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Abstract— Online calibration is desired in antenna arrays
of ultrawide bandwidth. This study proposes a time-domain
calibration method based on the simultaneous perturbation (SP)
algorithm. Two objective functions were established: power of
the received signal at array output or combination of power
and correlation coefficient between the signal at array output
and a target signal. For both criteria, the convergence settings
require only two measurements at each iteration. One advantage
of the method is that the entire signal operation for calibration is
performed in the time domain. This is achieved by resolving the
effects of distortion on time delay of each channel, which accounts
for both amplitude and phase distortions at different frequencies.
Therefore, the proposed method significantly increased the cali-
bration efficiency for ultrawideband antenna arrays. Since time
delay coefficients for calibration associated with array elements
were determined independently due to characteristics of the
SP, the estimation accuracy of the method is tangential to the
number of elements in the array and is mainly dependent on
the convergence conditions. This gives the method an additional
distinct advantage for calibrating large-scale antenna arrays with
ultrawide bandwidth. An estimation accuracy of 99% on time
delay adjustments has been achieved and demonstrated.

Index Terms— Aperture array, calibration, simultaneous per-
turbation (SP), stochastic approximation (SA), time domain.

I. INTRODUCTION

APERTURE arrays bring significant prospects and benefits
for many applications as they enable steering of the radia-

tion beams without any mechanical movement; therefore, they
have better sensitivity, suppress the directional interference,
and incorporate multibeam scanning [1], [2]. To maximize
the array performance, a large number of array elements
are often required, and in order to accurately control the
beam position, precise control of the phase and amplitude
of each element is essential, which in turn requires accu-
rate calibration, in order to eliminate unwanted distortions
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[3], [4]. However, calibration of large arrays becomes increas-
ingly more challenging due to an increasing number of
parameters to be determined, particularly for very large-scale
aperture arrays such as the Square Kilometre Array. This
becomes even more challenging at higher operational fre-
quencies for wider bandwidths, due to time delay drift at
every array element becoming more sensitive to changes in
the environment, and active radio frequency (RF) components.
As a result, the number of measurements, in particular at
on-site antenna assembly, on the objective function needed
for calibration also rises significantly [5], [6], [7], [8].

Stochastic approximation (SA) has been considered to be
an effective method for solving problems consisting of a
large number of unknown parameters such as the prob-
lem faced in the calibration of large-scale antenna arrays
[4], [9]. The “simultaneous perturbation” (SP) concept was
later introduced to reduce the number of measurements
required on the loss function or gradient per iteration for
stochastic search algorithms [10], [11]. The SP is also shown
to accelerate the convergence of the SA using the adaptive SP
(ASP) [12]. It leads to a more efficient adaptive algorithm than
traditional finite difference (FD) methods and has a potential
on a wide range of practical implementations. However, its
actual implementation has not been sufficiently successful
because it is extremely costly to estimate the gradients as a
large number of loss function measurements involved in the
case of gradient-free approach. In the gradient-based scenario,
the calculation of gradient usually requires full knowledge
of the relationship between the parameters being optimized
and the loss function. However, in the optimization process
for some applications, gradient is not available or is diffi-
cult to compute, such as for array calibration. In [13] and
[14], a new simultaneous perturbation SA (SPSA) consensus
algorithm for distributed tracking under unknown-but-bounded
disturbances is proposed, and it is suitable for distributed
problems to estimate time-varying parameters and compensate
them.

Determining complex signals (consisting of amplitude and
phase) from each array element and compensating the element-
to-element variations due to imperfect conditions is the key
objective of the array calibration process [15]. Effective phased
array calibration methods are based on toggling element
phases such that in situ element fields can be measured. How-
ever, since these methods must measure not only amplitudes
but also phases of the array responses, they are difficult to
apply due to practical difficulties, such as large-scale antenna
arrays with increased bandwidth where obtaining accurate
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TABLE I
SELECTED TYPICAL CALIBRATION METHODS

phase measurements in real time is still extremely challenging.
A novel amplitude-only measurement method was developed
in [16]. However, it requires a large number of measurements
to extract the calibration coefficients.

Conventionally, calibrating antenna arrays aims to achieve
the equalization of amplitude and phase for all antenna chan-
nels of the array in the frequency domain [17]. In the calibra-
tion process, the characteristics of the array are represented
by a manifold vector, which consists of amplitudes as well as
phases that occur due to the distance from the source to each
element in the array. Once the calibration has been completed,
the system produces a synthesis of the coherent signals at the
array output. The simplest aperture array calibration technique
strives to calculate the optimal phase shifts in all channels
by maximizing the received power at the array output [18].
For example, the phase adaptive method was utilized to tune
the phase shifters, but this does not guarantee an optimal
solution in antenna array calibration problems, even with high-
resolution phase-shifting circuits [19].

More robust calibration algorithms using phase measure-
ments reduce the implementation scope to laboratory condi-
tions. The rotating element electric-field vector (REV) was
developed in 1982, and since then, a few modifications have
been made to enhance its capability and it requires measure-
ment at the element level [20]. The most recent calibration
algorithms are the ones that do not require measurements
at the element level. Hence, no or minimum disruption is
caused to the array operation [18]. In these methods, a finite
number of power measurements at array output are carried out,
and the measured data are then used for estimating unknown
phase shifts in order to compensate them for each channel.
However, these algorithms are currently limited to narrowband
systems as they are essentially implemented in the frequency
domain.

There are many techniques developed, mostly in frequency
domain, for array calibration. They were tentatively classified
into six categories and summarized in Table I. As indicated
in Table I, most of the calibration methods operate in the
frequency domain. It can be seen in Table I that the number
of measurements required for the calibration is significantly

high for some techniques, i.e., a few times more than the total
number of elements in the array.

The SPSA has been proven to be an effective stochastic
optimization method [10]. The biggest advantage of this
method is that it is very effective when the loss function mea-
surements include noise. In addition, it does not need gradient
measurements on the loss functions. This method was initially
proposed to solve multivariate optimization problems [11].
The method has attracted considerable attention due to its
easy implementation. The underlying gradient approximation
requires only two measurements of the loss function regard-
less of the dimension of the optimization problem. Random
direction is another gradient search procedure [21], in which
the perturbation variables are considered to be uniformly
distributed over the surface of a unit sphere. However, it is
computationally expensive to obtain the perturbation of ran-
dom variables. Therefore, in this study, the SPSA approach
was adopted as it can handle the optimization of a large
number of variables without demanding prior information of
gradients, as in the case of array calibration in time domain.

