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Multiple Scattering Model for Beam Synthesis With
Reconfigurable Intelligent Surfaces

Tommi E. Rimpiläinen and Riku Jäntti , Senior Member, IEEE

Abstract— This article presents a method of synthetic beam-
forming for reconfigurable intelligent surfaces (RIS). The method
uses a T -matrix-based multiple scattering model to compute the
scattering from the RIS. We assume that the elements of the RIS
are infinite circular cylinders. This allows us to make the model
2-D. Furthermore, we assume that the RIS elements satisfy the
impedance boundary condition (IBC), the complex parameter of
which adjusts the phase shift of the scattered field. We synthesize
the beam both analytically and numerically. Both approaches rely
on an approximation that assumes RIS elements that are small
compared to the wavelength. We demonstrate the efficacy of the
beam synthesis by applying it in a test case that features a linear
array of RIS elements.

Index Terms— Beam steering, boundary conditions, reconfig-
urable intelligent surfaces (RIS), surface impedance.

I. INTRODUCTION

MODERN telecommunication technologies use advanced
physical layer components that allow the services to

adapt to changing situations in real-time. If several transceivers
are available in the environment, the service can adapt to
changes by adjusting the emitted signals of the transceivers.
However, if suitable components are used, the service can
fine-tune itself according to the demands of the situation,
even without an extensive set of transceivers, by adjusting
the propagation environment instead of the emitted signal
[1], [2]. The important distinction is that the propagation
environment can be adjusted by using passive elements that
are relatively inexpensive and therefore scalable. A component
that holds particular promise in passively adjusting the prop-
agation environment is the reconfigurable intelligent surface
(RIS). A surface is a versatile tool that can be deployed in
several ways—even embedded inside a wallpaper.

Although RIS has been studied extensively in the literature
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], the existing
literature tends to focus on the far region of the RIS. It is also
possible to model the RIS with scattering parameter network
analysis—treating the wireless channel as a linear multiport
network [13]. This approach avoids an explicit discussion of
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the physical propagation mechanism of electromagnetic fields.
Although relatively little has been written about modeling the
electromagnetic fields of the RIS in the near region [14],
[15], [16], the near region is essential for many prospective
applications of the RIS. This is the case, for example, when
an RIS covers a significant portion of a wall inside a room
in which measurements are conducted. Therefore, this article
uses a propagation model that is valid in both the near region
of the reflecting surface and in the far region. Moreover, the
model is not only valid in the near region of the surface, but
also in the near regions of the individual RIS elements. It is
necessary to know the near-region electromagnetic response
precisely when we aim to accurately model the interactions
between the RIS elements.

This article considers a particular use case of RIS. The
goal is to use the surface as a reflector element in a reflector
antenna, where the receiver element is too small to achieve a
high directivity by itself but is able to focus its beam sharply
with the aid of the reflecting surface (Fig. 5). We refer to
this kind of reflector antenna as an RIS augmented receiver.
An important distinction to an ordinary reflector antenna is
that the beam of the augmented receiver can easily be steered
in real time without physically rotating the antenna. In this
respect, the augmented receiver more resembles an antenna
array than an ordinary reflector antenna.

To study the properties of the RIS-augmented receiver,
we use an idealized 2-D electromagnetic propagation model.
In the model, the scattering elements of the RIS are taken to
be infinitely long circular cylinders, the axes of which are all
oriented in the same direction. To make these cylinders serve
as the elements of an RIS, we design the cylinders in a way
that allows them to scatter a signal-carrying electric field with
a given amount of delay. The delayed scattering is modeled
with an electromagnetic boundary condition that implements
a customized phase shift. For this purpose, the impedance
boundary condition (IBC) proves suitable (Section III-A).

Because the RIS elements are assumed circular, the imping-
ing electromagnetic field scatters in all directions from each
element. Therefore, part of the scattered field of a given ele-
ment impinges another element in the array. As the mechanism
repeats, the initial scattered field is further scattered several
times in a process of multiple scattering [17]. When we
design the RIS-augmented receiver, it is important to account
for the multiple scattering processes because the field that
the receiver element of the augmented receiver registers is
a combination of the directly impinging plane wave and the
field that the RIS elements passively produce by multiple
scattering.
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Typical implementations of an RIS can adjust the phase
shifts of the RIS elements only in discrete steps, rather than
continuously [8]. This design limitation is relevant when the
RIS-augmented receiver is used for beamforming. Because of
the design limitation, the orientations of the mainlobes that
the augmented beamformer can implement are generally all
different from the desired orientation, so the beam cannot be
steered in the correct direction. However, we can synthesize a
beam in any direction using the discrete set of beams that the
augmented receiver gives. A novel method of beam synthesis
is introduced in Section IV-B.

In sum, the contributions of the present article are the
following.

1) An RIS is implemented with IBC cylinders
(Section III-A).

2) An RIS is modeled with the theory of electromagnetic
multiple scattering (Section III-B).

3) With an RIS based on IBC cylinders, beam synthesis is
demonstrated (Sections IV and V).

4) The full-wave electromagnetic field theory is applicable
both in the near region of the RIS and in the far region,
which allows us to study the near-region electromagnetic
response of the RIS in a situation where the primary field
source is distant (Section IV).

These contributions are novel, so far as the authors are aware.

II. MATRIX CONVENTIONS

We follow some well-established conventions of matrix
notation throughout the article for clarity of representation.
We use capital letters of the bold typeface, like T or Q,
to denote matrices. We use lower case letters of the bold
typeface, like a or vk, to denote column vectors. We use the
vector transpose κT or the Hermitian transpose wH

= (wT )∗

when we refer to row vectors. We denote a column vector of
unit elements by 1. A matrix with elements ai j is denoted
[ai j ]. Likewise, a matrix with column vectors an is denoted
[an]. A diagonal matrix with diagonal entries from a vector a
is denoted by diag(a).

