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Dimensioning Flat Equivalent Radiators
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Abstract— We deal with the problem of modeling a radia-
tor/scatterer using an equivalent radiator. The problem amounts
at determining shape and size of a radiating surface D ′ produc-
ing, on a region D , an electromagnetic field close to that generated
by the primary radiator/scatterer. For a fixed equivalent radia-
tor’s shape, we deal here with the dimensioning issue only. The
approach exploits the singular value decomposition (SVD) of the
operators relating the radiator/scatterer to the field on D and
the equivalent panel to the field on D . The size of the equivalent
radiator is determined by minimizing the error between the
primary radiated/scattered field and that radiated using D ′. The
error is expressed as a Hermitian, positive semidefinite quadratic
form: the dimensioning problem thus consists of determining
the size of the equivalent radiator maximizing its minimum
eigenvalue. The maximization is performed by choosing the size
value leading to an error dropping below a prescribed maximum
tolerated threshold. We present numerical test cases for a planar
radiator with rectangular shape.

Index Terms— Dimensioning, echo generators, quadrature,
singular functions, singular value decomposition (SVD), singular
value optimization (SVO).

I. INTRODUCTION

THE problem of modeling a source or a scatterer using
an equivalent radiator is of interest in a large number of

applications.
For example, in antenna synthesis [1], once the specifica-

tions on the far-field [2] and/or the near-field [3] regions are
settled, determining the size and possibly the shape [4] of
a minimum-sized antenna capable to meet the prescriptions
becomes of interest. Furthermore, in order to characterize the
radiating behavior of antennas from near-field data, a prelim-
inary step is determining the size of effective sources capable
to match the near-field measurements [5], [6]. Similarly,
in applications of electromagnetic compatibility, the problem
of evaluating the far-field emissions produced by a printed
circuit board (PCB) arises. Notwithstanding the need of apply-
ing coherence theory to the source at hand (partial coherence
or total incoherence), also in this case, the determination of
the dimensions of an equivalent source capable to match the
near-field measurements is necessary [7]. In the framework of
the design of complex waveform generators [8], which can
be of interest in the recent applications of automotive radar
testing [9], one of the hottest problems to be solved is that

Manuscript received 27 May 2021; revised 14 March 2022;
accepted 20 March 2022. Date of publication 15 May 2023; date of
current version 7 July 2023. (Corresponding author: Amedeo Capozzoli.)

The authors are with the Dipartimento di Ingegneria Elettrica e delle
Tecnologie dell’Informazione, Universitá di Napoli Federico II, 80125 Naples,
Italy (e-mail: a.capozzoli@unina.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2023.3260919.

Digital Object Identifier 10.1109/TAP.2023.3260919

of determining the dimensions of a radiating panel capable
to simulate the radar echo produced by canonical scatterers
to test the performance of anticollision radars [10]. Finally,
the dimensioning problem is also relevant for computational
electromagnetics applications and inverse scattering in order to
provide partial representations of the scattered fields to reduce
the number of unknowns in describing the scattering process
and improving inverse scattering problem solutions [11], [12].

The problem can be formulated as that of determining
the shape and dimensions of a radiating surface D ′ capable
to produce an electromagnetic field E2 as close as possible
to E1, where E1 is the field generated by the “primary”
radiator/scatterer in a targeted region D and E2 is the field
radiated by the “equivalent” source D ′ on D again.

In this sense, the panel D ′ is “equivalent” to the primary
sources/scatterers.

As weak information, we assume here geometrical infor-
mation on the sources/scatterers and, in particular, that they
are confined to a sphere S of a certain known radius aR .
The sphere S can be representative of a true source or an
equivalent one arising from a scattering process. Although
here the region containing the sources/scatterers is assumed
spherical, the method is by no means limited by such an
assumption. The knowledge of the sphere radius and of the
reciprocal geometry between S and D determines the set of
fields to be approximated.

The formulation is given in a clear and unique mathematical
setting so that the problem involves the determination of
effective subspaces and operators linking them. The solution
is provided by a classical tool of linear algebra, namely, the
singular value decomposition (SVD) of the following:

1) the operator A1 linking the radiator/scatterer to E1;
2) the operator A2 linking the equivalent radiating panel

to E2.
The singular functions of such operators associated with the

most significant singular values define the linear subspaces to
which E1 and E2 belong. We determine the dimensions of
the equivalent radiator to reduce, as much as possible, the
error by which E2 approximates E1, independently of the
radiated/scattered field E1. We show that the error can be
represented as a Hermitian, positive-definite quadratic form
and prove that the problem can be tackled as the maximization
of its minimum eigenvalue. The maximization is practically
performed by choosing the mentioned dimensions leading
to an error dropping below a prescribed maximum tolerated
threshold.