A novel calibration method in time domain is presented
in this article. This algorithm does not require to access
channel signals or powering down channels for time delay
estimation for each array element (signals from array elements
are processed through channels in the receiver). The gradients
in each iteration were approximated by a highly efficient and
easily implemented “SP,” and only two measurements are
required at each iteration. The total number of measurements
is significantly reduced, which is required to resolve the time
delay offset for each element of the array in the compensation
process. Using the same analogy, in addition to the power
measurement approach, the correlation coefficient between the
signal based on time delay perturbed element channels and
the desired signal is used as a factor for objective function
construction. Both forms of objective function in implement-
ing the algorithm for array calibration are investigated in this
study.

This is the first attempt to calibrate aperture arrays in the
time domain by exploiting the SPSA method, to the best of
the authors’ knowledge. The proposed method not only avoids
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seeking calibration coefficients for a large number of fre-
quency points required in wideband array calibrations but also
opens a new door for efficient calibration of arrays consisting
of a large number of elements, such as the Square Kilometre
Array. By adopting the SP technique, estimation errors on
time delay distortions of element channels were controlled
by a unified convergence criterion and are independent of
each other. Hence, the total number of array elements has a
negligible effect on accuracy. It is the number of iterations
needed to reach convergence that rises with an increasing
number of elements in the array and not the estimation error
as will be outlined in Section V.

This article is organized as follows. Section II gives the
definitions of symbols used in this study. Section III describes
the SA theories and convergence conditions. Section IV
explains the proposed antenna array calibration method in the
time domain. Section V makes a numerical analysis on the
algorithm. Section VI introduces the experiments and gives the
results. Discussions on the algorithm are made in Section VII.
Finally, Section VIII presents the conclusion.

II. SYMBOLS

This article uses T and its variants as vectors representing
time delays of element channels in arrays, and a variable with
a hat means that the value is obtained based on approximation,
such as ĝk that is a vector consisting of approximated gradients
at the kth step. Furthermore, E represents an expectation
operator. Rationalized m.k.s units are used, and the main
symbols used in this study are defined as follows.

1) s(t) = is the short pulse signal in the time domain
(volts).

2) σ 2
p

de f
= is the variance of the Gaussian pulse signal.

3) w
de f
= is the constant related to the time width of

Gaussian pulse signal used for calibration.
4) Pt = is the average power of the transmitted pulse signal

(watts).
5) Pr = is the average power of the received signal from

the array without calibration (watts).
6) sm(t) = is the signal received from the mth element

(volts).
7) Am = is the amplitude gain for the mth element.
8) ξm = is the spatial time delay of the signal received by

the mth element due to relative spacing, determined by
scan angle and element spacing.

9) T spatial
de f
= is the vector of spatial time delay related to

element spacing and scan angle, which is known to the
system.

10) γm = is the intrinsic time delay generated in random for
the mth element to reflect imperfect receiving condition,
and it is unknown to the algorithm.

11) T in
de f
= is the vector of the intrinsic time delays intro-

duced in array element channels, representing impact
by environment and imperfect devices, and the values
in this vector are the time delays to be calibrated out by
the algorithm.

12) T de f
= is the vector of time delays for all elements,

including spatial time delays and time delays caused by
the imperfect receiving condition.

13) τm = is the approximated time delay of the mth ele-
ment representing the misalignment of timing between
elements, the time delay approximated by the algorithm
for calibration.

14) T̂ ∗ de f
= is the vector of optimal calibration coefficients

of time delay for all element channels approximated by
the algorithm.

15) T ∗

0
de f
= is the vector of the initial guess of time delays of

all elements at the beginning of approximation process.
16) T̂ k

de f
= i is the vector of estimated calibration coefficients

of time delay at the kth iteration.
17) Pk

de f
= is the power received at array output when the

array is calibrated with coefficients from approximation
at the kth step.

18) Pideal
de f
= is the ideal power received at array output

when there is no time delay distortions in the element
channels.

19) sb(t)
de f
= is the received signal at the array output when

the backward time perturbation is applied.
20) s f (t)

de f
= is the received signal at the array output when

the forward time perturbation is applied.
21) Pb

de f
= is the measured output power when the backward

perturbation is applied.
22) P f

de f
= is the measured output power when the forward

perturbation is applied.
23) lb

de f
= is the loss function value when the backward

perturbation is applied.
24) l f

de f
= is the loss function value when the forward

perturbation is applied.
25) l

de f
= is the scalar loss function determined by the power

received at the array output alone or the product of
power and the correlation coefficient between the signal
from the array output and the ideal reference signal for
calibration.

26) ak = is the gain coefficient for the kth iteration.
27) ck = is the perturbation step coefficient for the kth

iteration.
28) 1ki

de f
= is the i th element of vector 1k with the total

length of M , and k is the current iteration number.
29) 1k

de f
= is the perturbation vector with the total length of

M , and each element of the vector is generated using a
Bernoulli distribution with a probability of 0.5 for ±1.

30) ĝk(T̂ k)
de f
= is the approximated gradients vector at the

kth iteration of the algorithm.
31) r(x, y) = is the correlation coefficient between vectors

x and y.

III. SA THEORIES

To identify the appropriate SA algorithms for array calibra-
tions, convergence condition is an important factor to consider.
In this section, we give a brief review of SA theories and their
corresponding convergence conditions.

The basic SA algorithm is essentially a stochastic difference
equation with a small step size, and the prime concern is its
qualitative behavior after many iterations, such as convergence
and rate of convergence. Proofs of convergence and the
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derivation of the rate of convergence have been given for a
variety of equations and stochastic processes over a period of
several decades. In the early development of stochastic search
and optimization—SA, the Robbins–Monro algorithm (also
known as RM) for root finding is the basic approach. Recursive
procedure for finding the root of a real-valued function g(θ)
was developed. Suppose that the values of g(θ) were not
known, but “noise corrupted” observations can be taken with
respect to the values of θ . By proposing

θk+1 = θk + akYk (1)

where ak is an approximate gain sequence satisfying

ak > 0, ak → 0,
∞∑

k=0

ak = ∞, and
∞∑

k=0

a2
k = ∞ (2)

and Yn is the noisy estimation of the value g(θ). The decreas-
ing step sizes ak would provide an implicit averaging of the
observations and are essential to ensure the convergence for
this algorithm.

