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Fully Probe-Corrected Near-Field Far-Field
Transformations With Unknown Probe Antennas
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Abstract— According to the electromagnetic uniqueness theo-
rem, the radiation behavior of an antenna under test (AUT) can
be recovered from measurements of two tangential components
of its radiated fields on an enclosing surface. In practice,
measurements conducted in the radiating near-field (NF) of an
AUT utilize probe antennas of finite size. Thus, instead of discrete
field values, spatially blurred probe signals are acquired. The
probe influence can be compensated, and however, this commonly
requires precise knowledge about the probe antenna. In this
work, the concept of NF far-field transformations (NFFFTs) with
full correction of the influence of unknown probe antennas is
introduced. Two nonconvex and two convex formulations are
presented and their relation to the similar task of phase retrieval
is highlighted. Simulation and measurement results illustrate the
validity of the concept, shed light on the required complexity
of measurement setups, and illustrate the limitations of the
approach. Special attention is paid to the case of high practical
relevance when AUT and probe are identical.

Index Terms— Bilinear forms, inverse problem, near-field
(NF) far-field (FF), nonconvex optimization, nonlinear, probe
correction, unknown probe.

I. INTRODUCTION

THE characterization of unknown antennas under test
(AUTs) is commonly performed by sampling the radiated

fields with precisely known probe antennas. In the case of
near-field (NF) measurements, the fields caused by the radiator
are sampled on an enclosing surface and the far-field (FF) char-
acteristic is determined via an NF FF transformation (NFFFT).
Dependent on the uniformity of the illumination of the AUT
by the probe,1 the radiation behavior of the probe antenna
has more or less impact on the determination of the AUT
radiation pattern. Typically, spherical measurement setups,
where the probe is always facing the AUT under the same
angle, need the least “amount” of probe correction, whereas
accurate probe treatment is mandatory for planar or cylindrical
measurements. The theory of probe correction [1], [2], [3],
[4], [5], [6] in the context of antenna NF measurements [7]
is well understood and has led to efficient transformation
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1Due to reciprocity, illumination may be considered as a receiving or

transmitting behavior.

algorithms with full probe correction [8], [9], [10], [11], [12].
Considerable effort has been spent on comparing various probe
compensations [13], e.g., no correction, first, second, or higher
order [6], [14], [15] correction techniques. Further sources of
error, such as inaccurate probe knowledge [16], positioning
errors [17], the effect of cross-polarization [18], and the impact
of general error sources in NF measurements [19], [20], have
been investigated in depth.

There exists a manifold of special-purpose techniques, all
of which feature distinct limitations, for the derivation of FF
quantities of antennas from measurements in the NF with
partially unknown probe antennas. Aiming at gain measure-
ments, the two-antenna method [21], [22], originally defined
for measurements in the FF and working with two unknown
but identical antennas, has been developed and, later, extended
to NF measurements [23, pp. 93–98] [24], [25]. However, and
as pointed out in [5], it can neither be considered a rigorous,
complete, nor reliable approach. Most information along the
on-axis (main beam) direction of an antenna can be deter-
mined, where quadratic equations can only unambiguously
be solved once prior information on the polarization of the
AUT is given. Off-axis behavior in limited directions can
be obtained once the AUT features additional symmetries.
Still, experimental results for the on-axis gain determined
from NF measurements neglecting cross-polar components
have been reported in [26]. Similarly, the self-compensation
approach introduced in [27] can be applied to determine the
FF characteristic of an unknown AUT from NF measurements
with an identical copy of itself, but only in cases where
the AUT radiation behavior features symmetries. The three-
antenna method [22], [28], [29], [30], based on three unknown
antennas, can be employed to determine the absolute gain of
antennas, however, requiring FF conditions and knowledge on
polarization properties of the antennas. A generalization [31],
[32] [23, pp. 98–102] with less restrictive measurement dis-
tances based on an extrapolation technique [33], [34] and
requiring no a priori information on the polarizations has
also been derived. Furthermore, utilizing NF correction terms
valid for antennas with sinusoidal current distributions, the
three-antenna method has been extended to the NF [35], [36].
Among the existing methods, solely the one briefly introduced
by Hansen in [6, pp. 71–73], as an iterative scheme for probe
calibration, relies on field transformation algorithms. Utilizing
two sets of NF measurements, with the roles of AUT and probe
interchanged, the probe and the AUT behaviors are iteratively
and alternatingly determined, where convergence within a few
iterations is reported for sufficiently simple probe models.
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We present and investigate four approaches for the realiza-
tion of NFFFTs based on inverse-source models, which do
not require the knowledge of the electromagnetic properties
of the probe antenna, while they still fully compensate its
influence. Instead of only determining the AUT representation,
the transformations return the coefficients of AUT and probe
equivalent sources. The resulting problem has a quadratic form
and, among the existing approaches, it bears a slight similarity
to the abovementioned NF two-antenna method introduced by
Kerns [24]. Moreover, the iterative technique described by
Hansen [6, pp. 71–73] is further investigated. Also, with its
strong relation to the task of phaseless NFFFTs, the process
requires a larger number of highly diverse measurement sam-
ples and a more careful implementation than for a conventional
transformation with known probes. We start by reviewing the
principle of inverse-source-based field transformations and its
common mathematical representation with known probe anten-
nas. Afterward, the probe itself is assumed to be unknown,
which leads to a nonlinear problem statement. Solutions are
presented in the form of a nonconvex and optimization-based
method, a nonconvex approach that alternatingly determines
the AUT and the probe unknowns, a convex and optimization-
free approach emerging from the theory of bilinear forms,
and a convex formulation utilizing semidefinite programming
(SDP). The code for MATLAB [37] implementations of
the convex optimization-free and the alternating algorithm
is provided. Results obtained for complex-valued randomly
distributed data verify the correctness of the approaches, while
realistic simulation data of antenna NF measurements reveal
natural limitations of transformations with unknown probes in
general. Finally, results for a real-world measurement setup
are presented. It is noted that parts of this work have been
published in [38].

II. FIELD TRANSFORMATION ALGORITHMS

The principle of inverse-source-based NFFFTs is shown in
Fig. 1. The main task is to determine the radiation pattern
of an AUT from potentially truncated, irregularly arranged
NF measurements with a probe antenna. The probe signals
are collected in the measurement vector b ∈ Cm× 1 and,
in line with the uniqueness theorem [39], are expected to
contain sufficient information in order to describe the elec-
tromagnetic radiation by the AUT. Furthermore, according to
the equivalence principle [39], the AUT is represented by
equivalent sources, e.g., in the form of electric J and magnetic
M surface current densities, and these unknown coefficients
are collected in the vector zA ∈ CnA × 1. Similarly, we assume
that the probe antenna is modeled via the coefficients zP ∈

CnP × 1. The transformation itself can be considered a two-
step process. Once the coefficients of the AUT have been
determined from the NF samples, its radiation pattern within
a valid angular region can be evaluated via the corresponding
linear operator AFF.