The SVD is a well-established tool of linear algebra
that dates back to the XIX century and that enables
a decomposition analysis of linear operators between
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Fig. 1. Flowchart of the approach.

finite-dimensional spaces. It has been extended also to the case
of infinite-dimensional spaces by the singular value expansion.
SVD enables to enucleate the relevant part of a linear operator
when the singular value dynamics is analyzed. In particular,
it returns the relevant input and output vector spaces [13], [14],
[15], [16], [17], [18], [19], [20], [21]. Furthermore, depending
on the adopted scheme, it also enables a regularization of the
inversion process.

The purpose of this article is, however, identifying the
relevant part of linear operators using SVD. Our full procedure
is shown in Fig. 1.

1) Give the following:

a) the geometry of the primary source;
b) the output domain D ;
c) a rough position and typology of the secondary

source (e.g., surface radiator of rectangular shape).
2) Define the radiation operator A1.
3) Determine the relevant part of A1.
4) Identify the relevant range of A1, namely, the subspace

of the fields radiated over D .
5) Synthesize a minimum-sized secondary source so that,

once defined A2, the range of A2 contains that of A1; in
this way, A2 is capable to radiate, over D , all the fields
that can be radiated by A1, according to a prescribed
tolerance.

We explicitly mention that the approach proposed in this
article can also be exploited in the field of plane wave
synthesis and, in particular, to determining the dimensions of
the radiating panel by which tilted plane waves having tilt
angle within a preassigned cone can be accurately radiated in
a quiet-zone region [8].

In this article, we consider the particular case of a flat
panel of rectangular shape and a flat domain D parallel to
D ′ again of rectangular shape and propose an approach for
the solution of the dimensioning problem. For the sake of
simplicity, a scalar problem is considered. Such assumptions
will by no means limit the validity of the approach and will
enable to expound all the theoretical aspects of the method.

The solution is new and, to the best of our knowledge,
the dealt-with problem has not been yet consistently faced
in all its aspects. The first results of this approach have been
presented in [22], while the first ideas were published in [23],
[24], and [25]. However, the following conditions hold.

1) All the mathematical aspects of the method just sketched
in [24] are presented.

2) Full mathematical proofs of the main results, with par-
ticular attention to the approximation error expressed
as a Hermitian positive-definite quadratic form, are
presented.

3) An extensive numerical analysis, with totally new test
cases, involving a planar scatterer, an aggregate of small
scattering spheres, and a solitary scattering sphere are
shown.

The approach dealt with in this article permits to face
the problem in its generality, in particular, by enabling to
determine the shape and dimensions of the radiating panel by
minimizing the maximum approximation error. Here, we focus
the attention on the only determination of the size of the
equivalent radiator.

We mention that Maisto et al. [26] considered a problem
similar to the one dealt with in the present contribution with
three main differences: 1) it is 2-D, while ours is 3-D and
dismisses any factorization of the spatial variables; 2) the
source is a strip instead of a sphere; and 3) the domain of
interest is in the far zone, while it is located in the near
zone in our manuscript. In [26], the matching between the
fields associated with the radiator/scatterer and the panel is
performed uniquely based on matching between the dimen-
sions of their respective involved embedding vector spaces.
Of course, by this, a representation within a prescribed relative
error is not possible. Here, the matching considers the actual
properties of the vector spaces embedding the fields of interest
and relies on the more complete capability of approximating
any field radiated by the source/scatterer with a field radiated
by a proper panel, guaranteeing a desired degree of accuracy.

This article is organized as follows. In Section II, the
dimensioning problem is presented in its mathematical detail.
Section III is devoted to the presentation of the solution
approach, while Section IV contains the numerical analysis.
Finally, in Section V, the conclusions are gathered and future
developments foreseen.

II. PROBLEM

The geometry of the considered problem is shown in Fig. 2.
The sphere S has radius aR and encloses one or more sources
and/or scatterers 6. The domain of interest D on which we
want to reproduce the field generated by 6 is a rectangular
portion of plane of dimensions 2a × 2b, set a distance d apart
from the center of S . On introducing the Oxyz, O ′x ′y′z′,
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and O ′′x ′′y′′z′′ coordinate systems as in Fig. 2, behind S ,
a radiating panel D ′ is positioned at a distance d ′ apart
from the center of the sphere. The radiating panel is once
again a rectangular portion of plane, this time of dimensions
2a′

× 2b′, parallel to D and located a distance d = d − d ′

apart from it.
We remark that the presence of 6 and of the radiating

panel D ′ is reciprocally exclusive. The enclosing sphere and
the radiating panel are never present simultaneously since the
radiating panel has the task to radiate the same field of the
objects within S .

In this article, the purpose is to determine the dimensions
2a′ and 2b′ of D ′ able to reach a desired accuracy in approxi-
mating E2 by E1, whichever the radiated/scattered field E1 is.
To this end, without loss of generality, we consider a scalar
problem and introduce two operators, which we call the source
operator A1 and the panel operator A2, which return the scalar
fields E1 and E2 of interest, respectively, on D .