For another type of basic problems, to seek the value
of the variable at the minimum of a smooth function—
sometimes—the form of the function is unknown such as for
an array calibration problem, and instead, “noise corrupted”
observations or measurements can be obtained. Then, the
Kiefer–Wolfowitz procedure (also known as KW algorithm)
can be used, in which gradients for directing the recursive
computation are estimated via FDs using the noisy mea-
surements, and the step sizes are also small. Assume that
the value of parameter θ is to be found for the function
E F(θ,χ) = f (θ), where f (·) is continuously differentiable
and χ is a random vector; the functions F(·) and f (·) are not
known and loosely speaking, and f (θ) is an “estimator” of
F(θ,χ). If ck → 0, FD can be expressed as [43]

Yk = −
F

(
θk + ck,χ

+

k

)
− F

(
θk − ck,χ

−

k

)
2ck

(3)

and the iteration can be established as

θk+1 = θk + akYk (4)

where Yk can be estimated by

γk ≡
f (θ + ck)− f (θ − ck)

2ck
= fθ (θk)− βk (5)

where −βk is the bias in the FD estimation fθ (θk). Accord-
ingly, the iteration relation can be updated as

θk+1 = θk − ak fθ (θk)+ ak
ψk

2ck
+ akβk (6)

where ψk is the FD between the estimated f (θ) and the actual
F(θ,χ) when θ changes from θ + ck to θ − ck . To ensure the
convergence, in addition to the condition for the bias, βk → 0,
and the noise term ψk/(2ck) is also required to go toward
zero (through “average locally”). The KW algorithm, when the
noisy estimates of the derivatives are available, is generally
based on these derivatives to direct the recursions toward a
converged result. For the same minimization problem, when
the stochastic gradient is not available and only measurements
of loss function are available, an FD approximation to the
gradient is proposed. The FD approximation relies on a small

change on the variable θ , and the value of loss function is then
measured. However, the FD-based SA (FDSA) algorithm can
be very costly when the dimension p of the variables is high
since we have to measure at least once for each variable to
be optimized. With two-sided perturbations, 2p measurements
are required in each recursion. The recursive procedure can be
expressed in the general SA form [44]

θ̂ k+1 = θ̂ k − ak ĝk
(
θ̂ k

)
(7)

where θ̂ k and ĝk are two vectors consisting of the variables
for optimization and the corresponding gradient approxima-
tions, respectively. The FDSA gradient approximation can be
expressed as

ĝk
(
θ̂ k

)
=



f
(
θ̂ k + ckξ 1

)
− f

(
θ̂ k − ckξ 1

)
2ck

f
(
θ̂ k + ckξ 2

)
− f

(
θ̂ k − ckξ 2

)
2ck
...

f
(
θ̂ k + ckξ p

)
− f

(
θ̂ k − ckξ p

)
2ck


(8)

where ξi represents a vector with 1 in the i th place the 0’s
for the rest and ck > 0 defines the steps for changes. The
pair (ak, ck) is the gain sequence for the FDSA algorithm.
Compared to the convergence theory for the root-finding
RM algorithm, the conditions for convergence of the FDSA
algorithm (evolved from the KW algorithm) have an extra gain
sequence ck , arising from the bias in ĝk(θ̂) as an estimator for
gk(θ̂ ). The conditions for the formal convergence [almost sure
(a.s.)] of the FDSA algorithm are given as follows [44]:
A.1 Gain Sequences: ak > 0, ck > 0, ak → 0, ck → 0,∑

∞

k=0 ak = ∞, and
∑

∞

k=0 a2
k/c

2
k < ∞.

A.2 Unique Minimum: There is a unique global minimum
point of θ∗, and away from this point, f (θ) will always
increase.

A.3 Mean-Zero Noise and Finite Variance Noise: The stan-
dard mean-zero and bounded variance noise condition.

A.4 Smoothness of the Loss Function: The second deriva-
tives of the function f ′′

i i (θ) exist and are uniformly
bounded.

Clearly, a large number of measurements (2p times the total
number of iterations) are required when p is large. Hence,
the SPSA algorithm came into attention, where the required
measurements can be significantly reduced by approximating
the gradients for all variables simultaneously at each iteration.
The gradient approximation for SPSA is generated by

ĝk
(
θ̂ k

)
=

f
(
θ̂ k + ck1k

)
− f

(
θ̂ k − ck1k

)
2ck


1−1

k1
1−1

k2
...

1−1
k M

. (9)

In contrast to the FDSA algorithm, with SP, two loss measure-
ments are needed in each approximation cycle instead of 2p,
regardless of the dimension p. The convergence conditions
of SPSA algorithm are closely related to that of the FDSA
algorithm, in addition to a more stringent requirement on
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smoothness of the loss function, i.e., three-times differential,
two more conditions are added.
B.1 Measurement Noise, Relationship Between Measure-

ment Noise and 1k: This condition together with
smoothness of the loss function guarantees that the
gradient estimate ĝk(θ̂) is an unbiased estimate of gk(θ̂)

in the order of O(c2
k).

B.2 Statistical Properties of the Perturbations: The
bounded inverse moments’ condition for 1ki is an
important part of SPSA, and the symmetric Bernoulli
distribution ±1 satisfies the inverse moments, which
ensures that ĝk(θ̂) is a nearly unbiased estimate of
gk(θ̂).

As mentioned in [44], proofs of the convergence theorems
for the FDSA and SPSA have been provided by Fabian
(1971), Spall (1992), Dippon and Renz (1997), and so on. The
convergence conditions mentioned above illustrate an abstract
idea. For solving real problems such as array calibration in this
study, we gave specific loss function definitions and checked
the convergence conditions for arrays with various numbers
of elements. The strategy of selecting optimal parameter
coefficients in the algorithm for effective convergences has
been studied considering implementations in practice.

IV. PROPOSED CALIBRATION METHOD

Due to the growing demands of high-speed communica-
tion and high-precision sensing applications, ultrawideband
antenna arrays operating at millimeter-wave or THz frequen-
cies have become increasingly more important. It is more
efficient to carry out calibration for such arrays in the time
domain. As mentioned earlier, the method based on SP in
conjuncture with a deterministic approach was proven to be
effective in the frequency domain. In this article, the SPSA
method is implemented in the time domain for the first time.
Fig. 1 shows the setting to calibrate an antenna array with
M elements in the time domain. The proposed calibration
method is put to a test by employing a short pulse signal in the
time domain illuminating the aperture array being measured
in a known plane wave. It should be noted that although the
calibration waveform is known, the delay between the antenna
for transmitting the source signal and the antenna elements of
array is not exactly known due to the parasitic random time
delays that are caused by the imperfect receiving components
and propagation environment. Therefore, the proposed cali-
bration algorithm strives to perform fine tracking on the time
delay in each channel and compensate them before acquisition
of the received signals at the array output.

Let s(t) denote a time-domain signal, which is a Gaussian
pulse as given by

s(t) =
1

4
√

2πσ 2
p

e
−w2 t2

2σ2
p (10)

where σ 2
p denotes the variance of the Gaussian pulse and w

controls the time width. This pulse signal propagated from
a transmitter in the far field of an aperture array to be
calibrated. The average power of the transmitted pulse signal
for calibration can be expressed by

Pt = E
{
|s(t)|2

}
. (11)

Fig. 1. Calibration of aperture arrays in the time domain based on the SPSA
algorithm.