A given vector norm ∥ · ∥ induces a matrix norm by the
following equation:

∥A∥ = sup
x̸=0

∥Ax∥

∥x∥
.

We leave unspecified the variety of the vector norm, so that the
norm can be, for example, the taxicab norm or the Euclidean
norm. The condition number of an invertible matrix is

cond(A) = ∥A∥∥A−1
∥

and this is submultiplicative

cond(AB) ≤ cond(A) cond(B). (1)

The Kronecker delta function is

δi j =

{
1, if i = j
0, otherwise

(2)

and the identity matrix is I = [δi j ].

III. PROPAGATION MODEL

A. Delayed Scattering

An individual scattering element is assumed to be an
infinite circular cylinder of radius R, oriented along the
z-axis of the Cartesian coordinate system. We consider the
case where the impinging field is a time-harmonic transverse
magnetic field of an angular frequency ω, that is, of the
form Ei

z(r, t) = uz E i
z(r)e−iωt . The circular shape of the

scatterer makes it convenient to represent the impinging field
E i

z and the scattered field E s
z in the polar coordinate system

r = (r cosϕ, r sinϕ, z) centered on the cylinder. The right-
handed basis (ur ,uϕ,uz) of the coordinate system at a given
point P consists of unit vectors along the coordinate lines of
r , ϕ, and z, respectively, through P (Fig. 1). The rectangular
components of Ei

z and Es
z satisfy the scalar Helmholtz equation

∇
2ψ + k2ψ = 0 (3)

where the wavenumber k depends on the material where the
cylinder is embedded. We assume that the material is linear,
homogeneous, and isotropic, so that k is a scalar of a constant
value. Then, by linearity, the total field Ez = E i

z + E s
z satisfies

(3) whenever E i
z and E s

z do. In the polar coordinate system,
the solutions of (3) feature the Bessel function Jn(kr) and
the Hankel function Hn(kr) of the first kind. In particular, the
waveforms

ψn(r) = Hn(kr)einϕ, ψ̂n(r) = Jn(kr)einϕ (4)

are known to satisfy the scalar Helmholtz equation
[18, Sec. 6.6].

An important qualitative distinction between Jn(kr) and
Hn(kr) is that Jn(kr) remains regular near the axis r = 0 of the
cylindrical coordinates, while Hn(kr) becomes singular at the
axis but remains regular at great distances. The physical signif-
icance of this distinction is that, in (4), the waveforms ψn(r)
reduce asymptotically to outward traveling plane waves and
therefore conveniently represent the outbound fields, whereas
the waveforms ψ̂n(r) represent the impinging fields. At a given
distance r from the center of the cylinder, the impinging field
is a function of the cyclic coordinate ϕ and can therefore be
expanded as a Fourier series

E i
z(r, ϕ) =

∞∑
n=−∞

an Jn(kr)einϕ
=

∞∑
n=−∞

anψ̂n(r). (5)

Similarly, the expansion

E s
z(r, ϕ) =

∞∑
n=−∞

bn Hn(kr)einϕ
=

∞∑
n=−∞

bnψn(r) (6)

is valid for the outbound field.
Because we want to model phase-shifted scattering, we need

to consider a cylinder with a boundary condition that can be
suitably customized to effect the required shift. We, therefore,
consider a cylindrical surface on which the IBC applies. The
isotropic IBC [19, Ch. 3] is

Et = Z(n × Ht ) (7)

where Et and Ht are the components of the electric and the
magnetic field that are tangential to the boundary surface,
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Fig. 1. Scattering from a circular IBC cylinder. The coefficients bm of the
outbound waveforms are a weighed sum

∑
Tmnan of the coefficients of the

impinging waveforms, by linearity. However, it follows from the symmetry of
the geometry that Tmn = 0 when m ̸= n. Delay can be introduced into the
scattered field by adjusting the complex phase of the remaining coefficients
Tmm . We can adjust the complex phase of Tmm by changing the IBC parameter
ξ in (10). When the inclusion is small, only T00 is important. The vector
uz = ur × uϕ is oriented at right angles to the plane of the drawing.

respectively, Z is a given parameter—referred to as the bound-
ary impedance—and n is the unit normal vector of the surface
(Fig. 1). For the particular orientation of the impinging and
outbound fields, we have

Ht = Hϕuϕ = −
1

iωµ
∂Ez

∂r
uϕ (8)

where µ is the permeability of the medium. The IBC (7) can,
therefore, be expressed in terms of the electric field and its
radial derivative, so that

Ez + ξ
∂Ez

∂r
= 0, where ξ ≜

Z
iωµ

. (9)

When we impose this condition at the cylinder boundary
r = R, we find from (5) and (6) and from Ez = E i

z + E s
z

that the coefficients an and bn are related by the following
equation:

bn = −
Jn(k R)+ ξ ∂

∂r Jn(k R)

Hn(k R)+ ξ ∂
∂r Hn(k R)

an = Tnnan (10)

where we define Tnn as the factor that relates the amplitude of
a given component of the impinging field to the corresponding
component of the scattered field. From (10), we see that the
factors Tnn only depend on the boundary condition and the
geometry of the scatterer and not on the impinging field. If we
combine the coefficients into column vectors of infinite length,
so that

a = [an]
b = [bn] (11)

we see that the coefficients bn of the outbound field are given
for all impinging fields by the following equation:

b = Ta (12)

where T is an infinite diagonal matrix with the elements Tnn
at its diagonal. Matrix T is referred to as the T -matrix of the
scatterer. In computation, T is truncated to a suitable size.

Fig. 2. Multiple scattering between IBC cylinders. The radii R j and the
parameters ξ j of the boundary condition can vary between the objects. Also,
some of the objects can be active, with positive emission e j .