A. Source Operator A1

On adopting a spherical harmonics field representation [27],
the field E1 on D can be expressed as

E1(x, z) =

∞∑
l=0

l∑
m=−l

almh(2)
l

(
β

√
d

2
+ x2 + z2

)
Y m

l (θ, φ)

(1)

where alm’s are (complex) the expansion coefficients, θ and
φ are the angular spherical coordinates of the point (x, d, z),
Y m

l (θ, φ)’s are the spherical harmonics defined as

Y m
l (θ, φ) = (−1)m

√
2l + 1

4π

(l − |m|)!

(l + m)!
P |m|

l (cos θ)e jmφ (2)

Pm
l ’s are the associated Legendre polynomials

Pm
l (r) = (−1)m(

1 − r2) m
2

dm Pl(r)

drm
(3)

Pl’s are the Legendre polynomials, and h(2)
l ’s are the spherical

Hankel functions of the lth order and second kind defined as

h(2)
l (r) =

√
π

2r
H (2)

l (r) (4)

in which H (2)
l ’s are the cylindrical Hankel functions. In (1),

the condition
√

d
2
+ x2 + z2 > aR has been understood.

If βaR is sufficiently larger than 1 and D is sufficiently far
from S , then (1) can be rewritten involving a finite number
of terms as

E1(x, z) ≃

⌊βaR⌉∑
l=0

l∑
m=−l

almh(2)
l

(
β

√
d

2
+ x2 + z2

)
Y m

l (θ, φ)

(5)

where ⌊ξ⌉ is the nearest integer to ξ . Accordingly, the
source operator A1 linking the relevant spherical harmonics

coefficients to the field E1 produced by 6 on D can be
defined as

A1 : {alm}
⌊βaR⌉

l=0,|m|≤l

→

⌊βaR⌉∑
l=0

l∑
m=−l

almh(2)
l

(
β

√
d

2
+ x2 + z2

)
Y m

l (θ, φ). (6)

B. Panel Operator A2

Similarly, we can use a representation based on the prolate
spheroidal wave functions (PSWFs) [28], [29] for the current
JD ′ on D ′, which leads to a PSWFs expansion of the asso-
ciated plane wave spectrum (PWS). In other words, the PWS
Ê(kx , kz), kx and kz being the conjugate variables to x and z,
respectively, can be written as

Ê(kx , kz) =

∞∑
m=0

∞∑
n=0

bnm8n

[
cx , a′

kx

β

]
8m

[
cz, b′

kz

β

]
(7)

where cx = βa′, cz = βb′, bnm’s are (complex) expan-
sion coefficients, and 8k[cw, w] is the kth PSWF with
space–bandwidth product equal to cw. As before, if βa′

and βb′ are sufficiently larger than one and D and D ′ are
sufficiently spaced, then the expansion (7) can be truncated
as [28], [29]

Ê(kx , kz) ≃

M∑
m=0

N∑
n=0

bnm8n

[
cx , a′

kx

β

]
8m

[
cz, b′

kz

β

]
(8)

where N =
⌊

4a′/λ
⌉

and M =
⌊

4b′/λ
⌉

. Accordingly, if D ′ is
sufficiently far from D , the operator A2 linking the PSWF
coefficients to the field E2 produced by D ′ on D can be
defined as

A2 : {bnm}
0≤m≤M
0≤n≤N

→

M∑
m=0

N∑
n=0

bnmF

{
8n

[
cx , a′

kx

β

]
8m

[
cz, b′

kz

β

]
e− jky d

}
(9)

where F denotes the Fourier transform operator and k2
x +k2

y +

k2
z = k2, in which k is the wavenumber.

C. Dimensioning Problem

The dimensioning problem consists of making the image
of A2 the smallest possible one containing that of A1. From
a practical point of view, however, strict containment is not
necessary and it is sufficient that the image of A2 provides a
good approximation of the whole image of A1.

In order to enforce the latter condition, we resort to the
singular value expansions of A1 and A2, namely

A1(a) =

N (1)∑
k=1

σ
(1)
k v

(1)
k (x, z) aT

· u(1)∗
k

A2(b) =

N (2)∑
k=1

σ
(2)
k v

(2)
k (x, z) bT

· u(2)∗
k

(10)

where {σ
(i)
k , v

(i)
k , u(i)

k }
N (i)

k=0 are the singular systems of Ai ,
i = 1, 2, and ⟨·, ·⟩. The functions v

(1)
k (x, z)’s expand E1(x, z),

while the functions v
(2)
k (x, z)’s expand E2(x, z).
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Fig. 2. Geometry of the problem.