Subsequently, the signal received by the mth element of the
aperture array before calibration and the synthesizer can be
represented by

sm(t) = Am s(t − ξm − γm) (12)

where Am denotes the channel gain between the transmitter of
reference and the mth antenna element, consisting of antenna
gains and path loss. Moreover, ξm denotes the spatial time
delay of the signal received by the mth element associated
with physical distance, and γm denotes the intrinsic time delay
(generated randomly) introduced by other factors from devices
and environment. Therefore, the vector T spatial consisting of
time delays for M elements is defined as

T spatial = [ξ1, ξ2, . . . , ξm, . . . , ξM ]. (13)

For example, when the angle of incidence, θ = 30◦,
and the element spacing of d = 0.015 m, T spatial =

[0, 0.025, . . . , 0.375] for M = 16. Random time delays are
introduced into each channel to represent the imperfect array
construction or distortion caused by the receiver devices,
as given by

T in =
[
γ1, γ2, . . . , γm, . . . , γM

]
(14)

where γm can be generated by γm = 2x − 1 and is in the
interval (−1, 1) and x = rand(1) is a uniformly distributed
random number in the interval (0, 1). The interval for γm can
be adjusted to reflect the actual time delay distortions in real
systems. Consequently, the vector of the actual time delays for
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all channels can be expressed by

T = T spatial + T in. (15)

Let the sampling frequency for the time-domain signal be fs ,
and hence, the time resolution of the signal is given by

dt =
1
fs
. (16)

Assuming that the total length of the time-domain signal in
a processing frame for any channels is L and M is the total
number of array elements, then the average received power
from the array without calibration can be calculated by

Pr = E


∣∣∣∣∣

M∑
m=1

sm(t)

∣∣∣∣∣
2
. (17)

The respective time of arrival for the signal received in each
channel varies with imperfect array construction and/or other
factors. Hence, the synthesized signal in the array receiver
without calibration is significantly different from that after all
element channels are calibrated.

In order to make an approximation on the objective vector of
time delays for calibration, T̂ ∗, which is used to compensate
for the random time delays occurring in the antenna array
system within each channel, T in , T̂ ∗ is defined as

T̂ ∗
= [τ1, τ2, . . . , τm, . . . , τM ] (18)

where τm (m = 1, 2, 3, . . . ,M) denotes the approximated time
delay calibration coefficient for the element m.

The SPSA algorithm has been designed to estimate the
distorted time delay in each element channel. Since there
are many receiving elements in the array, the problem of
calibration has been converted into a multivariate stochastic
search and optimization problem. The key problem for the
algorithm to address is to seek the values of variants to
minimize the value of a loss function. The loss function is
crucial for the calibration performance and can be defined in
different ways. A more detailed description on loss function
definition will be presented in Section V. To illustrate the
renewed steps of the SPSA algorithm for array calibration,
tentatively, the loss function was assumed to be related to
power at array output, and it can be defined as

l = 1 −
Pk

Pideal
(19)

where Pk is the average power measured at the array output
when T̂ k is used to compensate the time distortions, T in ,
and Pideal is the desired power at array output when the
time distortions in the element channels are fully eliminated.
The step-by-step description given next shows how the SP
algorithm was implemented for aperture array calibration in
the time domain.

Step 1 (Initialization and Setup Algorithm Coefficients for
Perturbation): Set time of arrival of impinging signals for each
channel due to difference in propagation path length, T spatial .
Then, select the coefficient constants before iteration begins
and generate the random time delay vector representing the
imperfect channel condition, T in .

Step 2 (Generation of SP Vector, an M-Dimensional Ran-
dom Perturbation Vector 1k): The time delays for all channels

in each iteration are decided by the random perturbation
vector and the coefficients chosen at the beginning, and a
simple choice of the perturbation vector is to use a Bernoulli
distribution with probability of 0.5 for each ±1 outcome.
An example of 1k is 1k = [−1, 1, . . . ,−1].

Step 3 (Power Measurements at the Array Output and Eval-
uations): Obtain two measurements from the power calculation
function as shown in (17) based on the SP around the time
delays for the current iteration, k, l(T̂ k + ck1k) and l(T̂ k-
ck1k).

Step 4 (Gradient Approximation): Generate the SP approx-
imation to the unknown gradients

ĝk
(
T̂ k

)
=

l
(
T̂ k + ck1k

)
− l

(
T̂ k − ck1k

)
2ck


1−1

k1
1−1

k2
...

1−1
k M

 (20)

where 1ki is the i th component of the 1k vector with the
total length of M and 1k is given in Step 2. It is noted that
the denominator is the same for all components of ĝk vector
within one iteration and reflects the characteristics of the SP
in contrast to other approximation methods.

Step 5 (Updating the Time Delay Estimate): Use the SA
form to calculate the time delays for the following iteration
step:

T̂ k+1 = T̂ k − ak ĝk
(
T̂ k

)
. (21)

Step 6 (Repeat From Step 2 for More Iterations or Termi-
nate): Terminate the algorithm if the condition is met such as
l ≤ σ , and l is the loss function as defined in (19) or set a
limit for the maximum number of iterations.

V. NUMERICAL ANALYSIS

This section presents the detailed steps, including objec-
tive function definitions, coefficient selection strategies, and
performance analysis of the proposed calibration algorithm.
It was examined for calibration of aperture arrays consisting
of various numbers of elements aiming for different levels of
accuracy. Once the objective function is defined, the strategy
of giving values to the optimization coefficients ak and ck is
essential for successful convergence.

The study began with the following assumptions. The source
signal given by (10) with 1-ns duration impinged on the
planar surface of the aperture array with a particular angle of
incidence from a point at far field, and the time of arrival for
the signal received on each element varies with the relative dis-
tance among elements. The time delays related to the relative
distance were calculated by using the parameters, including
angle of incidence and the element spacing. Furthermore, the
time delay on each channel is distorted by a combination
of many factors, including transmit/receive (TX/RX) module
impairments, feed circuit variations, mutual coupling, and
diffraction due to antenna structures. In the simulation, time
delay distortion in each channel is collectively represented
by a vector of random numbers, T in , subject to Gaussian
distribution with zero mean and within a specified time range.