In this work, we differentiate between two particular cases
of NF measurements and transformations. The most estab-
lished scenario is that of known probe coefficients, where
transformations with fully coherent [11], [40], [41], [42],

Fig. 1. Illustration of the NFFFT principle. The AUT NF is sampled by
the probe, or its equivalent representation (here only drawn at one location),
on the NF measurement surface. The AUT coefficients zA are determined
from the measurements b via an inverse process. The FF of the AUT can
then be evaluated via the operator AFF. In case the probe coefficients zP are
unknown, they have to be determined as part of the inverse problem.

[43] and incoherent [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58] measurements
exist. In particular, fully coherent measurements with a known
probe antenna lead to an NFFFT, which essentially requires
the solution of a linear system of equations. Nonlinearity is,
for example, introduced if either measurements with incom-
plete phase information or with unknown probe antennas
are performed—the latter is treated here. In case the probe
coefficients are unknown, they must be determined in the
course of the first part of the transformation—shown by the
blue arrow in Fig. 1—, when the inverse problem is solved.
It is crucial to realize that the loss of information with respect
to fully coherent measurements, e.g., due to incoherence or
unknown probe antennas, may render the uniqueness theorem
inapplicable since a one-to-one relation between the measured
fields and the probe signals is no longer a priori ensured.

Four approaches for the realization of NFFFTs with
unknown probe antennas and full coherence are presented and
discussed. For the purpose of clarification, the mathematical
description of transformations with known probe antennas is
reviewed first. The second part of the transformation, the
computation of the FF, does not depend on the exact procedure
of the first transformation step and, therefore, is not treated in
more detail.

A. Transformation With Known Probes
A transformation for antenna NF measurements with known

probe antennas leads to a linear system of equations

ANF zA = b, (1)

where the measurement matrix ANF ∈ Cm× nA incorporates
the known probe behavior. As a result, the unknown AUT
coefficients are linearly dependent on the complex-valued
measurement vector. The first part of the transformation,
as shown in Fig. 1, involves the solution of (1), which can
be implemented efficiently and solved with existing, highly
sophisticated NFFFTs, e.g., [40], [41]. When solving (1),
e.g., by means of an iterative solver like the generalized
minimal residual (GMRES) [59], least squares (LSQR) [60],
or quasi-minimal residual (QMR) [61] method, one is most
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often interested in minimizing the computational effort of the
matrix–vector product, e.g., by applying an efficient approach
such as the multilevel fast-multipole method [62], [63] or
adaptive cross approximation [64] and reducing the required
number of iterations via preconditioning [63], [65], [66], [67].

B. Transformation With Unknown Probes

If the probe coefficients zP are assumed to be unknown,
they must be determined in addition to the AUT coeffi-
cients zA. The procedure described here is motivated by the
assumption that the probe coefficients correspond to spatial
weights for field values generated by the AUT. However,
the notation remains valid for different probe representations,
e.g., in the spectral domain. For each measurement location
i ∈ {1, . . . , m}, a single row belonging to the forward operator
ANF with probe correction will be expanded as nP rows of an
operator Ai ∈ CnP × nA dependent on the probe basis functions.
The row of ANF is obtained as the sum of the nP rows
of Ai weighted with the probe coefficients. Mathematically,
we describe this via

zT
P Ai zA =

[
b
]

i ∀i ∈ {1, . . . , m} (2)

where the [.]i operator extracts the i th element of a vector.
Since the probe coefficients are identical at each measurement
location, i.e., a constant probe is assumed,2 (2) does only
vary in terms of the radiation operators Ai and the entries
in the measurement vector. In total, the linear system in (1)
has become a quadratic, thus a nonlinear system of equations
depending on (nP + nA) unknowns. Therefore, assuming a
nonredundant representation of the AUT and the probe, at least
m ≥ (nP + nA) measurements are expected to be required to
determine the correct probe and AUT coefficients. In particu-
lar, nonredundant sets of unknowns are advisable for nonlinear
problems, as they can both improve the convergence speed
of nonlinear solvers and reduce the occurrence of suboptimal
solutions. Interestingly, the problem of phaseless NFFFTs [44],
[45], [46], [47], [48], [49], [50], [52], [53], [54], [57], [68],
[69] can also be cast in the form of (2). In fact, the problem
in (2) can be considered a generalization and, thus, more
demanding version of the phase retrieval problem [70], [71],
[72], [73], [74]. Due to this particular structure, at least four
formulations can be employed to solve (2) and are presented
in the following, where the nonconvex alternating iteration has
already been introduced by Hansen [6, pp. 71–73].

Note that the introduced algorithms can be simplified to the
case of an identical AUT and probe. This scenario might be
of particular relevance in practice and, as is shown briefly
in Section III, benefits from less impractical requirements
regarding the measurement arrangement.

1) Nonconvex Simultaneous Implementation: One way of
solving (2) is to cast it as an optimization problem of the
form

min
z∈Cn× 1

f (z) = ∥A(z)− b∥2
2 (3)

with a stacked vector of unknowns z = [zT
P zT

A]
T
∈ Cn× 1

and an operator A : Cn× 1
→ Cm× 1 yet to be defined.

2The locations and orientations of the probe may still be arbitrary.

In this work, the minimization of (3) is performed
via a first-order memory-limited Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) method [75], [76], [77] employing an exact
line search. For this specific implementation, the necessary
Wirtinger derivative of [78], [79], [80], [81] (3) is found as

∂ f (z)

∂z = (A(z)− b)H ∂A(z)

∂z + (A(z)− b)T ∂A(z)

∂z . (4)

Since the cost function f (z) is real-valued, no derivative with
respect to the full conjugate coordinate is required.

Next, we stack all m equations of the form of (2) and define
the operator

A(z) = C
(
O1z ◦O2z

)
(5)

with

O1z =
[
zT

P . . . zT
P

]T
∈ CnPm× 1 (6)

O2z =
[[

A1zA
]T

. . .
[
AmzA

]T
]T
∈ CnPm× 1. (7)

The elementwise multiplication of multidimensional variables
is here denoted with “◦”. The matrix O1 extracts the probe
coefficients from the stacked unknown vector z and duplicates
them m times, whereas O2 extracts the AUT coefficients
and applies them to all forward operators Ai dependent on
the probe basis functions. The matrix C ∈ Rm× nPm is best
described via its matrix–vector product

Cx =
nP∑

k=1

[
[x]k [x]nP+k . . . [x](m−1)nP+k

]T (8)

which extracts batches of nP entries of an input vector
x ∈ CnPm× 1 and adds them up. The procedure in (5) can
be described as follows. The AUT sources are evaluated for
all measurement locations and probe-dependent field data are
generated via O2z . These field values are then multiplied with
the duplicated probe coefficients O1z and the summation of
the “sub-probe signals” is done via the matrix C.