The perfectly conducting cylinder—with vanishing Ez at
the surface—is given as the special case, ξ = 0. It is
convenient to compare the phase shift of the more general IBC
cylinder to that of the perfectly conducting cylinder. Although
the scattered field of an IBC cylinder generally differs from
the phase-shifted scattered field of a perfectly conducting
cylinder, the two fields nearly coincide when both cylinders
are sufficiently small, because at this limit the b0 coefficient
in (10) becomes dominant over the other coefficients bn . That
the coefficient b0 of the monopole waveform dominates can
be seen from the asymptotic behavior of H0(k R) as R → 0
[20, eq. (10.7.2)] or by observing that a small cylinder is
unable to support a long multipole axis [21, eq. (5.131)]. When
we truncate the series in (6) to include only the b0 term, we
refer to this as the small element approximation. We obtain the
value ξ of the IBC parameter that corresponds to a phase shift
φ when we, in (10), treat b0 as a function of ξ and require
that b0(ξ) = eiφb0(0). Explicitly, we solve

J0(k R)
H0(k R)

eiφ
=

J0(k R)+ ξ ∂
∂r J0(k R)

H0(k R)+ ξ ∂
∂r H0(k R)

. (13)

We can then find the remaining values Tnn directly from (10).
If the radius of the cylinder is greater than the wavelength,

the cylinder can no longer be regarded as sufficiently small to
allow an approximation that only involves b0. In that case, the
phase shift depends on the propagation direction of the scat-
tered field. For simplicity, we calculate the boundary parameter
ξ assuming that the phase shift is nearly isotropic. Because
(5) and (6) provide the precise magnitude and phase of the
fields independent of the approximation, the conclusions of
the present article do not critically depend on the accuracy of
the approximation. The accuracy of the approximation merely
determines the precision with which a given phase shift φ
can be implemented with the boundary parameter ξ . This
implementation need not be precise for the present purposes.

B. Multiple Scattering

The RIS elements of the augmented receiver have the
primary purpose of scattering the electromagnetic fields that
impinge them to the receiver element. However, the RIS
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elements also scatter one another. We, therefore, have to
account for the resulting multiple scattering processes.

We amend our notation to accommodate several objects
D j by denoting with a j and b j the vectors that hold the
coefficients of the impinging waveforms ψ̂ j

n and the outbound
waveforms ψ j

m . Because the objects that we consider observe
the IBC, it follows that the electric response of the objects is
linear, so a T -matrix representation T j a j gives the coefficients
of the scattered field of a given object D j . The coefficients b j

of the outbound waveforms are the sum of the coefficients of
the scattered field and the coefficients e j of the emitted field,
so that

b j
= e j

+ T j a j . (14)

When N objects D1,D2, . . . ,DN are present, the multiple
T -matrix expressions can be bundled into a single block matrix
expression

b1

b2

...

bN

 =


e1

e2

...

eN

 +


T1 0

T2

. . .

0 TN




a1

a2

...

aN


which we will write more briefly as follows:

b = e + Ta. (15)

We also need to model the physics of wave propagation
to arrive at a system of equations from which a and b can
be determined uniquely (Fig. 2). Assuming that all sources
are explicit—that is, there are no sources that are external
to all the objects D j —and that the objects have no self-
interactions, the impinging field of a given object is the same
as the combined scattered and emitted fields of all the other
objects in the environment. Again, linearity implies that the
wave propagation from objects D1, . . . ,DN to object Di has
the general form

ai
=

∑
j ̸=i

Si j b j (16)

which in the block matrix notation is
a1

a2

...

aN

 =


0 S12 . . . S1N

S12 0 S2N

...
. . .

...

SN1 SN2 . . . 0




b1

b2

...

bN

 (17)

or in brief

a = Sb (18)

where the elements of the matrix S only depend on the relative
positions of the objects Di . When we combine (15) and (18),
we obtain

(I − ST)a = Se
(I − TS)b = e (19)

from which vectors a and b can be separately solved with
numerical linear algebra.

Fig. 3. Addition theorem. An outbound waveform ψn(r2), which is referred
to the origin O2, can be expressed as a sum of impinging waveforms ψ̂n(r1),
which are referred to O1.

The matrix S12 is obtained by employing a theorem that
connects the waveforms that propagate outward from a given
point O2 to the waveforms that propagate inward toward
another point O1. The required theorem is the Graf theorem
[17, eq. (2.25)], which states that

ψn(r2) =

∞∑
m=−∞

ψn−m(r12)ψ̂m(r1) (20)

for r1 < r12. Here, r12 is the vector from O2 to O1 (Fig. 3).
We find the coefficients of S12 when we require that (18) holds
for all vectors b. We can then set b j

= 0 for all j ̸= 2.
In this special case, the field that impinges D1 is precisely the
field that is transmitted by D2, so that in the neighborhood
of D1, we have

∞∑
l=−∞

blψn(r2) =

∞∑
m=−∞

amψ̂m(r1)

=

∞∑
m=−∞

∞∑
l=−∞

S12
mlblψ̂m(r1). (21)

Because the equation holds for all b, we can set bl = δnl ,
so that all coefficients bl vanish except for the coefficient
bn = 1. We then have

ψn(r2) =

∞∑
m=−∞

S12
mnψ̂m(r1) (22)

so that S12
mn = ψn−m(r12), by a comparison with (20), and

more generally

Si j
mn = ψn−m

(
ri j

)
(23)

where ri j is the vector from O j to Oi .
Sources that are located at a significant distance from other

objects in the scattering problem may be treated as sources
of ideal plane waves. They feature in matrices T and S in
a specialized way. Because the sources are far apart from the
other objects, we assume that their scattering can be neglected
in T. Because the exact location of a plane-wave source is
not usually known, we take the vector r12 to be a vector that
reaches O1 from some arbitrary location O2, where the plane
wave has a complex value Ez(r) = ee. If the plane wave
propagates in the direction given by the unit vector k̂, its wave
vector is k = kk̂. The same plane wave can be referred to