The expansions (10) are finite-dimensional since the input
spaces of operators A1 and A2 are finite-dimensional. Nev-
ertheless, depending on the behavior of the singular values
σ

(i)
k ’s, the expansions (10) can be further truncated to K (i)

terms, i = 1, 2, namely
A1(a) ≃

K (1)∑
k=1

σ
(1)
k v

(1)
k (x, z) aT

· u(1)∗
k

A2(b) ≃

K (2)∑
k=1

σ
(2)
k v

(2)
k (x, z) bT

· u(2)∗
k .

(11)

In (11), K (i), i = 1, 2, represents the number of singular
values above a prescribed threshold.

Enabling the panel D ′ to generate on D all the possible
fields radiated/scattered by objects inside S requires to let
the subspace S2 spanned by {v

(2)
k (x, z)}K (2)

k=1 be the smallest
one containing the subspace S1 spanned by {v

(1)
k (x, z)}K (1)

k=1 .
Such a task can be faced by the approach discussed in the
following.

III. SOLUTION APPROACH

We describe the proposed approach for dimensioning the
D ′ panel, i.e., for the determination of the parameters a′

and b′.
We consider a generic field E(x, z) that can be radi-

ated/scattered by objects within the sphere S . In other words,
the following approximation for E is possible

E(x, z) =

K (1)∑
p=1

cpv
(1)
p (x, z). (12)

Being the interest in relative errors, we suppose that E has
unit norm, namely, ∥E∥

2
L 2(D)

= 1.
The best approximation of E radiated by D ′ is its projection

E (Pr) onto S2, namely

E (Pr)(x, z) =

K (2)∑
q=1

dqv
(2)
q (x, z) (13)

where dq = ⟨E, v(2)
q ⟩L 2(D) and ⟨·, ·⟩L 2(D) is the scalar product

in the space L 2(D) of square integrable functions on D .

The mean square error committed by the approximation (13)
is

E 2(c; a′, b′) =
∥∥E − E (Pr)

∥∥2
L 2(D)

(14)

where c is the K (1)
× 1 column vector of the cp’s and ∥·∥L 2(D)

is the norm in L 2(D) and where the dependence of E from the
unknown problem parameters a′ and b′ has been highlighted.
Notice that, being ∥E∥

2
L 2(D)

= 1, the error in (14) is also a
relative one.

It can be seen (see the Appendix) that the squared
error E 2 can be written as

E 2(c; a′, b′) = 1 − cH A c (15)

where H denotes the conjugate transposition and A is a K (1)
×

K (1) matrix having the following generic element:

Amn =

K (2)∑
q=1

〈
v(1)

m , v(2)
q

〉
L 2(D)

〈
v(2)

q , v(1)
n

〉
L 2(D)

(16)

with ∗ expressing complex conjugation. Straightforwardly,
A∗

mn = Anm , and A is Hermitian.
It should be noticed that, having assumed E of unit norm,

the same property holds true also for the coefficients c =

(c1, c2, . . . , cK (1)), namely,
∥∥c

∥∥2
= 1, where

∥∥c
∥∥2

= |c1|
2

+

|c2|
2
+· · ·+ |cK (1) |

2. The relative error (15) has thus definition
domain on the surface of a K (1)-dimensional unit ball.

The quantity cH A c is a quadratic form defined on a
Hermitian matrix A and is then real. Furthermore, we can
easily prove that such a quadratic form is positive semidefinite.
Indeed, the field E can be decomposed as

E = E (Pr)
+ E (O) (17)

where E (O) represents the projection of E on the subspace
orthogonal to S2. For this reason,

E 2(c; a′, b′) =
∥∥E (O)

∥∥2
L 2(D)

. (18)

Being ∥E∥
2
L 2(D)

= 1, then
∥∥E (O)

∥∥2
L 2(D)

≤ 1 and so

E 2(c; a′, b′) ≤ 1. (19)

By comparing (19) and (15), it is possible to deduce that

cH A c ≥ 0 ∀c, with
∥∥c

∥∥2
= 1. (20)

It makes thus sense to determine the maximum error
committed by varying the coefficients c on the unit ball.
The maximum error E 2 on the unit ball is then reached
in correspondence to the minimum of cH A c. Since A is
Hermitian, the eigenvalues en are real. The minimum of the
quadratic form at hand on the unit ball is equal to the minimum
emin of such eigenvalues. The maximum square error is so

E 2
max (a

′, b′) = max
∥c∥

2
=1

E (c; a′, b′) = 1 − emin. (21)

We notice that Fourier transform relations are useful to
evaluate, in a fast way, input–output operator relations when
geometry allows. For the geometry considered in this article,
it has been possible to exploit the assumptions of a flat panel
and targeted regions to enable the fast evaluation of the panel
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operator by using the Fourier transform relation involved in the
PWS representation. In particular, the fast Fourier transform
(FFT) algorithm has been adopted. On the other side, our
formulation relies on the capability of the SVD to provide
the essential part of the involved operators as well as their
essential input and output spaces regardless of shape and size
of the involved domains.