For the operator defined via (5), the derivatives involved
in (4) are found according to

∂A(z)

∂z = C
(
diag

(
O1z

)
O2 + diag

(
O2z

)
O1
)

(9)

whereas (∂A(z)/∂z) equals a zero matrix and diag(.) creates
a diagonal matrix from a vector.

As part of the iterative solver employed for the minimiza-
tion of (3), the solution vector at the (k + 1)th iteration is
determined according to

zk+1 = zk + αkpk (10)

as a weighted sum of the solution of the previous iteration zk

and the descent direction pk , which is here determined via the
L-BFGS method. The step length αk is commonly numerically
determined via a line search [77]. However, for the particular
cost function and operator, a cubic equation for the optimal
step length can be found. Inserting the solution at the next
iteration into the cost function, one obtains the quartic poly-
nomial

f
(
z ′ = z + αp

)
=
∥∥C
(
O1z ′ ◦O2z ′

)
− b

∥∥2
2

= aα4
+ bα3

+ cα2
+ dα + e (11)
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with

a =
∥∥C
(
O1p ◦O2p

)∥∥2
2 (12)

b = 2 Re
{(

C
(
O1p ◦O2z +O2p ◦O1z

))H

(
C
(
O1p ◦O2p

))}
(13)

c =
∥∥C
(
O1p ◦O2z +O2p ◦O1z

)∥∥2
2

+ 2 Re
{(

C
(
O1z ◦O2z

)
− b

)H(C(O1p ◦O2p
))}

(14)

d = 2 Re
{(

C
(
O1z ◦O2z

)
− b

)H(
C
(
O1p ◦O2z +O2p ◦O1z

))}
(15)

e =
∥∥C
(
O1z ◦O2z

)
− b

∥∥2
2. (16)

The first-order necessary condition for a stationary point
requires the derivative of (11) to be zero, i.e.,

∂ f (z ′)
∂α
= 4aα3

+ 3bα2
+ 2cα + d !

= 0. (17)

The zeros of a cubic polynomial can be found analytically,
e.g., see [82, pp. 179–180]. Since the cost function was
here shown to be representable as a quartic polynomial, the
minimization of (3) for the task of an NFFFT with unknown
probe antennas is nonlinear and nonconvex. The occurrence of
local stationary points is thus expected to potentially prohibit
finding the globally optimal solution. In fact, one can show
that the problem becomes convex if

b2

ac′ < 32
9 ∀p ∈ Cn× 1 (18)

with

c′ =
∥∥C
(
O1p ◦O2z +O2p ◦O1z

)∥∥2
2. (19)

The derivation of (18) is analogous to that for the convexity
analysis of the phase retrieval problem [83], of which the
geometry, stationary points, and uniqueness have been a topic
of intense research [74], [84], [85], [86], [87], [88], [89],
[90], [91], [92]. First, one starts at the correct solution z , i.e.,
C(O1z ◦O2z)− b = 0, and determines the nonzero roots of
the derivative in (17), which are found from a polynomial of
second order. As soon as the condition in (18) is fulfilled (for
all search directions), no real-valued, nonzero roots are found
for the polynomial, meaning that the cost function exhibits
its sole global minimum at the correct solution and, thus,
is convex.

2) Convex, Simultaneous Implementation: A convex
approach to (2) can be found via the theory of bilinear
forms [93], [94], [95], which has also been applied to
incoherent NFFFTs [96]. Motivation can be drawn from
considering a modified version of (2) in the form of

zT
PP i j zA = [zP]i [zA] j =

[
b̃
]

k (20)

which involves a desired measurement entry [b̃]k and the cor-
responding measurement matrix P i j . The latter only contains
a single nonzero unit entry in the i th row and the j th column.
A particular set of measurements b̃ belonging to a certain set
of P i j (for various i and j) can then be employed to easily

reconstruct zP and zA up to global scaling.3 The issue is that
the [b̃]k belonging to the required forward matrices P i j may
not have been acquired during the NF measurement, instead
only the Ai and [b]i are available. However, due to linearity
of (2) with respect to the Ai we can determine the coefficients
zk ∈ Cm× 1 such that

P i j =

m∑
l=1

[zk]lAl . (21)

Once the zk have been found, the kth measurement entry
belonging to the matrix P i j[

b̃
]

k =

m∑
l=1

[zk]l
[
b
]

l (22)

can be evaluated. The remaining main effort is to find a
procedure for the computation of the zk .

Starting from (20), one can determine a normal system of
equations of the form

QHQzk = QHpi j (23)

with Q ∈ CnPnA ×m and pi j ∈ CnPnA × 1. The lth column of Q
contains all columns of the measurement matrix Al stacked
into a single vector. Similarly, the vector pi j corresponds to
the stacking of all columns of the matrix P i j . However, (23)
can be rewritten as

Tr
(
AH

1 A1
)

. . . Tr
(
AH

1 Am
)

...
. . .

...

Tr
(
AH

mA1
)

. . . Tr
(
AH

mAm
)
zk =


Tr
(
AH

1 P i j
)

...

Tr
(
AH

mP i j
)
 (24)

where Tr(.) returns the trace of a matrix. Note that (24) only
returns meaningful results if the original system Qzk = pi j
has full rank, which requires4 m ≥ nPnA.

Let us summarize the convex solution approach to the
NFFFT with unknown probe coefficients exploiting bilinear
forms. First, define a set of matrices P i j , such that the
corresponding measurements in b̃ allow for a reconstruction of
zP and zA. Second, insert these matrices into (24) and compute
the corresponding vectors zk . Third, entrywise multiply b with
zk and sum the result in order to obtain the elements [b̃]k .
In the last step, evaluate zP and zA from the [b̃]k .

For the purpose of illustration, consider the case of nP = 2
and nA = 3. According to the first step, a simple choice for
the matrices P i j is

zT
PP11zA = zT

P

[
1 0 0
0 0 0

]
zA = [zP]1[zA]1 =

[
b̃
]

1 (25)

zT
PP12zA = zT

P

[
0 1 0
0 0 0

]
zA = [zP]1[zA]2 =

[
b̃
]

2 (26)

zT
PP13zA = zT

P

[
0 0 1
0 0 0

]
zA = [zP]1[zA]3 =

[
b̃
]

3 (27)

zT
PP21zA = zT

P

[
0 0 0
1 0 0

]
zA = [zP]2[zA]1 =

[
b̃
]

4. (28)

3Any pair of solution vectors z ′P = s zP and z ′A = (1/s) zA with a nonzero
scaling s ∈ C fulfills (2).