4994 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 6, JUNE 2023

as the origin O1 and the origin O2. This gives two different
representations that are connected by the following equation:

eeeik·r2 = eeeik·r12 eik·r1 . (24)

In the coordinates r1 = (r1 cosϕ1, r1 sinϕ1) and with β as
the propagation angle of the plane wave, we have

eik·r1 = eikr1 cos(ϕ1−β). (25)

By the Jacobi identity [17, eq. (4.1)]

eikr1 cos(ϕ1−β) =

∞∑
n=−∞

in Jn(kr1)ein(ϕ1−β)

=

∞∑
n=−∞

ine−inβψ̂n(r1). (26)

Analogous to the derivation of (23), we take the transmitted
field of the plane-wave source D2 to equal the field that
impinges the object D1. Therefore, the analog of (22) is

eik·r2 =

∞∑
m=−∞

S12
m0ψ̂m(r1). (27)

When we collect (24)–(26), compared to (27), and generalize
for all pairs (Di ,D j ), where D j is a plane-wave source,
we have

Si j
n0 = ineik·ri j e−inβ j . (28)

Assuming that all the sources of the electromagnetic fields
are explicit in the problem, the total electric field Ez(r) at a
given point r, where ∀ j r /∈ D j is the sum of the outbound
(i.e., emitted and scattered) fields of all the objects D j .
Therefore,

Ez(r) =

∑
mj

b j
mψm

(
r j

)
. (29)

An alternative way to evaluate the electric field at a given point
Oi is to posit a nonscattering token object Di at the point. The
field that impinges Oi is the sum (29) of the outbound fields
of the other objects. On the other hand, the impinging field
is given by (5). When we evaluate (5) at ri = 0 and use
ψ̂n(0) = δ0n [20, Sec. 10.7(i)], we find

Ez(ri ) = ai
0, at ri = 0. (30)

In summary, the multiple scattering model of the project
involves three types of objects: 1) circular scatterers, which
may also emit primary fields; 2) plane-wave sources; and
3) token receivers.

C. Dominant Path Approximation

When we require an analytical expression for synthetic
beamforming (Section IV-B), it is useful to represent the
solution for the multiple scattering problems in terms of
separate parts that correspond to the different propagation
paths between the objects. Particularly interesting are the
propagation paths that lead from the transmitters to the
receivers through only a few instances of scattering because
the electromagnetic fields that reach the receiver relatively

Fig. 4. Antennas and scatterers. The objects of the multiple-scattering
model are organized into three groups, similar to [22]. The off-diagonal block
matrices of S in (31) quantify the propagation from one object group to
another, whereas the diagonal blocks quantify intragroup propagation. The
received signal in (39) is the sum of the signal that propagates from the
transmitters to the receivers directly and the signal that reaches the receivers
after scattering one or several times from the scattering elements.

directly suffer the least attenuation from absorption at the
interacting objects or from the free-space propagation.

We consider a case where the system of objects consists
of three groups: the transmitters, the RIS elements, and the
receivers (Fig. 4). Because ordering of the indices 1, . . . , N
of the N objects has been arbitrary, we can choose to denote
the transmitters with the least numbers, the receivers with
the greatest ones, and the RIS objects with the numbers in
between. With this order of indexing, the matrix T in (15)
and the matrix S in (18) can be expressed as block matrices

T =

Te
TR

Tr

, S =


See SeR Ser

SRe SR R SRr

Sre Sr R Srr

 (31)

where the subscripts e, R, and r stand for the transmitter, the
RIS, and the receiver, respectively. In contrast to individual
objects, for which self-interactions vanish, groups of objects
can manifest self-interactions, so that S in (31) has no explicit
vanishing diagonal blocks, even when the vanishing diagonal
blocks of S are explicit in the object-level formula (17).

Because the matrices S and T only feature in the system
equation of the multiple scattering problem as products ST and
TS, it is convenient to denote the combined effect of scattering
and propagation by the following equation:

Q = ST. (32)

If we assume that the transmitters and the receivers interfere
with the rest of the objects only weakly, so that Te and Tr
vanish, we have

Q =


0 QeR 0

0 QR R 0

0 Qr R 0

. (33)

It is a matrix identity that when a square matrix I − A
has invertible square blocks I − Ai i at its diagonal, the
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diagonal blocks can be reduced into identity matrices by the
decomposition

I − A =
(
I − Ã

)I − A00 0
I − A11

0 I − A33

 (34)

where Ã has zero matrices along its diagonal. When we use
this decomposition to I−Q, the first equation in (19) becomes(

I − Q̃
)
ã = Se (35)

where Q̃ and ã are of the forms

Q̃ =


0 Q̃eR 0

0 0 0

0 Q̃r R 0

, ã =

I 0
I − QR R

0 I

a. (36)

Those parts of a and ã that correspond to the electromagnetic
fields that impinge the receivers coincide, so that the solutions
for (19) and (35) coincide with the received signal.

The benefit of these matrix manipulations is that the
improved sparseness of Q̃ in (36) allows us to write the
received field in an intuitive form. When we matrix multiply
(35) from the left by I + Q̃ and observe that Q̃2

= 0,
we have

ã =
(
I + Q̃

)
Se. (37)

If C is a conversion matrix that determines the conversion of
the impinging electromagnetic signal to an electric signal yr
inside the objects and if we assume that C only has nonzero
entries that correspond to the receiver elements, we have

yr = Ca =
(
0 0 Cr

)
a

= Cã = C
(
I + Q̃

)
Se (38)

which can be written in terms of the blocks of Q̃ in the explicit
form

yr = Cr
(
Sre + Q̃r RSRe

)
ee. (39)

This expression has a simple intuitive meaning. It states that
the signal that arrives at the receivers is a combination of the
signal that propagates from the transmitter directly and the
signal that propagates through the RIS, through the process of
multiple scattering (Fig. 4).