Definition of the loss function is critically important for
the proposed algorithm to be successfully implemented as
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Algorithm 1 Calibration of Aperture Array in the Time
Domain With SP
Input: input parameters M , T spatial , s(t)
Output: T̂ ∗

1: Signal initialization for each channel with specified delays
defined by the scan angle and element spacing

2: Assign values to the perturbation constants, a, c, A
3: Generate the random time delays in each channel, T in ,

it represents time delays in the imperfect channels, they
are to be calibrated out by the algorithm

4: Calculate the power of the synthesized signal when the
time delay distortions are hypothetically eliminated, Pideal

5: Make the first guess on the time delays in each channel,
T ∗

0, let k = 1
6: while l > σ do
7: Generate the simultaneous perturbation vector, 1k

8: Sum up the signals from each channel for two separate
time delays after applying the simultaneous perturbation,
the synthesized signal at array out with backward per-
turbation, Sb(t) =

∑M
m=1 sm(t + ξm + T̂ k(m) + ck1km),

whereas with the forward perturbation applied in each
element channel, the synthesized signal at array output
is S f (t) =

∑M
m=1 Sm(t + ξm + T̂ k(m)− ck1km)

9: Obtain the two power measurements with the respec-
tive time perturbations, Pb = E

{
|Sb(t)|2

}
, P f =

E
{
|S f (t)|2

}
, and then let lb = 1 −

Pb
Pideal

, l f = 1 −
P f

Pideal
10: Calculate the gradient vector for the current, the kth,

iteration based on the two power measurements from the

last step, the gradient vector is, ĝk(T̂ k) =
l f −lb

2ck


1−1

k1
1−1

k2
...

1−1
k M


11: Calculate the time delay adjustment vector for the next

iteration, T̂ k+1 = T̂ k − ak ĝk(T̂ k), let k = k + 1
12: return Time delay offset for each channel, T̂ ∗ ∼= T̂ k

the outcome of approximation heavily depends on it. Two
loss function options were explored in this work: power
measurement-based objective function, and product of power
measurement and correlation coefficient calculation at array
output. The following analysis was made to provide general
guidance on efficient implementation of the array calibration
method in the time domain based on the SPSA algorithm.

A. Power Measurement-Based Objective Function

The objective function can be decided by the received power
at array output as defined in (19). The guidelines from the
basic SPSA algorithm for coefficients selection were tested
for the specific array calibration problem and presented in the
following, but it had been warned that they are guidelines
only—may not be the best or even work for every application.
In this section, new coefficient selection strategies for effective
array calibrations were established and compared with that
based on the guidelines from the basic SPSA algorithm.

The first guess of time delay coefficients to initiate the
calibration process can be expressed as

T ∗

0 =
[
τ0,1, τ0,2, . . . , τ0,m, . . . , τ0,M

]
. (22)

In order to estimate the magnitude of variations of the loss
function at the beginning of the search, the power measure-
ments can be obtained through several sets of T ∗

0 vectors with
its components formed by randomly generated time delays
within each channel. The corresponding values for the loss
function are calculated by using (19) and arranged in a vector.

1) Basic SPSA Guidelines: As shown in the guidelines
of the SPSA method by Spall [11], the choice of these
two parameters is related to the specific application of the
algorithm, particularly, the magnitudes of the parameters that
are to be optimized, i.e., the distorted time delays in each
channel for the problem considered in this article. Initial values
of ak and ck are suggested in [11] by

ak =
a

(A + k + 1)α
(23)

and

ck =
c

(k + 1)γ
(24)

where a, c, A, α, and γ are the nonnegative coefficients and
can be selected before the optimization iterations begin. Initial
values of α and γ are chosen at 0.602 and 0.101, respectively,
as suggested in [11]. It was recommended that the parameter
c can be approximately equal to the standard deviation of
measurement noise. It can be estimated by using the variation
of the loss function magnitudes that can be obtained by giving
several guessed values to the parameters to be optimized.

To reach convergence effectively, prior to implementing
iterations, initialization coefficients for the algorithm have
to be selected with care as they depend on applications.
Section V-A2 addresses the unique coefficient selection pro-
cess concerning array calibration problems.

2) Optimal Initialization Coefficients Selection: Recall that
the relationship between ak and ck must ensure the conver-
gence condition, i.e.,

∑
∞

k=0 a2
k/c

2
k < ∞. Let the ratio between

them simply be

bk =
ak

ck
(25)

and the values of bk were closely observed during estimation
steps to ensure the convergence. It is delicate to prevent bk
from decaying too fast with an increasing k while maintaining
a certain rate of change.

In the early iterations, it is important to keep the change
of time delays under control. Before iterations begin, several
guessed values can be given to T ∗

0 to evaluate the magnitude
of loss function, approximated gradients, together with the
desired magnitude of change in time delay at early iterations,
and initialization coefficients can be determined. The detailed
procedure to calculate the initialization coefficients based on
guesses on T ∗

0 was presented in Tables II and III. Conse-
quently, ak and ck can then be calculated at each iteration
according to (23) and (24). It is noted that the optimal value
of ak is related to the magnitude of the loss function, and ck
must be small enough to ensure that the perturbation is within
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TABLE II

DATA SAMPLES FOR INITIALIZATION BEFORE ITERATIONS1

TABLE III

DETERMINATION OF COEFFICIENTS FOR ITERATIONS2

the allowed range of the parameters to be optimized, i.e., the
maximum possible time distortion in the system. Therefore,
the values of ĝk have to be closely monitored.

The algorithm terminates when the difference in measured
power at the current iteration and the desired power at the
array output is close to each other. However, the solution to
resolve the time delays based on power measurement alone
may need a large number of iterations to converge. Therefore,
the scenario—loss function based on the product of power and
correlation coefficient—was introduced as another alternative
to calculate gradients and establish the termination condition
of the algorithm. This will be analyzed in Section V-B.

B. Correlation Coefficient-Related Objective Function

As shown in Section V-A, an objective function based
on power measurements as the termination condition for
the algorithm requires a large number of iterations to reach
convergence. Therefore, an objective function was proposed
with an extra parameter—correlation coefficient is introduced
to indicate and quantify the similarity of two signals in the
time domain. The correlation coefficient is defined to analyze
the similarity between two vectors and is given by x =

[x1, x2, . . . , xl , . . . , xL ] and y = [y1, y2, . . . , yl , . . . , yL ] as

r(x, y) =

∑L
l=1

(
xl − x̄

)(
yl − ȳ

)√∑L
l=1

(
xl − x̄

)2
√∑L

l=1

(
yl − ȳ

)2
(26)

where x̄ and ȳ denote the means of vector x and y, respectively.
During the approximation process, r(x, y) can be calculated by
assuming that x is the synthesized signal from the array output
with an ideal receiving condition (i.e., the optimal signal
desired at the array output) and y is the synthesized signal
vector from the array output when the time offset coefficients,
T̂ k , is applied in element channels. The new objective function
with an extra factor of correlation coefficient as an indicator

for convergence testing is defined as

l = 1−r ×
Pk

Pideal
(27)

and when the objective function l approaches zero, the synthe-
sized signal at the array output with the corrected time delay
for each channel becomes nearly identical to the ideal signal
desired out of the receiver. Once this is achieved, the time
delay coefficients vector for calibration, T̂ ∗, takes values of
the approximated vector of time delays from the output of the
algorithm, T̂ k , which is acquired from the final iteration when
the convergence condition is met.