4Again, assuming a nonredundant representation of AUT and probe.
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Second, the P i j matrices from (25) to (28) are inserted
into (24) leading to zk for k ∈ {1, . . . , (nA − 1)nP} at the
expense of solving (nA − 1)nP linear systems of equations.
Third, we compute C ∋ [b̃]k = bTzk ∀k. Fourth, since the
pair of AUT and probe coefficients can only be determined up
to global scaling, we arbitrarily set [zA]1 = 1 and determine
the remaining unknowns as

[zP]1[zA]1 = [zP]1 =
[
b̃
]

1, [zA]2 =
[
b̃
]

2 /
[
b̃
]

1 (29)

[zP]2[zA]1 = [zP]2 =
[
b̃
]

4, [zA]3 =
[
b̃
]

3 /
[
b̃
]

1. (30)

In case the first entry of the AUT coefficients is zero, the same
principle can be applied by setting a different AUT coefficient
to unity and solving for the remaining quantities.

The complete procedure valid for arbitrary dimensions is
given in Algorithm 1 in MATLAB [37] notation. The trace
operation is here more efficiently evaluated by summing all
entries of the elementwise multiplication of the involved matri-
ces. From a computational perspective, the construction of the
normal system of equations in (23) features the computational
complexity of O(m2nPnA). Since m ≥ nPnA is required for
the approach to return meaningful results, the construction of
QHQ and, thus, the overall computational complexity of the
convex transformation based on bilinear forms scale according
to O((nPnA)3).

3) Nonconvex Alternating Implementation: As motivated by
Hansen [6, pp. 71–73], instead of simultaneously determining
the probe and the AUT coefficients, one can sequentially
compute one of both quantities while keeping the other fixed.
Due to the linear dependency of both sets of coefficients on
the measurement vector, this results in an alternating solution
of linear systems of equations. For example, starting with an
initial guess for the probe coefficients zP0, one can determine
the AUT unknowns via

zA = M†b (31)

with a matrix M ∈ Cm× nA dependent on zP0 and constructable
with Algorithm 2. Here, the Moore–Penrose inverse is denoted
by M†. Afterward, a new guess for the probe coefficients is
obtained from

zP = N†b (32)

where the computation of N ∈ Cm× nP from a given zA
is described in Algorithm 3. The MATLAB implementation
referring to Algorithms 2 and 3 is shown in Algorithm 4.

4) Convex Implementation via Semidefinite Programming
With Identical AUT and Probe: For the case when the AUT
and the probe are both unknown, but identical, (2) simplifies
to

z⋆TAi z⋆
=
[
b
]

i ∀i ∈ {1, . . . , m} (33)

with z⋆
∈ Cn⋆

× 1 and n⋆
= nA = nP. Note that the

presented approaches for solving (2) can easily be adapted to
exploit zA = zP and thus solve (33). Details are provided in
Section III-B3. Here, an alternative approach for solving (33),
which relies on SDP [97], [98] is derived. The procedure
follows ideas in [99], intended for the case of phase retrieval,
to arrive at a description in terms of real-valued quantities.

We start by stacking the real and imaginary parts of the
unknown coefficients as

z̃ =
[
Re{z⋆}

T Im{z⋆}
T]T

. (34)

Similar, the operators

A′i =
[

Re{Ai } −Im{Ai }

−Im{Ai } −Re{Ai }

]
(35)

A′′i =
[

Im{Ai } Re{Ai }

Re{Ai } −Im{Ai }

]
(36)

are defined such that (2) can be written as

z̃TA′i z̃ = Re
{[

b
]

i

}
∀i ∈ {1, . . . , m}.

z̃TA′′i z̃ = Im
{[

b
]

i

}
.

(37)

We can then define the real-valued, positive-semidefinite rank-
one matrix Z ′ = z̃ z̃T

∈ R2n⋆
× 2n⋆

, for which we find

z̃TA′i z̃ = Tr
(
Z ′A′i

)
. (38)

The nonconvexity of the rank constraint can be avoided by
employing a convex proxy in the form of the minimization of
the trace of Z ′. Finally, we formulate the task of an NFFFT
with unknown probe, when AUT and probe are identical, as the
convex SDP task

min
Z ′∈R2n⋆ × 2n⋆

Tr
(
Z ′
)

s.t. Tr
(
Z ′A′i

)
= Re

{[
b
]

i

}
∀i ∈ {1, . . . , m}.

Tr
(
Z ′A′′i

)
= Im

{[
b
]

i

}
Z ′ ⪰ 0

(39)

As commonly encountered in SDP and as has been seen with
the linear approach directly exploiting the properties of bilin-
ear forms in Section II-B2, the number of unknowns is lifted
and, thus, effectively squared. The applicability of (39) may
thus be limited to small-sized problems. For completeness,
it should be mentioned that the SDP formulation could also
be adapted to the asymmetric case when the AUT and the
probe are not identical, e.g., by means of zero padding in
order to arrive at square matrices required for the application
of the trace operation. For the sake of brevity, this has not
been further considered in this work.

III. NUMERICAL RESULTS AND DISCUSSION

As a proof of concept, the presented methods are first
verified with complex-valued normally distributed operators
Ai and solution vectors zP and zA. Afterward, simulated
antenna NF data are employed. Furthermore, the case of
identical AUT and probe is investigated, for which the SDP-
based formulation in (39) is briefly tested and the other
formulations are adapted. Finally, measurement data of two
identical horn antennas at 40 GHz are considered.