IV. BEAMFORMING

An RIS can be used to augment a receiver in a way
that makes the directivity of the augmented receiver higher
than it would be without the augmentation. In particular, the
RIS can enhance or reject plane waves depending on their
angle of incidence, when the receiver alone cannot perform
this task because of its small size (Fig. 5). In principle, this
spatial filtering could be implemented by setting the delays
of the RIS elements in a way that enhances the primary
signal by constructive interference or rejects it by destructive
interference, depending on the angle of incidence of the
impinging plane wave. However, this implementation of spatial
filtering would require that the delay vector φ can be adjusted
continuously, whereas practical implementations of an RIS
typically allow only discrete adjustment [8]. To overcome

Fig. 5. Beamforming by a linear array of IBC cylinders. Because the IBC
cylinders can be programed in a way that implements several configurations of
signal delays, the cylinders can effectively act as additional receiver elements,
even when they only scatter the fields without registering them. The IBC
cylinders form a standard linear array, with the centers of the cylinders
separated by the half wavelength λ/2, where λ = 2π/k.

Fig. 6. Conventional beamformer. When a plane wave impinges an array
of receivers, the receivers register a vector of input signals, given by (40).
The weights w∗

n are chosen so that the beamformer adds the input signals
constructively when the plane wave impinges the array from the intended
direction.

this apparent limitation, we implement the continuous set of
delays synthetically, using the multiple scattering models to
help the process of synthetic reconstruction (Section IV-B).
The goal is to synthesize a beam that approximates a beam
of a conventional beamformer (Section IV-A). The beam can
be synthesized using analytical formulae (Section IV-B) or
numerically (Section IV-D).

A. Conventional Beamforming
A conventional receiver array, which consists exclusively

of ordinary receiver elements rather than scattering elements,
serves as a benchmark for the quality of our synthetic
beamforming. In conventional beamforming, the signals that
the individual receiver elements observe are weighed by
the elements of a vector wH and then summed (Fig. 6).
In this section, we assume that the impinging wave is plane,
with the direction of propagation given by the wave vector
k = k(cosϕ ux + sinϕ uy). If the receiver elements are
situated at r1, . . . , rN and the value of the impinging plane
wave is ee at a point of reference r0, the vector of received
signals is  y1

...

yN

 =

eik·(r1−r0)

...

eik·(rN −r0)

 ee ≜ vk(k)ee (40)
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Fig. 7. Synthetic beamformer. The beamformer operates in two stages.
First, the hardware cycles through the configurations i = 1, . . . , N that
determine their own beam patterns ϒi . Second, the software calculates an
approximation yr of the signal that a conventional beamformer with a beam
pattern ϒ would receive. The coefficients κi that enable the mimicking of
conventional beamforming are given by beam synthesis. The inputs of the
synthetic beamformer depend on the impinging plane wave by (40).

where the vector vk(k) accounts for the effect that the array
geometry has on the received signal and is referred to as the
array manifold vector [23, Sec. 2.2]. After the weighed sum
of the signals is taken, the total received signal is

yr = wH vk(k)ee = ϒ(k)ee (41)

where the quantity ϒ(k) determines the spatial filtering char-
acteristics of the conventional receiver array and is referred to
as the beam pattern. To obtain conventional beamforming in
the direction of a given wave vector kT , we choose a weight
vector

wH
=

1
N

(
e−ikT ·(r1−r0) . . . e−ikT ·(rN −r0)

)
(42)

so that the individual signal components interfere construc-
tively when k = kT and decoherently otherwise [Fig. 8(a)].
The normalization coefficient 1/N guarantees ϒ(kT ) = 1.

B. Synthetic Beamforming
We now consider a way to implement spatial filtering that

is comparable with that of a conventional beamformer but
with only one isotropic receiver element at rN and with
programmable circular scattering elements at r1, . . . , rN−1.
Because the scattering elements switch only to a finite number
of states, the array can implement only a finite set of physical
beam patterns ϒi (k). We refer to the process of approximating
the beam pattern ϒ(k) of a conventional beamformer with a
sum

∑
κiϒi (k) as synthetic beamforming (Fig. 7). We refer

to the process of finding the coefficients κi as beam synthesis.
We assume that each of the objects is small compared to the

wavelength while the collection of the objects together spans
a distance of several wavelengths. We also assume that any
given RIS element D j is able to effect a discrete set of phase
shifts, which are the same for all the elements. The RIS cycles
through a set of N configurations, so that the i th configuration
assigns D j the phase shift of φi j . If, in the T -matrix of the RIS
element, the monopole element that determines the scattering

from the small object in the neutral delay configuration is T j
00,

the delayed scattering in the i th configuration is determined
by T j

00eiφi j . We can collect the coefficients eiφi j into the delay
vector

φT
i =

(
eiφi1 eiφi2 . . . eiφi(N−1)

)
(43)

where i = 1, . . . , N and the first delay vector, which
corresponds to the neutral configuration, is φT

1 = 1
T . Using

the small element approximation, we can then take Sr R = sT
r R

to be a row vector in (31). Correspondingly

Qr R = sT
r RTR = qT

r R

which follows from (31) and (32) characterizes Qr R as a row
vector in (33). Then, by effecting the delays, we have

qT
r R,i = sT

r RTR diag
(
φi

)
= qT

r R diag
(
φi

)
. (44)

Similarly, we denote the reduced q̃r R vector that corresponds
to the i th configuration of delays by q̃r R,i .