Based on the coefficients selection procedure described in
Section V-A, the quasi-optimal coefficients for the algorithm
were given in Table IV when the number of elements in the
arrays was M = 4, 16, . . . , 128. The range of time delay
distortions (bounded by a hypothetical maximum time delay
distortion) was assumed between −1 and 1 ns. In general,
the values for ak , bk , and ck are suggested to decrease as the
iteration number, k, increases in order to reach the convergence
asymptotically. We found that they can also be assigned with
predetermined small constant values, such that when M =

128, ak = 0.1, and ck = 0.01, the convergence condition
(l ≤ 0.001) can also be reached.

The implementation of the algorithm with the loss function
defined by the combination of power and correlation coeffi-
cient shows a faster convergence speed. The comparison of
convergence rate using two loss function definitions is shown
in Fig. 2. In the simulation, M = 128 and the range of time
delay distortion in the 128-element channels was between −1
and 1 ns. All the coefficients were kept the same apart from
the calculation of the loss functions.

C. Analysis on Number of Iterations
The total number of iterations needed in the algorithm to

reach the convergence depends on a number of factors: the
assigned values for the initialization coefficients, the total
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TABLE IV

QUASI-OPTIMAL COEFFICIENTS FOR THE ALGORITHM3

Fig. 2. Change of loss function as the iteration number, k, increases when
the number of elements in an array, M = 128. The range of time distortion
in all element channels was assumed to be 2 ns. A comparison of changing
trend of two loss functions: one is based on power measurement only and
the other is based on the combination of power and correlation coefficient
calculation.

Fig. 3. Number of iterations required as a function of number of elements
in the arrays, M . The loss function was based on the combination of power
measurement and correlation calculation, the range of time delay distortion
in element channels is between −1 and 1 ns, and the pulse signal used for
calibration had w = 0.3 and σ 2

p = 0.01.

number of array elements, and the level of accuracy the
algorithm delivers. The number of iterations required to reach
convergence as a function of number of elements in arrays for

calibration under three convergence conditions (l ≤ 0.2, l ≤

0.1, or l ≤ 0.01) is given in Fig. 3. It indicated that the number
of iterations required increases significantly as the convergence
condition becomes more stringent. The benefit of a smaller
value as convergence condition was potentially compromised
by a number of iterations needed. Hence, a balance has to be
sought. More novel gradient approximation approaches can
be explored to accelerate the convergence, such that when the
initial value of c and corresponding ck are fixed, if bk follows
a polynomial delay, then ak can be derived according to (25).

D. Analysis on Accuracy of the Algorithm
The accuracy of the algorithm is closely related to the

convergence condition. The ratio of discrepancy, between the
intrinsic time delays (the hypothesized time delay distortions
for real systems) T in and the estimated time delays T̂ ∗, with
the range of time distortions, is used as a measure for evaluat-
ing accuracy of the algorithm (mean{∥T̂ ∗

−T in∥}/range{T in}).
With the number of elements varying between 4 and 128,
after the specified convergence was met (l ≤ 0.2, l ≤ 0.1,
or l ≤ 0.01), the corresponding estimation errors are shown
in Fig. 4. It indicated that average estimation errors in arrays
with a different number of elements maintain a similar level
as soon as the convergence condition is fixed. This can be
better explained by observing the two particular cases (the
insets) where the array had 4 and 128 elements. When the
convergence condition was met for each case (under l ≤

0.01), the estimation errors for all element channels distributed
evenly of a similar magnitude (with 5% in error) despite the
number of the elements in the arrays.

E. Receivers With True Time Delay
Wideband antenna arrays can be dealt with by adopting

true time delay (TTD). Initially, switched delay lines were
applied in the signal paths, and quantized delays were applied
on the element or subarray levels. The recent developments
of monolithic microwave integrated circuit (MMIC) chips
introduce various amounts of delays over a broad range of
frequency. The delay steps are controlled digitally with typical
8–12 bits. However, the range of time delays in a single chip
is limited. The cascaded two-stage hybrid transmitter/receiver
architecture is shown in Fig. 5. At present, the hybrid ana-
log/digital configuration is preferred in practice to reduce the
number of analog-to-digital converters (ADCs) in wideband
systems. Unlike the conventional quasi-monochromatic arrays
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Fig. 4. Estimation error as the number of elements in arrays and convergence
conditions varies. The estimation errors were averaged in all element channels
and the ratio in percentage between the average time delay errors and the range
of time distortions, 2 ns, was given. The inset on the left was for an array
with four elements and the one on the right for an array with 128 elements.
Both were converged when l was less than 0.01. The loss function was based
on the combination of power and correlation coefficient.

where a digital beam can be steered by a simple assignment
of phase and amplitude for each element at a single frequency,
calibration must be carried out in the time domain for wide-
band arrays in order to balance the phase and amplitude over
the entire bandwidth. Quantization on time delays may create
errors as not the exact time delay offsets can be applied during
iterations. The estimation was implemented with time delay
steps controlled by an 8-bits circuit and the estimation error
was compared with that using fully analog time delays in
Fig. 6. The convergence (l ≤ 0.01) was reached first with
an analog time delay setting, and then, the same number of
iterations was used in implementation with an 8-bits control
circuit for time delay adjustment.

VI. SIMULATION RESULTS

In order to validate the effectiveness of the proposed
method, two scenarios have been considered to carry out
calibration in the time domain on finite arrays. In the first
scenario, it was assumed that the pulse transmitted for cal-
ibration was received without any changes in the element
channels, while in the second scenario, pulse distortion caused
by transmitting and receiving was taken into consideration.
Hence, the influence of pulse distortion on performance
of the proposed calibration method was included in the
study.

A. Unchanged Pulses in the Element Channels
In order to illustrate how to carry out calibration in practice

and verify its effectiveness in solving array calibration prob-
lems, the SPSA algorithm was adopted to carry out calibration
on an aperture array with 16 elements in the time domain.
The range of time delay distortion in each element channel
is assumed between −1 and 1 ns. In the experiment, the loss
function was defined by using the product of received power
at the array output and the correlation coefficient between
the received signal at the array output (with perturbated

time delays in element channels) and the desired signal. The
detailed flowchart of running the algorithm for the experiment
is denoted in Fig. 7, where l was calculated based on (27)
and evaluated against two convergence conditions (l reached
0.2 and 0.005) in each iteration.