Here, for the sake of simplicity, we will assume a square
domain D , namely, a = b, so that we guess that also the
optimal radiating panel is square, namely, a′

= b′, due to the
system symmetry. Moreover, we assume that the maximum
square error E 2

max (a
′) reduces for an increasing a′. Indeed, for

an increasing a′, the size of the space of the fields radiated
by D ′ increases and we expect that the subspace spanned by
{v

(2)
k (x, z)}K (2)

k=1 “includes” even better the subspace spanned by
{v

(1)
k (x, z)}K (1)

k=1 . We expect also that the decrease in E 2
max (a

′)

with a′ is monotonic.
The practical determination of the optimal size a′ is obtained

as the smallest value a′ making

E 2
max (a

′) ≤ E
2
max (22)

where E
2
max is a maximum tolerable square error.

The concept of angle between subspaces resounds the
approach used in this article, but our approach is the effective
one to guarantee the prefixed tolerance. According to the
definition by Risteski and Trenc̆evski [30] and Zhua and
Knyazev [31], the determinant of matrix A coincides with
cos2 θ , where θ is the angle between the two subspaces S1
and S2. In [30], it is also shown that det (A) is the product
of the eigenvalues.

The aim of our approach is defining a radiating panel so
that S1 is in fact a subspace of S2, but, to achieve this goal,
we are maximizing the minimum eigenvalue of A. We are
thus not targeting a condition of vanishing angle between the
two subspaces S1 and S2 and minimizing the angle between
S1 and S2 does just something similar to our procedure.

Once designed the dimensions of the radiating panel D ′,
the problem arises of determining the current distribution
supported on D ′ capable to radiate the same field of the
radiator/scatterer located within the sphere S .

Once assigned the field radiated/scattered on D , the inverse
problem of determining JD ′ and, in particular, the PSWFs
coefficients bnm’s, can be solved in a regularized way by a
truncated SVD of A2 [5], [6].

In this article, a continuous radiating panel D ′ is considered.
Guidelines for its discretization have been provided in [8]
and [13].

Finally, we stress that the number of significant singular
values of the two operators A1 and A2, namely, K (1) and
K (2), represents the essential dimensions of their respective
output subspaces S1 and S2 that are embedded in a larger
space. We observe that an equal dimensionality of the two
subspaces does not guarantee that they are close to each other
so that comparing the two essential dimensions K (1) and K (2)

should be better regarded as an order relation and attempting
to balance K (1) and K (2) is not diriment. We also stress that
we are actually not demanding that S1 and S2 are essentially

Fig. 3. Illustrating how the condition S2 ⊇ S1 is reached during the panel
dimensioning.

the same, which would be a too strong request. We are instead
requiring that the output space of the panel operator contains
that of the source operator. This request is weaker since S2 is
enabled to show more vector directions than S1. In other
words, acceptable solutions to the problem include cases when
the equivalent panel radiates also along functional directions
orthogonal to those of the primary source. Obviously, once
S2 ⊇ S1, requiring that K (2) gets closer to K (1) becomes
desirable. Furthermore, the condition K (1)

≃ K (2) is not
sufficient to guarantee that S2 ⊇ S1.

The order relation between K (1) and K (2) is exemplified in
Fig. 3 in which K (1)

= 2. Suppose that, for an initial panel
size, the range of A2 is given by the only vector v

(2)
1 ⊂ S1 so

that S2 ⊂ S1. Suppose now that, by increasing the panel size,
the new vector v

(2)
2 , orthogonal to S1, appears in the range

of A2. This situation is still not sufficient to guarantee that
S2 ⊇ S1, notwithstanding now K (1)

= K (2). Assume finally
that, by increasing again the panel size, the new vector v

(2)
3

appears in the range of A2. We can now stop increasing the
panel size since S2 ⊃ S1. Nevertheless, K (2) > K (1) since
the vector v

(2)
2 is useless to our purposes.

It should be noticed that, although the dimensioning can
lead to K (2) > K (1) and S2 ⊃ S1, a degree of freedom
is, however, left to the design stage of the secondary source.
Indeed, the secondary source will be requested to excite only
v

(2)
1 and v

(2)
3 and not also v

(2)
2 .

IV. NUMERICAL RESULTS

In this section, we present numerical results to assess the
performance of the approach.

First, we illustrate the panel dimensioning. Later on,
we consider three different test cases in which one or more
objects present within the sphere S scatter an impinging
field. All the three cases share the same dimensioned panel,



5986 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 7, JULY 2023

Fig. 4. Dimensioning. Error curve for different values of a′/λ = b′/λ .

while the panel excitation synthesis changes depending on the
scatterers contained in S .

In this article, without loss of generality, we address scat-
tering cases from perfectly electric conducting objects only
instead of radiation ones. In all the test cases, when performing
the inversions of operator A2, its singular values have been cut
at a level of 40 dB below their maximum one. Furthermore,
for all the test cases, the reference fields have been generated
by Altair FEKO.