As before, the impinging field is assumed plane. The plane
wave can be thought of as emanating from a transmitter that is
at an infinite distance from the receiver. By (39), the received
signal is

yr = Cr
(
sre + q̃T

r RsRe
)
ee = Cr

(
q̃T

r R 1
)(sRe

sre

)
ee

= Cr
(
q̃T

r R 1
)
vk(k)ee. (45)

The equation applies to the neutral delay configuration of
the RIS. The beam pattern for the i th configuration is then,
by comparison of (45) with (41),

ϒi (k) = Cr
(
q̃T

r R,i 1
)
vk(k). (46)

Although none of these N beam patterns correspond to
the beam pattern of the conventional beamformer, we can
make an attempt to construct the conventional beam pattern
synthetically from the patterns ϒi (k) by calculating a weighed
sum (Fig. 7). The problem is to find constant coefficients κi ,
so that

ϒ(k) =

N∑
i=1

κiϒi (k) (47)

holds as strictly as possible. We collect the quantities κi to a
row vector κT and the vectors q̃T

r R,i to a matrix Q. We then
have

ϒ(k) = Crκ
T (

Q 1
)
vk(k). (48)

Because the equation must hold for all physical values of k,
a comparison with (41) gives

wH
= Crκ

T (
Q 1

)
(49)

from which the coefficients κi can be obtained numerically by
inverting the square matrix

(
Q 1

)
.
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C. Delay Configurations
Because the beam synthesis methods of Sections IV-B

and IV-D only give the vector κ of synthesis coefficients
with some small error δκ , the synthetic implementation of a
particular conventional beamformer will be slightly inaccurate.
If the targeted conventional beamformer has the ideal coeffi-
cient vector wi , the synthesis only gives the approximation
wa = wi + δw. By (49)

δwH
= Cr (δκ)

T (
Q 1

)
.

The bound on the relative error in w is (e.g., [24, Sec. 1.13])
∥δw∥

∥w∥
≤ cond

(
Q 1

)∥δκ∥

∥κ∥
. (50)

If we design the augmented receiver in a way that minimizes
the condition number in (50), the beam synthesis will be as
insensitive as possible to small variations δκ . The goal of the
present section is to find a discrete set of delay configurations
φi that makes the condition number as small as possible.
Again, we use the small element approximation. We also
approximate the scattered fields of the elements with single
scattering, so that qr R is used in place of q̃r R above (48) in
the definition of Q. First, we rearrange (44), so that

qT
r R,i = qT

r R diag
(
φi

)
= φT

i diag(qr R). (51)

The N row vectors φT
i can be arranged into a matrix 8. The

equation then turns into

Q = 8 diag(qr R) (52)

so that (
Q 1

)
=

(
8 1

)
diag

(
qT

r R 1
)
. (53)

By (1), we then have

cond
(
Q 1

)
≤ cond

(
8 1

)
cond

[
diag

(
qT

r R 1
)]

(54)

from which we see that progress in minimizing the relevant
condition number can be made by carefully designing the
discrete set of delays 8, so that the first condition number
on the right-hand side of (54) is minimized.

Hardware limitations determine the strategy of construct-
ing 8. As in Section IV-B, we assume that in the augmented
receiver, there are N − 1 RIS elements and a single receiver
element. Furthermore, we assume that the RIS elements are
nonabsorbing and switch into N possible states. The design
problem is to choose the N nonabsorbing states and the
sequence in which they are applied to the RIS elements in
a way that minimizes the condition number of

(
8 1

)
. One

solution is to set

8 =
[
ζ (i−1) j ], i = 1, . . . , N , j = 1, . . . , N − 1 (55)

where ζ = e−2π i/N . In this case,
(
8 1

)
is the discrete

Fourier transform (DFT) matrix1 [25, Sec. 1.4.1], with the
first column moved to the end of the matrix. A scalar multiple
of

(
8 1

)
is then unitary, so that(

8 1
)H (

8 1
)

= NI

which implies that
(
8 1

)
has a unit condition number.

1In the literature, the DFT matrix is used in computing the DFT [25].

If the hardware limitations are even more stringent—so
that the RIS elements only switch between two states, both
of which are nonabsorbing—the design goal can be met by
choosing the first state to have a neutral phase shift φ = 0 and
the second state a half-wave phase shift φ = π . If the number
of elements in the augmented receiver is of the form N = 2M ,
we can construct an orthogonal

(
8 1

)
with the Hadamard

matrix [26, Sec. 2.7]. For example, we could have

(
8 1

)
=


1 1 1 1

−1 1 −1 1

1 −1 −1 1

−1 −1 1 1

 (56)

when N = 4. More generally,
(
8 1

)
for N = 2M is

constructed from the N × N Hadamard matrix HN by
permuting the set of columns of HN cyclically, so that the first
column of HN becomes the final column of

(
8 1

)
. A scalar

multiple of the matrix is orthogonal, which implies that the
matrix has a unit condition number.

D. Numerical Weights

After the beam synthesis, the coefficients κi determine
the pattern of the synthetic beam by (47). The beam syn-
thesis only needs to be performed again if the beam pattern
requires an adjustment. If the beam pattern is only adjusted
infrequently, the algorithm that computes κi is not time-
sensitive and requires no careful optimization for efficiency.
Therefore, alternative algorithms that perform less efficiently
than the beam synthesis algorithm of Section IV-B can become
useful. In particular, we consider an algorithm that computes
κi numerically, without analytically derived expressions for
the row vectors q̃T

r R,i of the matrix Q in (49). In addition to
its practical use, the numerical algorithm can help corroborate
the beam synthesis algorithm of Section IV-B.