A. Random Data

Consider a toy example with nP = 3 and nA = 6 for
randomly distributed Ai , i ∈ {1, . . . , m}. No precautions are
taken to avoid inverse crime. Figure 2 shows the achievable
success rate of three of the formulations when varying the ratio
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Algorithm 1 Convex AUT and Probe Reconstruction via Bilinear Forms (MATLAB Code)

Input: cell array Ai= Ai , vector b= b
Output: vectors of coefficients zp= zP and za= zA

% Number of measurements :
1: m = numel(b);

% Number of probe coefficients :
2: np = size(Ai{1},1);

% Number of AUT coefficients :
3: na = size(Ai{1},2);

% Construct QHQ matrix :
4: QHQ = NaN(m,m);
5: for d = 1:m
6: for e = d:m
7: t = conj(Ai{d}).*Ai{e};
8: QHQ(d,e) = sum(t(:));
9: QHQ(e,d) = conj(QHQ(d,e));

10: end
11: end

% Construct P i j matrices :
12: Pij = cell(np+na-1,1);
13: for d = 1:na
14: Pij{d,1} = zeros(np,na);
15: Pij{d,1}(1,d) = 1;

16: end
17: for d = na+1:np+na-1
18: Pij{d,1} = zeros(np,na);
19: Pij{d,1}(d-na+1,1) = 1;
20: end

% Construct QHpi j vectors :
21: QHpij = NaN(m,np+na-1);
22: for d = 1:np+na-1
23: for e = 1:m
24: t = conj(Ai{e,1}).*Pij{d,1};
25: QHpij(e,d) = sum(t(:));
26: end

% Solve (nA − 1)nP linear systems :
27: zk = QHQ\QHpij;

% Determine b̃ :
28: btilde = sum(zk.*b,1);

% Evaluate zP and zA :
29: za(1,1) = 1;
30: zp(1,1) = btilde(1);
31: za(2:na,1) = btilde(2:na)/zp(1,1);
32: zp(2:np,1) = btilde(na+1:na+np-1).’;
33: return zp, za

Algorithm 2 Construct Measurement Matrix for AUT Coeffi-
cients (MATLAB Code)
Input: cell array Ai= Ai , probe coefficients zp= zP
Output: matrix M= M

1: m = numel(Ai);
2: na = size(Ai{1},2);
3: M = NaN(mi,na);
4: for a = 1:m
5: M(a,:) = (Ai{a}.’*zp(:)).’;
6: end
7: return M

Algorithm 3 Construct Measurement Matrix for Probe Coef-
ficients (MATLAB Code)
Input: cell array Ai= Ai , AUT coefficients za= zA
Output: matrix N= N

1: m = numel(Ai);
2: np = size(Ai{1},1);
3: N = NaN(m,np);
4: for a = 1:m
5: N(a,:) = Ai{a}*za(:);
6: end
7: return N

of measurements m ∈ {3, . . . , 30} with respect to the product
nPnA = 18. Success is declared once a relative deviation

ϵdB
(
z, ẑ

)
= 20 log

(∥∥z − ẑ
∥∥

2

∥z∥2

)
(40)

for the reconstructed probe ẑP and the AUT coefficients ẑA
with respect to the true coefficients of below −60 dB is
achieved. The nonconvex solvers at most performed 5 × 102

iterations and started from a random initial guess. At each ratio

Algorithm 4 Alternating Probe and AUT Reconstruction
(MATLAB Pseudocode)
Input: cell array Ai= Ai , measurement vector b= b, initial

guess zp0= zP0, iterations k= kit
Output: vectors of coefficients zp= zP and za= zA

1: zp = zp0;
2: for a = 1:k
3: M ←Alg. 2 from zp
4: za = M\b(:);
5: N ←Alg. 3 from za
6: zp = N\b(:);
7: end
8: return zp, za

of m/(nPnA), in total, 103 repetitions with randomly drawn
operators and solution vectors were considered. As expected,
the convex approach returns the correct solutions once
m ≥ nPnA. In contrast, the nonconvex approaches may provide
an accurate solution for far fewer measurement samples.
However, they may get stuck at suboptimal solutions even
for large m—in Fig. 2, and the nonconvex techniques achieve
success rates close to 100 %, but fail in some cases. Overall, all
three techniques remain stable and provide consistent results
when redundant samples are added, i.e., m > (nPnA). Starting
from a random initial guess, the nonconvex methods even
sometimes converge to the true solution when the problem is
underdetermined, i.e., m < (nP+nA) or, in Fig. 2, m/(nPnA) <

0.5, resulting in a nonzero success rate. In general, however,
and for larger problems, there is only a realistic chance of
finding an accurate solution if the number of measurements
exceeds or equals the sum of the degrees of freedom of the
AUT and the probe.
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Fig. 2. Probe and AUT reconstruction for nP = 3 and nA = 6 with randomly
distributed data.

B. Simulated Antenna NF Data

1) Spherical Setup: In a first investigation, similar simu-
lations as done with the random data model are conducted
with NF operators belonging to a spherical measurement setup.
Again, no precautions are taken to avoid inverse crime. It is
noteworthy to highlight the difference between the AUT and
the probe in this particular measurement configuration. From
the perspective of the AUT, the probe is moving and thus
illuminating different parts of the AUT during the measure-
ment. From the perspective of the probe, the AUT is revolving
around itself while staying at the same location relative to the
probe at all times. Therefore, mostly, the radiation character-
istic of the probe toward its front direction is relevant and
sampled by the AUT. Consequently, for this setup, the task of
determining the AUT coefficients is most likely better posed
than that of finding the probe representation. In the example
considered here, the AUT is represented by six randomly
excited spherical vector wave functions [6] and its field is
sampled by a probe consisting of three Hertzian dipoles.
Figure 3 shows the success rate of the nonconvex methods and
the bilinear algorithm for two cases. First, a classical probe
arrangement is assumed, where the probe is always directed
toward the AUT. In a second scenario, for which the results
are drawn with dashed lines in Fig. 3, the orientation of the
probe was randomly chosen at each measurement location.
This can be seen as an attempt to align the roles of AUT
and probe since now the relative motion of AUT to probe,
and vice versa, is similar. The solver settings and repetitions
were identical to those of Fig. 2. While the nonconvex solvers
are able to determine the AUT and the probe coefficients in
both scenarios correctly, the convex bilinear solver fails for the
classical spherical setup. Evidently, m ≥ nPnA is a necessary
but not sufficient condition for the solver to succeed. Whenever
the measurement matrices Ai exhibit strong similarities to each
other, they may not represent a complete basis required for
the construction of the matrices P i j . In practice, this happens
for insufficient variations of the probe illumination, which is
inherent to classical spherical measurement setups. Similar
to the discussion of Fig. 2, the nonzero success rates for
m < (nP + nA), i.e., m/(nPnA) < 0.5, in Fig. 3 should be
interpreted with care, as they are less likely to be observed
for larger problems and when the inverse crime problem is
prevented.

2) Planar Setup: Next, a synthetic planar antenna NF
measurement setup is considered. The true AUT is given in

Fig. 3. Probe and AUT reconstruction for nP = 3 and nA = 6 with spherical
NF data. Probe pointing toward the AUT (solid) and randomly oriented probe
(dashed).