A. Panel Dimensioning

Concerning the panel dimensioning, the sphere S has been
assumed having radius 4λ , and the region D has been sup-
posed to have dimensions a = b = 7.5λ , while the spacings
d ′ and d have been set to 7λ and 17λ , respectively. In Fig. 4,
the error curve Emax is reported against a′/λ = b′/λ . As it
can be seen, the error keeps less or equal to 1, as expected.
Moreover, the function Emax (a′) is decreasing. On assuming a
(relative) maximum error of 0.1 acceptable, then the minimum
size of the radiating panel a′

= b′ is 40λ . Therefore, in all
the test cases that will be presented in the following, a panel
as large as 40λ × 40λ will be considered.

We notice that the value of 40λ for a′ and b′ is significantly
larger than that of a and b due to the relatively large values
considered for d ′ and d.

Theoretically, D ′ and D can be arbitrarily close, provided
that the reactive contributions to the field radiated by D ′ on
D are considered.

However, in practical applications, D ′ must be physically
realized: it will represent a real radiator under the aperture
modeling and its mutual coupling with probes or devices under
test located in D may arise and should be possibly avoided or
considered.

In order to refer to a practical application, let us consider
the automotive [9], [10] case in which the radiating panel
should be capable to radiate the field scattered by different
kinds of objects (pedestrians, bicycles, cars, and so on) on the
radar sensor. Obviously, in the case when the radiating panel is
chosen very close to the radar sensor, the effect of the mutual
coupling should be explicitly considered and handled.

Fig. 5. Case #1. FEKO view of the scattering plate case. Left: scattering plate
is pictured in gray. Right: domain D is displayed in ocra and the illuminating
elementary dipole is also visible.

Similarly, also, S and D ′ can be arbitrarily close. However,
when both are very close to D , again, the reactive contributions
to the field radiated by S and D ′ on D should be considered.

Finally, due to the arbitrariness of the position of D ′, the
devised approach can also be employed to define the best panel
position according to prefixed criteria.

We also notice that our approach pursues a general pur-
pose, and in this article, we analyze the problem principles.
Depending on the need, the radiating panel can be set closer
and sized smaller if a larger error can be tolerated.

B. Case #1: Plate

Following the panel dimensioning, as a first test case,
we consider that of a square perfectly conducting plate
inscribed within a sphere of radius 4λ (see Fig. 5). Testing the
performance of the approach in this case is of interest being
the plate a canonical scatterer. The plate has a side of 8/

√
2λ .

In all the following simulations, the scatterers are illuminated
by an elementary dipole located at the center of D and oriented
along the y-axis.

In Figs. 6 and 7, the amplitude and phase of the current
distribution on D ′ is displayed. As it can be seen, the field
is significant and the phase is approximately constant in the
region of the radiating panel just in front of the plate.

From Fig. 8, it is possible to compare the amplitude and
phase of the field scattered by the plate with that radiated
by the panel at hand. The capability of the radiating panel
of reproducing such a scattered field with high accuracy can
be better appreciated by the field cuts along x and y in
Figs. 9 and 10, respectively. The percentage error experienced
while reproducing the scattered field with that radiated by
D ′ has been 0.03%, well below the previously considered,
maximum tolerated error. In other words, 0.1 is just the
maximum relative mean square error, while there are many
possible fields in the set of fields radiated/scattered by the
sources/scatterers that correspond to lower errors.

C. Case #2: Many Spheres

Let us consider now a scatterer more complex than the
previously considered one. More in detail, we address the case
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Fig. 6. Case #1. Amplitude of the synthesized current distribution on D ′ for
the plate case.

Fig. 7. Case #1. Phase of the synthesized current distribution on D ′ for the
plate case.

Fig. 8. Case #1. Amplitude and phase of the field on D . Left: field radiated
by D ′. Right: field scattered by the plate inscribed in S .

of an aggregate of 24 small spheres having radius λ/10 and
randomly located within S (see Fig. 11).

Fig. 9. Case #1. Cut, along the x-axis, of the field amplitude radiated by
D ′ (red line) and scattered by the plate (blue asterisks).

Fig. 10. Case #1. Cut, along the x-axis, of the field phase radiated by D ′

(red line) and scattered by the plate (blue asterisks).

In Figs. 12 and 13, the amplitude and phase of the current
distribution on D ′ is depicted. As appreciable, the field is
significant in the region of the radiating panel just in front
of the scattering spheres.

From Fig. 14, it is possible to compare the amplitude and
phase of the field scattered by the aggregated spheres with
that radiated by the panel in question. The ability of the
radiating panel of reproducing such a scattered field with high
accuracy can be better appreciated by the cuts along x and y in
Figs. 15 and 16, respectively. The percentage error committed
while reproducing the scattered field with that radiated by D ′

has been equal to 0.12%, once again well below the maximum
tolerated error.