The starting point for the numerical beam synthesis is
(46). When we apply this equation for the different delay
configurations, indexed with i = 1, . . . , N , and for different
wave vectors k j , where j = 1, . . . ,M , and collect the results
into a matrix equation, we get

ϒ = Cr
(
Q 1

)( V
vT

)
(57)

where, with row indices i and column indices j ,

ϒ =
[
ϒi

(
k j

)]
,

(
V
vT

)
=

[
vk

(
k j

)]
. (58)

If ϒ is known independent of (57), we can solve (57) for
the matrix Q without first constructing the vectors q̃r R that
Section IV-B used. This avoids some complexity but with
the expense of a more intense numerical computation. To get
ϒ without explicitly using (57), we note that a comparison
between (38) and (39) allows us to write (45) as yr = Cr aN

0
and consequently (46) as follows:

ϒi
(
k j

)
=

Cr aN
0,i

(
k j

)
ee

(59)
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Fig. 8. Comparisons between various methods of beamforming. The array of Fig. 5 was used. All curves represent the squared absolute value |yr (ϕ̄)|
2 of

the received signal, considered as a function of the incidence angle ϕ̄ = ϕ − π/2 of (63) and normalized for a unit maximum value. To test the
beamformers, we used each method to implement two beams: one directed π/3 to the left from the broadside and another directed π/6 to the right from
the broadside. (a) Conventional ( ) and synthetic ( ) beamforming. The beam synthesis works more accurately when the beam direction
deviates from the broadside only moderately. (b) Numerical ( ) and analytical ( ) syntheses. (c) Synthesis with Hadamard ( ) and
DFT ( ) matrices. For this last comparison, the RIS of Fig. 5 was truncated from the right into only seven elements.

where the coefficient aN
0 has been represented as a function of

the wave vector k j and the delay configuration φi . When we
solve (19) for the different delay configurations φi and wave
vectors k j to get the coefficients aN

0,i , we get ϒi (k j ) from (59).
When we perform the block matrix multiplication in (57) and
rearrange, we get

QV =
1

Cr
ϒ − 1vT . (60)

By the matrix multiplication rule, 1vT is a matrix with N
copies of the row vector vT . The right-hand side of the
equation has an intuitive interpretation. It is the contribution
of the RIS elements on the beam pattern, scaled with Cr .
The matrix V is generally rectangular and therefore is not
guaranteed to have an inverse. In fact, taking the number M
of different k j to be larger than the number N of different
φi proves, by numerical experiment, to be advantageous for
the quality of the beam synthesis, even when M > N − 1
results in a rectangular matrix. In the general case, we multiply
both sides of the equation from the right by the pseudoinverse
V†

= VH (VVH )−1. Explicitly

Q =

(
1

Cr
ϒ − 1vT

)
V†. (61)

When we find Q by the formula and use it in (49), we again
get the coefficients κi , like in Section IV-B. The main differ-
ence between the two approaches is the compromise between
parsimony and performance.

V. RESULTS

A. Beamforming

Although the theory of Sections III-A and III-B does not
limit the geometry of the augmented receiver, apart from
requiring that the elements be circular cylinders, the simple
geometry of a linear array was chosen for an illustration
(Fig. 5). In the array, the nine RIS elements are organized
in a linear arrangement and spaced at half-wave distances,
where the distance is taken between the centers. The radius of

the circular RIS elements was chosen to be 0.05 wavelengths,
so that it was justified to use the small element approximation
that is assumed in the beam synthesis of Section IV-B. The
final element of the augmented receiver is the receiver element,
which is placed in front of the RIS, like in Fig. 5. For the
delay configuration matrix 8, the permuted DFT matrix of
Section IV-C was chosen.

Because Section IV-B adopted conventional beamforming
as the benchmark for synthetic beamforming, we compare
the synthesized beam with the conventional beam in our test
case that involves the linear array. Fig. 8(a) shows that the
mainlobe of the synthetic beam is correctly oriented, whether
the target direction is π/3 radians counterclockwise from the
broadside of the array or π/6 radians clockwise. Because the
synthesized receiver array consists mostly of a linear array,
it more precisely resolves the wave vector component k · ux
that lies along the axis of the linear part of the array than the
perpendicular component k · uy . Therefore, sidelobes emerge
that constitute approximate mirror images of the mainlobes.
These mirror images are not precise copies of the mainlobes
because the receiver element, which is offset from the array
axis, breaks the reflection symmetry of the augmented receiver
(Fig. 5).

Because a synthetic beamformer uses more limited hard-
ware than a conventional beamformer, the quality of the beam
pattern is expected to be moderately compromised. Indeed,
Fig. 8(a) shows that the directivity of the synthetic beam is
lower than that of the conventional beam and that the sidelobes
of the synthetic beam are comparatively large. However, beam
synthesis still produces a beam that can be recognized as
a modified version of the conventional beam. Therefore, the
synthetic beamformer is useful in spatial filtering.

Two methods of beam synthesis were discussed in Sec-
tions IV-B and IV-D: analytical and numerical. The synthe-
sized beams of each method are illustrated in Fig. 8(b). The
difference between the two methods is only significant for the
beam that is oriented to the left from the broadside. For this
beam, the analytically synthesized beam offers slightly better
directivity than the numerically synthesized one. Therefore, the
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analytical method has the advantage that the synthesis is faster
to compute—with approximately 50-fold speedup with our
software implementation and hardware—and the beam pattern
turns out to be moderately superior. The way that the results
of both methods nearly coincide suggests that the methods
are valid within their domain of application, that is, when the
RIS elements are sufficiently small. Also, the way that both
methods fall short of precisely reproducing the conventional
beam suggests that the hardware limitations inherently require
some compromise in the directivity of the beam.