Fig. 4. (a) Synthetic measurement setup. (b) Probe array (purple arrows)
centered in the probe origin (black dot) with orientation defined via angles
(ϑ ′, ϕ′,

′
), drawn for (ϑ ′ = 90◦, ϕ′ = 0◦, ′

= 0◦).

the form of equivalent Hertzian dipoles on a sphere with a
radius of . The coefficients of the AUT dipoles are generated
by backpropagating a z-polarized plane wave coming from the
+x-direction. In order to avoid inverse crime, the reconstruc-
tion of the AUT is done in terms of 336 spherical vector wave
functions. As shown in Fig. 4(a), the distance between the
equivalent sphere of the AUT and the square acquisition plane
with a side length of 12 is 3 . The probe antenna, shown in
Fig. 4(b), is modeled as a 1-D broadside array with a length
of 2 (along the y′-axis in the probe coordinate system) and
consisting of ten Hertzian dipoles in total, five dipoles oriented
in the vertical z′-direction and five in the horizontal y′-
direction. The probe coefficients are set by backpropagating a
z′-polarized plane wave coming from the +x ′-direction, which
is, however, rotated around the ′-axis by 2◦ and around the ϕ′-
axis by −1◦—causing a tilted main beam and a nonnegligible
cross-polar component. The tilted behavior of this “true” probe
is supposed to represent a potential misalignment when placing
the probe antenna on a mounting structure in a real-world
measurement setup. In contrast, assuming a perfectly aligned
probe, the pattern denoted with “assumed” is obtained, which
corresponds to probe coefficients of unity and zero for co-polar
and cross-polar dipoles, respectively. If no probe correction at
all is applied, the probe is identical to a z′-oriented Hertzian
dipole.

The purpose of the following study is to investi-
gate the effect of a false probe correction, i.e., correcting
with the assumed probe or without any probe correction, and
the potential accuracy benefits associated with the proposed
transformations without requiring knowledge of the probe
radiation pattern or coefficients. Therefore, six transformation
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Fig. 5. AUT FF pattern for ϑ = 90◦ computed from planar NF measurements
with two probe orientations ′

∈ {0◦, 90◦}. Probe correction with the
true probe behavior (tilted), the assumed (nontilted) behavior, and no probe
correction at all. (a) Co-polar fields. (b) Cross-polar fields. Dashed lines
represent ϵdB,FF.

procedures are applied to three different measurement scenar-
ios. In all three scenarios, the NF of the AUT is sampled by the
true, i.e., tilted and rotated, probe antenna, and the differences
between the three scenarios are based on the number of
sampling points on the measurement plane, as well as the
orientation angles of the probe at the measurement locations.
Furthermore, the probe coordinate system is always chosen
such that the probe’s x ′-axis is pointing in the −x-direction
in the AUT coordinate system [see Fig. 4(b)]. First, and
as a reference, we consider a transformation knowing and
employing the true probe as part of a probe correction. Second,
a transformation applying a probe correction with the assumed,
i.e., not tilted, probe is performed. Third, the NF is transformed
without probe correction. Fourth, fifth, and sixth employ the
simultaneous nonconvex, the alternating nonconvex, and the
convex bilinear transformation where the probe is modeled
by the identical ten dipoles of the true probe, respectively,
however, without knowledge of the correct coefficients. While
this corresponds to inverse crime in terms of the probe, the
procedure allows to keep the overall number of unknowns
within a reasonable range, which is particularly important for
the convex algorithm to remain applicable.

Note that the orientation of the probe array in Fig. 4(b)
is uniquely defined via the three angles (ϑ ′, ϕ′, ′), where
(ϑ ′ = 90◦, ϕ′ = 0◦, ′

= 0◦) corresponds to a main beam
(approximately) pointing along the +x ′-direction with a co-
polarization along the z′-axis.

a) Probe rotation around x ′: At each of 625 sam-
ple locations on the measurement plane, the AUT fields
were acquired for two polarization angles of the probe ori-
ented perpendicular to the measurement plane, i.e., as done
in a typical planar NF measurement and corresponding

Fig. 6. AUT FF pattern for ϑ = 90◦ computed from planar NF measurements
with two probe orientations ′

∈ {0◦, 90◦}. Results for unknown probe coef-
ficients employing the nonconvex simultaneous optimization-based approach
and the nonconvex alternating technique. (a) Co-polar fields. (b) Cross-polar
fields. Dashed lines represent ϵdB,FF.

to (ϑ ′ = 90◦, ϕ′ = 0◦, ′
∈ {0◦, 90◦}). By rotating the probe

around ′, the cross- and the co-polar fields of the AUT are
measured, leading to a total of m = 1250 probe signals.

The results of the three transformation approaches based on
a known probe are shown in Fig. 5. The reconstructed FF of
the AUT in the plane of ϑ = 90◦ is drawn and the relative
magnitude FF deviation

ϵdB,FF(E ref, E rec) = 20 log10

(
||E ref| − |E rec||

max(|E ref|)

)
(41)

with respect to the fields E ref caused by the original dipole
sources of the AUT that is provided. Probe correction with
the true and the assumed probe behavior was performed, and
a transformation without probe correction was done. The valid
region of roughly ϕ = ±80◦ is only achieved when employing
the correct probe knowledge for correction. Despite the seem-
ingly minor difference in the FF pattern of the true and the
assumed probe, the transformed AUT radiation characteristic
varies significantly between the two cases. In particular, the
assumed probe and the Hertzian dipole, associated with no
probe correction, do not contain the cross-polar component
of the probe and considerable deviations with respect to the
correct AUT pattern are visible in Fig. 5(b).

Figure 6 shows the performance of the nonconvex transfor-
mations with unknown probe coefficients. The optimization-
based formulation and the alternating approach were allowed
to run 15×103 and 5×103 iterations. As an initial guess, both
solvers started from coefficients belonging to the assumed,
nontilted probe. Since m < nPnA, the convex solver has not
been employed. From the available number and type of mea-
surements, both nonconvex techniques are not able to correctly
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Fig. 7. Probe radiation patterns in the plane ϑ ′ = 90◦ retrieved as a
by-product of the transformation results in Fig. 6 in comparison to the true
probe characteristic. (a) Co-polar fields. (b) Cross-polar fields.

resolve the cross-polar field. However, the alternating method
determines the co-polar component slightly more accurately
as the transformation that falsely utilizes the nontilted probe
pattern for the probe correction. The correspondingly recon-
structed probe radiation characteristics are shown in Fig. 7.
In accordance with the distortions in the cross-polarization
of the AUT, the cross-polar behavior of the probe is not
correctly obtained. However, the alternating approach does
achieve a visually close match of the true probe in terms
of the co-polar fields. In conclusion, classical planar NF
measurements involving two probe polarizations (rotations)
seem to be of moderate suitability for measurements and
NFFFTs with unknown probe and AUT. Better results should
be obtainable with more diverse measurements, e.g., involving
more probe orientations.

