The inversion time, which scales
as ∝ n3, is negligible compared with the compression time if,
as in our case, the dimensions of the arrays do not surpass
a given number of particles (nth). The value of nth can be
estimated by extrapolating the curves in Fig. 21, and it is
nth ≈ 80 000 particles.

Fig. 22 compares the total CPU-time required for the
PMCHWT solution using the static modes basis with the
corresponding time required for the loop/star solution, as a
function of n. The same sphere’s mesh (Np = 200, Nt = 396)
is used both for calculating the static modes and for the
loop/star solution. For n > 4, the static mode solution proves
more advantageous, with the speed-up further increasing as n
increases.

To deduce the scaling laws, we fit the total computational
time of the PMCHWT solution in terms of the static basis
using the curve t = 3n2, and in terms of the loop/star solution
using the curve t = 0.92n3. The ratio is 0.3 n. Consequently,
for a 5 × 5 array, the CPU-time required for the loop/star
solution is 7.5 times greater than the time required for the
static mode solution. For n = 169, we extrapolate that the

static mode solution is 50× faster. However, this could not
be empirically verified as the time estimated for the loop/star
solution computation was prohibitively long.

VI. CONCLUSION

In this article, we introduced a set of “static” surface
current modes and used them to expand the unknown surface
current densities in the surface integral equations governing the
electromagnetic scattering problem from penetrable objects.
We demonstrated the efficacy of the static mode expansion in
the PMCHWT formulation [21], [42], [43]. We found several
characteristics that make the use of static modes appealing.

1) The retarded Green’s function, constituting the kernel
of integral operators recurring in surface integral formu-
lations such as the PMCHWT, may be decomposed as
the sum of the static Green’s function (with integrable
singularity) and a proper difference (which is a regular
function). The resulting integral operators containing the
static Green’s function are diagonalized by the static
modes, regularizing the overall problem [72].

2) The use of the static mode expansion, when combined
with an appropriate rescaling and rearranging of the
unknowns, makes the PMCHWT formulation immune
from the low-frequency breakdown problem.

3) The static modes only depend on the shape of the
object, making them universally applicable across vary-
ing operating frequencies and material properties of the
object. This facilitates a unified, frequency-independent
description of any scattering scenario involving objects
of a given shape, outperforming other basis sets (like
characteristic modes) that depend on frequency and
materials.

As test cases, we considered the scattering from both metal
and high-permittivity dielectric objects. We found that for
objects of size smaller than the wavelength of operation,
only a few modes are sufficient to accurately describe the
emergent scattering response. The static mode expansion, thus,
significantly cuts down the unknowns compared to loop/star
or Rao-Wilton-Glisson function discretization, without com-
promising solution accuracy.

The most time-consuming stage of the PMCHWT numerical
solution using static modes and direct inversion is typically the
“compression” stage, which is the change of the basis used to
represent the impedance matrix from the loop/star set to the
static modes set. In the scattering problem from an isolated
particle, the use of the static modes set is convenient in terms
of total CPU-time, compared with the PMCHWT numerical
solution using loop/star set and direct inversion, only when
few static modes are needed to describe the surface currents.
In contrast, the advantages of static modes are more pro-
nounced in multiple scattering problems from particle arrays
of n objects with similar shapes but differing orientations and
sizes. Even for small arrays, the static modes solution is faster
than the loop/star solution with direct inversion, with this lead
increasing linearly with particle count n.

Notwithstanding, for scattering problems involving object
arrays, optimal CPU-time performance is usually achieved
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through fast factorization schemes, iterative solvers, and effec-
tive preconditioning [4]. Nevertheless, the compression of the
matrix equations by static modes can be advantageous in
several scenarios. For instance, when calculating the scattering
from a specified particle array under numerous excitation
conditions—a scenario where iterative solvers fall short, as the
iterations need to be started anew for each right-hand side [37].
In addition, since implementing fast factorization schemes may
be expensive in terms of human cost, static mode compression
allows baseline implementations of the method of moments
without fast factorization to address problems that would not
be possible otherwise.
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