We finally notice that, following our procedure, the space
of the fields that can be radiated by the primary source is
fully represented, within the prescribed accuracy, by those
radiated by the panel. Thus, the method will also work when
only the sidelobes of the field radiated by the primary source
are observed in D . From this point of view, we remark
that the present test case #2 has been constructed to have
an intense field also outside the domain D and so to prove
that the approach works well when the field radiated by the
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Fig. 11. Case #2. FEKO view of the scattering spheres aggregate case.
On the left, 24 spheres having a radius equal to λ/10 randomly positioned
in S . On the right, the domain D is displayed in ocra and the illuminating
elementary dipole is also visible.

Fig. 12. Case #2. Amplitude of the synthesized current distribution on D ′

for the many spheres case.

Fig. 13. Case #2. Phase of the synthesized current distribution on D ′ for
the many spheres case.

source/scatterer is essentially confined to D as in cases #1
and #3, see also the following.

Fig. 14. Case #2. Amplitude and phase of the field radiated on D . Left:
field radiated by D ′. Right: field scattered by the spheres aggregate.

Fig. 15. Case #2. Cut, along the x-axis, of the field amplitude radiated by D ′

(red line) and scattered by the spheres aggregate (blue asterisks).

Fig. 16. Case #2. Cut, along the x-axis, of the field phase radiated by D ′

(red line) and scattered by the spheres aggregate (blue asterisks).

D. Case #3: Solitary Sphere

Let us conclude the numerical cases by considering that
of a solitary sphere of radius 4λ (see Fig. 17). This case



CAPOZZOLI et al.: DIMENSIONING FLAT EQUIVALENT RADIATORS 5989

Fig. 17. Case #3. FEKO view of the scattering sphere case. On the left,
24 spheres having radius equal to λ/10 randomly positioned in S . On the
right, the domain D is displayed in ocra and the illuminating elementary
dipole is also visible.

Fig. 18. Case #3. Amplitude of the synthesized current distribution on D ′

for the solitary sphere case.

is presented since the sphere gives rise to a scattered field
receiving only a weak tapering in D , thus representing a
difficult test case.

In Figs. 18 and 19, the amplitude and phase of the current
distribution on D ′ are illustrated by highlighting, once again,
that the field is significant on the region of the radiating panel
just in front of the sphere.

From Fig. 20, it is possible to compare the amplitude and
phase of the field scattered by the sphere with that radiated
by the panel at hand. The capability of the radiating panel of
reproducing such a scattered field with high accuracy can be
better appreciated by the cuts of such fields along x and y in
Figs. 21 and 22, respectively. The percentage error committed
in reproducing the scattered field has been equal to 0.10%,
much below the maximum tolerated error.

E. Reducing the Panel Size

In this section, we shortly highlight how the performance of
the approach degrades for a diminishing size of the radiating
panel for the three, previously considered cases, namely, plate,
many spheres, and solitary sphere. In particular, in Fig. 23,

Fig. 19. Case #3. Phase of the synthesized current distribution on D ′ for
the solitary sphere case.

Fig. 20. Case #3. Amplitude and phase of the field radiated on D . Left:
field radiated by D ′. Right: field scattered by the solitary sphere.

Fig. 21. Case #3. Cut, along the x-axis, of the field amplitude radiated
by D ′ (red line) and scattered by the solitary sphere (blue asterisks).

we show how the percentage error between the reference and
radiated field fastly grows when the panel size is reduced.
It has been highlighted [8] how, for the targeted applications,
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Fig. 22. Case #3. Cut, along the x-axis, of the field phase radiated by D ′

(red line) and scattered by the solitary sphere (blue asterisks).

Fig. 23. Percentage errors (in a decibel scale) for different sizes of the
radiating panel.

having an accurate reproduction of the near field is particularly
relevant.

F. Results for a Radiating Panel Closer to the
Radiator/Scatterer

In this section, we show the performance of the approach for
a radiating panel located closer to the radiator/scatterer than
before. In other words, we consider a smaller value of d ′

= 5λ ,
the other system parameters being unchanged. On assuming
once again a (relative) maximum error of 0.1 acceptable, then
the minimum size of the radiating panel a′

= b′ has been 30λ ,
smaller than previously.

Furthermore, we address again the case of the aggregate of
the 24 small spheres. In Figs. 24 and 25, the amplitude and
phase of the current distribution on D ′ are depicted. Also, from
Figs. 26 and 27, the cuts along x and y of amplitude and phase,
respectively, of the field scattered by the aggregated spheres
can be compared to those radiated by the panel in question,
showing again a satisfactory agreement.

Fig. 24. Closer radiator case with many spheres. Amplitude of the synthesized
current distribution on D ′.

Fig. 25. Closer radiator case with many spheres. Phase of the synthesized
current distribution on D ′.