b) Probe rotation around x ′ and z′: At 289 measurement
locations, the true probe antenna was placed with four different
orientations defined via (ϑ ′ = 90◦, ϕ′ = 0◦, ′

∈ {0◦, 90◦})
and (ϑ ′ = 90◦, ϕ′ = 45◦, ′

∈ {45◦, 135◦}), resulting in
m = 1156 available probe signals. This choice of probe orien-
tations does involve four different polarization angles and two
angles in the x ′y′ plane—facing the AUT and looking past the
AUT. The solver settings and the initial guesses were chosen
identical to those in the previous scenario. For this more
diverse probe arrangement, the results of the transformation
when employing the falsely assumed probe pattern or no probe
correction are almost identical to those presented in Fig. 5 and
are, therefore, omitted. Figures 8 and 9 show the obtainable
FF radiation characteristic of the AUT and the probe when
employing the nonconvex methods. Again, no results for the
convex approach based on bilinear forms are shown since
m < nPnA. In fact, while the diversity in the measurement
samples provided sufficient information for the two nonconvex
approaches to return accurate results, the convex technique
failed, even when employing a dense sampling grid with
m > nPnA. This indicates that the rank(QHQ) has not yet

Fig. 8. AUT FF pattern for ϑ = 90◦ computed from planar NF measurements
with four probe orientations (ϑ ′ = 90◦, ϕ′ = 0◦, ′

∈ {0◦, 90◦}) and
(ϑ ′ = 90◦, ϕ′ = 45◦, ′

∈ {45◦, 135◦}). Transformation results for unknown
probe coefficients, employing the nonconvex simultaneous optimization-based
approach and the nonconvex alternating technique. (a) Co-polar fields.
(b) Cross-polar fields. Dashed lines represent ϵdB,FF.

Fig. 9. Probe radiation patterns in the plane ϑ ′ = 90◦ retrieved as a
by-product of the transformation results in Fig. 8 in comparison to the true
probe characteristic. (a) Co-polar fields. (b) Cross-polar fields.

reached the necessary limit of nPnA and that more information
can still be obtained by more diverse measurements.

c) Randomly oriented probe: In order to further incorpo-
rate information about the probe into the measurement setup,
random probe orientations in the range of ϑ ′ ∈ [0◦, 180◦],
ϕ′ ∈ [0◦, 360◦], and ′

∈ [0◦, 90◦] were assumed. In total,
m = 9604 probe signals were acquired such that the convex
approach based on bilinear forms could be utilized. Results
for the nonconvex optimization-based method and the convex
technique are shown in Fig. 10, proving their potential for
accurate transformations as soon as sufficiently diverse data
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Fig. 10. AUT FF pattern for ϑ = 90◦ computed from planar NF
measurements with randomized probe orientations. Transformation results
for unknown probe coefficients, employing the nonconvex simultaneous
optimization-based approach and the convex technique. (a) Co-polar fields.
(b) Cross-polar fields. Dashed lines represent ϵdB,FF.

are available. Since the obtained FF patterns of the probe are
visually identical to those of Fig. 9, they are not drawn. Also,
the results obtained via the alternating method are similar to
those of the simultaneous optimization and are not shown.
Here, with more diversity in the probe arrangement, the convex
solver seems to be able to accurately determine the AUT
coefficients. However, note that the probe coefficients returned
by Algorithm 1 were incorrect and that the rank condition was
again not met. In fact, the rank (dependent on the truncation
threshold) was in the range of 2000–3000 and, thus, would
have been sufficient for an inverse-crime-based model with
nA = 200 dipoles, however, not for the nA = 336 spherical
vector wave functions. A rank in this transition region can
potentially explain this partially accurate solution. Here and
as a workaround, Algorithm 4 was applied in connection
with (32) to retrieve the correct probe representation from
the AUT coefficients returned from the convex solver. Still,
for practical applications, the bilinear formulation seems to
remain unfeasible.

3) Identical Probe and AUT: All four discussed methods
can be applied to the particular case when AUT and probe
are identical. This can be seen as a generalization of the
two-antenna method [21] known from FF measurements,
which has later, with restrictions, been generalized to NF
measurements [23, pp. 93–98] [24], [25]. By enforcing the
AUT and probe to be identical, one would hope for a less
ill-posed inverse problem and mitigated requirements on the
necessary measurement diversity. In order to have any chance
of a successful transformation, m ≥ nA needs to be ensured
at all times.

Algorithm 5 Alternating Probe and AUT Reconstruction
when AUT and Probe are Identical (MATLAB Pseudocode)
Input: cell array Ai= Ai , measurement vector b= b, initial

guess z0= zP0 = zA0, iterations k= kit
Output: vector of coefficients z= zA = zP

1: z = z0;
2: for a = 1:k
3: M ←Alg. 2 from z
4: N ←Alg. 3 from z
5: z = [M;N]\begin{align*}b(:);b(:)]
6: end
7: return z

An adaption of the nonconvex alternating approach is pro-
vided in Algorithm 5, for which the matrices M and N are
constructed and employed in a linear system simultaneously.
The number of measurements is doubled, while only one
set of unknowns remains, effectively increasing the ratio of
the number of measurements to unknowns. For the convex
technique employing bilinear forms, fewer P i j matrices can
be utilized in the reconstruction process, and however, the
size and effort involved in the matrix QHQ do not change.
The computational effort is thus reduced, while a similar mea-
surement diversity should be required. Finally, the nonconvex
simultaneous implementation can directly force the probe to
be identical with the AUT by removing the probe coefficients
zP from the vector of unknowns z and having the matrix
O1 duplicate the AUT unknowns zA. With a reduced number
of unknowns, the computational effort slightly reduces and
fewer measurement samples are expected to be necessary for
the algorithm to return accurate results.

a) Random data: Figure 11 shows the success rate of the
three previously investigated algorithms and an implementa-
tion of the SDP formulation for the scenario of unknown and
identical AUT and probe for randomly Gaussian distributed
data. The modified versions of the convex technique and the
nonconvex simultaneous method exploiting zP = zA have
been included. As expected, both convex algorithms featuring
bilinear forms behave similarly, whereas the modified noncon-
vex simultaneous implementation requires fewer measurement
samples due to halving of the number of unknowns. The
convex approach based on SDP has here been implemented
via the optimization framework described by (3) and (4).
The solution is ensured to be positive definite by means of
a Cholesky decomposition, similar to the implementation of
a PhaseCut [99] variant in [100, Appendix A.7]. Its slightly
lower success rate should be related to the approximations
involved in the formulation, which are not necessary for
the derivation of the nonconvex methods. In line with the
discussion of Figs. 2 and 3, considerable nonzero success rates
for m < nA, i.e., m/n2

A < 0.25, are artificially caused by the
small problem dimensions in connection with the inverse crime
problem and the random starting points—however, the overall
trend remains valid.

b) Measurement data at 40 GHz: Measurement data of
a circular horn antenna at 40 GHz has been investigated. The
planar measurement setup and a closer view on the horn
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Fig. 11. Probe and AUT reconstruction for identical AUT and probe
with nA = 4 and randomly distributed data. For each sampling ratio,
103 simulations were run and success was declared once ϵdB ≤ −60 dB
for the AUT coefficients was achieved. Dashed curves represent the results
obtained by formulations explicitly exploiting zP = zA.