The total number of elements in the array for calibration
is set to M = 16. A Gaussian pulse with the variance of
σ 2

p = 0.01 impinged onto the array from a far field, and the
duration of time for the pulse is 1 ns. Initially, a time delay
vector, T in , consisting of 16 elements was generated, of which
each element was a random number distributed in the range
between −1 and 1, representing time delays caused by element
variation and imperfect channel condition. Thus, the received
signal from each element was defined as: S1 = s(t − T in(1)),
S2 = s(t − T in(2)) , . . . , S16 = s(t − T in(16)), and the
combined signal from the 16 channels prior to implementing
the calibration procedure will be

Sno_cal = S1 + S2 + · · · + S16. (28)

Approximated time delays were introduced in each channel
for SP, and iterations were run through until the combined
signal from the array output, with perturbation on time delay
applied, was similar to the ideal signal (no time delays applied
in element channels). When the convergence condition was
met, the received signal from the array output was: S1_c =

S(t − (T̂ ∗(1)− T in(1))), S2_c = S(t − (T̂ ∗(2)− T in(2))), . . . ,
S16_c = S(t − (T̂ ∗(16)− T in(16))), and the combined signal
can be expressed as

Scalibrated = S1_c + S2_c + · · · + S16_c. (29)

During the intermediate steps of the optimization process,
T̂ k was renewed at each iteration by introducing time delay
perturbation in each channel for the following step; the cor-
relation coefficient between the received signal at the array
output (with time delay perturbation in each element channel),
Scalibrated , and the ideal signal at the array output (without time
delays applied in each element channel) was used to establish
the condition for convergence.

Initially, a time delay vector T in with 16 elements was
generated, a random value between −1 and 1 was assigned
for each element to reflect the imperfect receiving condition
of the array, and these are the time delays to be calibrated out
of the system. The initial values of T in , time delay vector,
is given in Table V. As shown in Fig. 7, the SPSA algorithm
itself has no prior information about these arbitrary values of
time delays. It introduced time delays into channels at each
iteration and carried out measurements at the array output.
Once the synthesized signal (based on the estimated delay
corrections from the algorithm) has a close enough correlation
with the combined signals (based on the random time delays
at the beginning), i.e., the correlation coefficient between them
is greater than a set value, the convergence criterion was met
and the time delay vector, T̂ ∗, from the last iteration is the
time delays to be used to make time delay adjustments. The
synthesized signals based on T in before and after calibration
are compared in Fig. 8. The time delays for all receiving
channels are to be compensated based on T̂ ∗, and they are
used to cancel T in . The approximated values of T̂ ∗ from the
algorithm were compared to the intrinsic time delays randomly
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Fig. 5. (a) Hybrid multibeam analog/digital architecture with TTD for receiving; (b) Multibeam configuration with TTD for transmitting.

TABLE V
EXPERIMENTAL RESULTS FOR THE ARRAY WITH 16 ELEMENTS

generated in the array system at the beginning of calibration in
Table V, and the estimation error is much lower than 0.01 ns

when the range of time deviation is between −1 and 1 ns,
which verified the effectiveness of the proposed method.
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Fig. 6. Real-time delay errors from estimation in each channel of the array
with 128 elements, and the algorithm was implemented with and without
quantization on the time steps for adjustment. The y-axis value was calculated
by {T̂∗

− T in}/range(T in). The array had 128 elements with a range of 2-ns
time distortions (between −1 and 1 ns) in each channel, and the estimation was
first run without quantization on time delays; after reaching convergence, the
same number of iterations was used for estimation by a quantization scheme
on the 2-ns range with 8 bits.

Fig. 7. Flowchart of the SPSA-based methodology for aperture array
calibration in the time domain.

B. Distorted Pulses in the Element Channels

In practice, the pulses used for calibration will inevitably
be distorted to some extent due to limitations in the antenna
array and frequency-dependent fading during propagation.
Hence, it is necessary to take the signal distortion effects into

Fig. 8. Synthesized signal from the receiving channels for the 16 elements
using a random time delay for each channel (T in) representing imperfect
receiving condition and the time delay approximated for each channel from
the algorithm (T̂∗) for calibration.

TABLE VI
COMPARISON OF CALIBRATION PERFORMANCE

considerations during calibration. In order to verify the effec-
tiveness of the proposed method under such circumstances,
three examples have been demonstrated by implementing the
proposed method. First, a Gaussian pulse as defined in (10)
was used as the reference signal (w = 0.3 and σ 2

p = 0.01)
and the received signals from the element channels had a
similar form but with different variance values (σ 2

p varying
between 0.0217 and 0.0625) representing distortion effect in
different element channels. Second, the Richard wavelet, the
second derivative of the Gaussian pulse as in (10), s(t) =

2Am(2α2(t − to)2 − α)e(−α(t−to)2), was used as the reference
signal (α = 24) for calibration, whereas the pulses received
from element channels used wavelets of different α values
(α varying between 8 and 23 for the 16 elements). Finally,
the short pulse signal was generated from the signal generator
AWG5204 (from Tektronix) with the pulsewidth of 400 ps in
the setting, and the received pulses were taken from the output
ports of the power splitter where the random propagation
delay in each channel was introduced later on after the
respective pulse waveforms were collected. The transmitted
pulse and the received pulses in the time domain and frequency
domain are shown in Fig. 9. It can be seen that the pulse
waveform was modified during propagation and this was more
clearly observed in the frequency domain. The imperfect array
antenna condition was further illustrated by the phenomenon
that the received pulses were not showing up in a regular
interval. The source pulse was used as a reference signal
to launch the algorithm with the abovementioned received
pulse distributing among the element channels with random
time delays. The calibration results for the three examples



ZHANG et al.: CALIBRATION OF APERTURE ARRAYS IN TIME DOMAIN 4179

Fig. 9. Illustration of pulses transmitted, the reference pulse waveform for
calibration, and the received pulses from a power splitter emulating the pulses
received from the element channels, and the source pulse from AWG5204 has
a width of 400 ps. (a) Transmitted and received pulses in the time domain, the
repetitive pulses at the transmit side were shown indicating a regular interval
where the received pulses were deviated from the regular intervals, and the
time deviations are to be calibrated. (b) Power spectrum of the transmitted
and received pulses.

mentioned above are given in Fig. 10. It indicated that the
accuracy of the time delays estimated is better than 99% even
though the pulses received from the element channels were
different from the reference pulse waveform for calibration.
The calibration performance was compared with other typical
calibration methods performed in the frequency domain, and
the main parameters are summarized in Table VI.