Fig. 26. Closer radiator case with many spheres. Cut, along the x-axis, of the
field amplitude radiated by D ′ (red line) and scattered by the many spheres
(blue asterisks).

The percentage error committed while reproducing the scat-
tered field with that radiated by D ′ has been equal to 0.11%,
once again well below the maximum.
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Fig. 27. Closer radiator case with many spheres. Cut, along the x-axis, of the
field phase radiated by D ′ (red line) and scattered by the many spheres (blue
asterisks).

We finally notice that approaching the domain D to the
radiators/scatterers would not produce a size reduction of D ′ as
well since the radiating panel would be appointed to reproduce
a proper number of degrees of freedom.

V. CONCLUSION

We have tackled the problem of modeling a radiator or
a scatterer using an equivalent radiator. Having prefixed the
shape of the equivalent radiator, we have introduced an
approach for the solution of such sizing issue.

The approach relies on the use of the SVD of the operators
linking the radiator/scatterer to the field on the region of
interest and the equivalent radiating panel to the field on
the same domain. The singular functions of such operators
corresponding to the most significant singular values represent
the spaces to which the fields radiated by the primary radia-
tor/scatterer and that radiated by the equivalent one essentially
belong. The approach consists of determining the dimensions
of the equivalent radiator minimizing the error by which the
field radiated on D by the equivalent radiator approximates
the primary radiated/scattered one. The error is expressed as a
Hermitian, definite positive quadratic form so that the problem
amounts to the maximization of its minimum eigenvalue.

Having introduced the approach for the first time, in this
article, we have considered the particular case of rectangular
panel and focused the attention on the dimensioning problem.
In the future, we will deal with the generalization of the
method to the determination of the optimal panel shape also.

We explicitly mention that the approach can be easily
extended to other kinds of problems whenever a linear formu-
lation is possible. In particular, it can be applied to problems
involving partially coherent or totally incoherent sources or
scatterers.

Simulated results have been shown for an equivalent, planar
radiator of rectangular shape. The radiating panel has been
dimensioned to keep the maximum relative square error below
0.1. Three test cases have been considered: a solitary plate,
an aggregate of electrically small spheres, and a solitary

sphere. In all the cases, the error committed by the radiat-
ing panel has resulted significantly smaller than the targeted
maximum error.

In this article, we have considered a “continuous” radiating
panel. Discretizations of such panel can be obtained by using
Gaussian quadrature or the singular value optimization (SVO)
approach using the guidelines in [8] and [13].

The exploitation of the proposed approach to dimension a
radiating panel capable to produce, in a quiet-zone region,
tilted plane waves with tilt angle within a preassigned cone will
be subject of future investigations. Also, we plan to investigate
the use of different normed spaces, e.g., Sobolev spaces instead
of L 2 spaces, to embed the error evaluations.

APPENDIX
REPRESENTATION ERROR EXPRESSED

AS A QUADRATIC FORM

After having decomposed the generic field E that can be
radiated/scattered by objects within the sphere S as

E = E (Pr)
+ E (O) (23)

where E (Pr) is the projection of E onto {v(2)
n (x, z)}K (2)

n=0
and E (O) is its projection on the subspace orthogonal to
{v(2)

n (x, z)}K (2)

n=0, then the error E 2(c; a′, b′) can be rewritten
as

E 2(c; a′, b′) = 1 −
∥∥E (Pr)

∥∥2
(24)

having observed that ⟨E (Pr), E (O)
⟩ = 0 and having exploited

the condition ∥E∥ = 1. Here, the subscript L 2(D) of the norm
and the scalar product is being dropped for ease of notation.

According to (13), ∥E (Pr)
∥

2 can be written as

∥∥E (Pr)
∥∥2

=

K (2)∑
q=1

|dq |
2

=
∥∥d

∥∥2
2 (25)

where ∥·∥2 denotes the squared norm for the sequences and
d = (d1, d2, . . . , dK (2)).

Since, from the definition of the dq ’s, we have that

dq =

K (2)∑
p=1

cp⟨v
(1)
p , v(2)

q ⟩ (26)

then

∥d∥
2

=

K (2)∑
p′,p′′=1

cp′c∗

p′′

〈
v

(1)
p′ , v(2)

q

〉〈
v(2)

q , v
(1)
p′′

〉
(27)

so that

∥∥E (P)
∥∥2

=

P∑
p′,p′′=1

cp′c∗

p′′ Ap′ p′′ (28)

where

Ap′ p′′ =

K (2)∑
q=1

〈
v

(1)
p′ , v(2)

q

〉〈
v(2)

q , v
(1)
p′′

〉
(29)
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is the generic element of the K (1)
× K (1), Hermitian matrix A.

Accordingly, on defining c = (c1, c2, . . . , cK (1)), (28) can be
written as ∥∥E (P)

∥∥2
= cH Ac (30)

and so

E 2(c; a′, b′) = 1 − cH Ac. (31)
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