Finally, we compare the performances of the two types
of delay matrices—DFT and Hadamard—that were discussed
in Section IV-C. In our implementation, we can only model
the delay matrix after the Hadamard matrix if the number of
elements in the augmented receiver is of the form N = 2M .
Therefore, the augmented receiver of Fig. 5 has to be truncated
by two elements. When we remove the two rightmost RIS
elements of the array, we find that the synthetic beams are
like in Fig. 8(c). The approach that uses the Hadamard
matrix results in less directivity than what can be obtained
using the DFT matrix. However, applications are likely to
arise that benefit from exchanging some performance for the
cost efficiency that a simpler physical implementation of the
beamformer permits.

Although the small element approximation is used in beam
synthesis—that is, to compute the coefficients κi —the beam
patterns of Fig. 8(a) and (b), which correspond to given
coefficients κi , were computed with the full precision of
the multiple scattering model. Therefore, only the accuracy
to which the conventional beamformer is mimicked by the
synthetic beamformer depends on the degree of validity in
the small element approximation, whereas the accuracy to
which the beam patterns were computed in Fig. 8(a) and (b)
is unaffected by the approximation.

B. Performance Measure
The shape of the beam pattern generally depends on the

target angle ϕT . We find it convenient to plot the results as a
function of the incidence angle ϕ̄ = ϕ − π/2 rather than the
grazing angle ϕ. In Fig. 8(a), we observe that the synthetic
beam toward ϕ̄T = −π/6 has a more distinct mainlobe than
the synthetic beam toward ϕ̄T = π/3. The distinctness of
the mainlobe is one possible performance measure for a beam.
It is quantified by the concept of directivity [23, Sec. 2.6.1].
We denote the beam that is oriented toward the direction ϕ̄T
by the following equation:

ϒϕ̄T

(
ϕ̄
)

= ϒkT (k) (62)

where

k = −k
(
cos ϕ̄uy − sin ϕ̄ux

)
kT = −k

(
cos ϕ̄T uy − sin ϕ̄T ux

)
. (63)

The minus sign arises because of the inward pointing direction
of the vector k. In analogy to the usual directivity in 3-D,
we define the 2-D directivity as follows:

D
(
ϕ̄T

)
=

supϕ̄ |ϒϕ̄T

(
ϕ̄
)
|
2

1
2π

∫ 2π
0 |ϒϕ̄T

(
ϕ̄
)
|2 dϕ̄

(64)

Fig. 9. Directivity as function of target angle ϕ̄T . The directivity of the
conventional beam ( ) only coincides with that of the synthetic beam ( )
approximately. The synthetic beam is sharper at the backside of the RIS than
at the front side. The conventional beam is equally sharp on both sides.

where the supremum supϕ̄ |ϒϕ̄T
(ϕ)|2 is evaluated on a small

angular spread [ϕ̄T − 1ϕ̄, ϕ̄T + 1ϕ̄] to account for a possible
deviation of the beam maximum from the target direction
ϕ̄T and for a possible sidelobe that exceeds the mainlobe in
magnitude. Because, in 2-D, the directivity of the standard
linear array declines when the beam is steered away from the
broadside, we could expect the same for the synthetic beam
of the receiver in Fig. 5. Indeed, Fig. 9 shows that both the
conventional and the synthetic beams suffer a decline in their
directivities when ϕ̄T is close to π/2 or −π/2—that is, the
endfire directions.

Although the directivity of the synthetic beam resembles
that of a conventional beam in Fig. 9—especially on the
lower semicircle of the diagram—some differences between
the two types of beams can also be observed. The directivity
of the synthetic beam varies significantly near the broadside
direction on the upper semicircle of the diagram. The variation
is particularly significant in contrast to that in the directivity
of the conventional beam, which varies only moderately near
the broadside direction.

The beam of a conventional beamformer has the symmetry

ϒ−kT (k) = ϒ∗

kT
(−k) (65)

from which D(ϕ̄T ) = D(ϕ̄T + π) follows. This symmetry
is also manifest in Fig. 9. However, the synthetic beam does
not have the same symmetry because the synthetic beam
approximates the conventional one only roughly.

It follows from the symmetry (65) that the conventional
beamformer works equally well whether its beam is steered
toward the front side—that is, that half-plane that borders
the linear part of the receiver array and contains the solitary
receiver antenna that does not align with the others—or to the
backside. However, the RIS-augmented receiver differs from
a conventional beamformer by scattering the impinging field
instead of merely registering it. This, indeed, explains the loss
of symmetry in Fig. 9. The upper and the lower semicircles
of Fig. 9 illustrate two possible modes of operation for the
RIS-augmented receiver of Fig. 5.

1) When the RIS is steered toward the front side, it reflects
the target plane wave to the receiver antenna.

2) When the RIS is steered toward the backside, the target
plane wave diffracts through it to the receiver.
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We observe that, in contrast to the conventional beam, the
synthetic beam has better directivity on the backside than on
the front side.

VI. CONCLUSION

This article introduced a model for designing an
RIS-augmented receiver that emulates the operation of a
conventional beamformer by beam synthesis. The quality of
the synthetic beam turned out to be satisfactory, even when
the strict design constraints made it impossible to precisely
reproduce the beam of a conventional beamformer. The match
between the synthetic beam and the conventional beam was
proximate when the beam was steered only slightly away from
the broadside while the deterioration of the beam could not
be avoided when the deviation of the beam direction from the
broadside was remarkable [Fig. 8(a)].

To keep a suitably narrow focus, the article confined itself
to the discussion of circular cylinders. However, cylinders
of other shapes are easily within the reach of the T -matrix
method [27]. The main distinction of a discussion of the
general cylinders to that of the circular ones is that the cor-
responding T -matrices would no longer be diagonal in the
more general case and would need to be computed by separate
methods, independent of (10).

Because the article assumes, for simplicity, that the circular
cylinders are infinitely long, we do not propose the geometry
as a practical implementation of RIS. Practical designs require
an elaborate 3-D electromagnetic scattering model, which
remains a topic for further research.
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