Fig. 12. (a) Planar measurement setup of (b) circular horn AUT at 40 GHz.
On the probe stage, an OEWG probe is mounted. Absorbers covering the
mounting structure of the AUT have been removed for taking the picture.

antenna can be seen in Fig. 12. Two measurements with two
different probe antennas have been performed, one utilizing an
open-ended waveguide (OEWG) and a second employing an
identical circular horn antenna as the probe. Two measurement
planes of 47 cm × 28 cm were scanned at distances of 7.5 cm
and 10 cm to the AUT. First, the measurement with the
OEWG was processed where a probe correction based on a
Feko [101] simulation of the OEWG was employed, and only
measurements on the plane at z = 10 cm were exploited. Then,
the determined source coefficients of the horn antenna were
utilized for the probe correction of the second measurement.
In addition, the simultaneous nonconvex NFFFT for unknown
probes was applied to the dataset of the second measurement.
As an equivalent model for the horn, n = 394 Hertzian
dipoles placed tangentially on a circular disk covering the
horn aperture were chosen. For the measurement data with
the OEWG, a relative deviation, defined in (40), of around
−39.0 dB between the measured and the reconstructed NF
was obtained. When transforming data from both measurement
surfaces, which has been acquired with the second horn, and
employing a probe correction based on the sources found
from the OEWG measurement, an NF deviation of −20.8 dB
was observed. This decrease in accuracy is most likely to
be attributed to the asymmetry of the measurement setup,
which renders the radiation behavior of the horn antenna to
be slightly different when being mounted on the probe stage
instead of the AUT stage.

In Fig. 13(a), the transformation results of the first mea-
surement with the OEWG probe with known probe correction

Fig. 13. Transformed FF of the horn antenna at 40 GHz. The co-polar
field component in a vertical cut ϕ = 90◦ through the main beam is shown.
(a) Results with known probe corrections. (b) Initial guess for and results of
the NFFFT with unknown probe coefficients. Dashed lines represent ϵdB,FF.

via simulation data and the transformation of the second
measurement, employing the measured horn behavior for
probe correction, are shown. An estimated valid region of
approximately ±50◦ is observable. For reference, the FF of a
Feko simulation model of the horn antenna is drawn and the FF
deviation of (41) between the measurements and the simulation
model is evaluated. The co-polar field component in a vertical
cut through the main beam is depicted (ϕ = 90◦). Overall,
the results for the OEWG probe and probe correction based
on simulation data are observed to lead to a better agreement
with the simulated horn behavior from Feko. The FF devia-
tions in the co- and cross-polar fields are below −34 dB and
−30 dB for the OEWG data and the horn data, respectively.

Figure 13(b) shows the FF reconstructed from the NF data
acquired with the horn probe, where three transformations
have been applied. First and as an initial guess for the
simultaneous nonconvex transformation, results without any
probe correction have been generated [labeled with “Init.”
in Fig. 13(b)]. As expected, the radiation pattern is strongly
distorted and exhibits a narrower main beam. Starting from
these source coefficients, after 500 iterations the simultaneous
nonconvex NFFFT, enforcing the AUT to be identical to the
probe, returns the solution labeled as “No reg.”. In parts, this
result seems to be more accurate, however, as not shown, it suf-
fers from large deviations up to −4 dB in the cross-polar fields.
A significantly improved accuracy is achieved by imposing an
additional ℓ1 regularization on the equivalent sources during
the solution process, leading to convergence after 76 iterations
with an NF deviation of −19.8 dB. As shown in Table I, this
corresponds to a slightly larger NF deviation when compared
to the results without regularization. However, regularization
is crucial in order to suppress parasitic current contributions,
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TABLE I

RELATIVE NF DEVIATIONS ϵdB(Az, Aẑ)

specifically when working with noise-affected data and real-
istic AUT and probe models. Any superfluous degrees of
freedom in the source representation of the probe may support
parasitic AUT fields, which would not exist with an appropri-
ate probe model. Mathematically speaking, the probe model
can affect the null space of the associated probe-corrected
forward operator. In this view, constraining the energy and
number of contributing degrees of freedom of the probe limits
the risk of reconstructing parasitic current distributions. For
the considered example, the ℓ1 regularization was seen to be
better suited for this task than an ℓ2 regularization and the
result shown in Fig. 13(b) (“ℓ1 reg.”) exhibits an FF deviation
of close to −30 dB in cross- and co-polar fields throughout
most of the valid region.

Note that the obtained results were rather strongly depen-
dent on the choice and weight of the regularization and that,
up to now, no automatized and reliable procedure for defining
the weight of the regularization has been identified. It is clear
that an accurate solution can be found, but regularization is
and will remain an extremely important key aspect of success.

IV. CONCLUSION

Common NFFFTs require the precise knowledge of the
radiation behavior of the probe antenna, which is utilized
for sampling the fields of the AUT. Missing or improper
compensation of the influence of the probe—known as probe
correction—deteriorates the quality of the determined AUT
representation and, ultimately, the obtained FF pattern. Four
NFFFT approaches were presented, which do not require
knowledge of the electromagnetic properties of the probe
antenna, but still consider its radiation characteristic and com-
pensate its impact on the measurement. The different working
principles of these algorithms were motivated by the close rela-
tionship of the problem with that of phaseless transformation
algorithms. The discussed methods were observed to function
well with randomly distributed data, which provides sufficient
information about the probe and the AUT sources. Results
obtained for simulation models of antenna NF measurements
reveal issues for practical use cases, for example, when in
common spherical measurement setups, the probe sources are
always illuminated by the AUT from a single direction, making
a unique determination of the probe coefficients difficult.
Consistent with the experience with phaseless transformations,
it was observed that the measurement setups for the simulta-
neous determination of AUT and probe need to be diversified
to provide more information and constraints on the equivalent
sources of AUT and probe. The problem is alleviated when
utilizing two identical antennas as the AUT and the probe and,
employing a suitable regularization, it was found to be solv-
able with decent accuracy for a typical planar measurement
setup.
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