VII. DISCUSSION

An idealized solution to the general problem of calibration
is to determine a number of unknowns (presumably constant
over a period of time at least) from a minimum number of mea-
sured quantities (independent of each other.) In a broadband
aperture array with a large number of elements, a number of
measurements required to resolve calibration coefficients are
significant and difficult to implement practically; in particular,
expensive near-field facility testing is infeasible for arrays
with large dimensions. The method based on time-domain
operations presented in this article is an attempt to cope with

Fig. 10. Calibration performance when the received pulses in the element
channels were different from the reference pulse. Two sets of random delays
for 16 element channels were used for verification, and they were defined
as cases 1 and 2. (a) Reference pulse for calibration is a Gaussian pulse
or a Richard wavelet, and the received pulses in the element channels were
different to the reference pulses (numerical pulse waveforms). (b) Reference
pulse is the pulse generated from the signal generator with the pulsewidth of
400 ps, and the received pulses in the element channels were distorted and
therefore different from the reference pulse (real pulse waveforms).

these challenges. The accurate calibration of aperture array
antennas does not require the full capability of a near-field
range (NFR) facility to physically sample the RF field in front
of the array in half-wavelength increments or the response
of each radiating element as is required in most existing
calibration methods.

The characteristic of the short pulse employed for calibra-
tion has a connection with the operational frequency band of
aperture arrays. It should be decided following the principle
that a minimum distortion is caused to the pulse while receiv-
ing from the array elements. However, the filtering effect of
array antennas on the signal for calibration can be mitigated
by using the pulse signal received from an array element as the
reference signal. The algorithm can cope with pulse distortions
without a significant compromise on estimation performance
as shown in Fig. 10 where distorted pulses from array elements
were considered during calibration.

The same method can be applied in the frequency domain
by changing the signal for calibration from a short pulse to a
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narrowband signal in order to determine optimal phase offset
coefficients in element channels. The loss function defined in
(19) can be adopted. As this is not the focus of this article,
we do not elaborate further on this. However, we note that a
very high level of accuracy can be achieved if the method is
implemented in the frequency domain using such method.

Aperture array technology is evolving with advances in
solid-state microwave integrated circuits. Element-level digital
beamforming (DBF) becomes increasingly realistic. However,
digital subarray architecture represents a feasible compromise
between the number of beams and the number of digital
channels. For such arrays as shown in Fig. 5, the algorithm
can be launched in each subarray, and it can also be applied to
make time delay compensations between the subarrays before
beams from subarrays being digitized.

For most time delay RFICs, the adjustable delay range is
between 0 and 200 ps. The state-of-the-art MMICs have a
maximum time delay in the order of 1000 ps covering various
frequency bands. The maximum time distortion in element
channels the algorithm dealt with was 2000 ps (between
−1 and 1 ns) in the analysis. However, the time delay range
can be adjusted based on practical needs. The number of
iterations will reduce when the range of time delay distortions
occurring in array element channels is smaller as it is easier
to converge.

It is worth mentioning that the method proposed in this work
is applicable for the calibration of broadband antenna arrays
employing time delay units at the element or subarray level.
Before the utilization of fully digitized antenna arrays becomes
more accessible, broadband array systems with TTDs are being
developed to mitigate or eliminate “squint” phenomenon by
adopting phased-steered approaches for scanning, which works
well for a system with a narrow RF bandwidth. However, for
applications where high resolution is desired such as imaging
and tracking, more radical changes in technology, including
integrated circuits of TTD with a higher time delay resolution,
such as 8–12-bits time delay shifters, are expected. These
higher cost systems are needed to provide the performance
requirements for high-resolution applications and the calibra-
tion method proposed in this work can greatly reduce the
complexity of calibrating such systems. Various antenna array
architecture solutions with integrated TTD units are presented
in [45].

In practice, the quantization step size of TTDs plays an
important role on the accuracy of the proposed method. When
the number of control bits for the time delay shifter reduces,
the calibration error will rise as the accurate time delay
coefficients in element channels are more difficult to acquire
and this leads to ambiguity. One reference case has been
examined in the previous discussion where the errors of time
delay coefficients for calibration at several element channels
(in an array with 128 elements) are approximately 10% with
8-bits resolution TTD units.

Antenna arrays can have complex and extended time-
domain responses—impulse responses that have the potential
to significantly alter the transmitted or received waveforms,
either because of the environment or the array itself. On the
other hand, by using phase shifters, a significant squint-
induced broadening on the main beam will occur when the

array has a wide bandwidth; hence, TTDs have to be adopted
to restore beamwidth performance. The required TTD, 1T ,
and phase shift, 1ϕ, have the following relation:

1T =
1ϕ

2π f
=

dsin(θ)
c

. (30)

For a broadband waveform with a pulsewidth in time τp ≪

Mdsin(θ)/c, even if dispersion exists in the Tx/Rx paths,
which occurs because of the reflections or other effects, as the
time resolution is high, the responses irrelevant to calibration
can be filtered out in the time domain. In addition, the settings
used for calibration are mainly considered to be under line-
of-sight (LOS) propagation.

As mentioned in Section VI-B, the pulse shapes with
distortion due to transmitting, propagation, and receiving
have a minor effect on calibration performance as soon as
the reference pulse signal for calibration is narrow enough
compared to the maximum time delay distortion occurring in
the element channels. This suggests that the suitable pulse
waveform can be chosen based on the following principles:
1) the time-domain waveform covers the 3-dB bandwidth of
the operational frequency of the array and 2) the duration
of the pulse is significantly less than the maximum time
delay distortion in the element channels. One approach can be
achieved by measuring the impulse response of one element in
the array and then using this impulse response as the reference
pulse for calibration, where a vector network analyzer with
time-domain transforming capability can be used.

VIII. CONCLUSION

A new calibration method for aperture arrays in the time
domain has been proposed. It exploits the SA algorithm
with SP. The proposed method can be successfully applied
for calibrating antenna arrays of ultrawide bandwidth in the
time domain. The main contributions of this article can be
summarized as follows: 1) it gives the technical details of
recurrence relation needed to implement the algorithm for
the purpose of array calibration in the time domain and the
strategy on selecting the initial values of the coefficients
to start the algorithm; 2) it demonstrates that two types of
loss functions can be employed to establish the convergence
criterion based on the availability in practice; 3) it provides
guidance for the optimal values of the coefficients and their
relationship with the problem; 4) small arrays or large arrays
can be treated in different tiers by assigning different values
for coefficients; and 5) it shows that the convergence can be
reached at ease to ensure an estimation error within ±1% of
the total time duration of the short pulse that was employed
for calibration. This validated the efficacy of the method for
calibrating aperture arrays and opens new options for online
calibration of ultrawideband arrays without the need for resort-
ing to expensive and time-consuming near-field facility testing.
It holds great potential for millimeter or THz applications
where increased frequency bandwidth and real-time processing
are in need.

The scope of the method is for array systems with TTD units
at the element or subarray level, where the time resolution is
high and it should be significantly smaller than the maximum
time distortion occurring in the element channels. The future
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work includes a waveform design for optimal calibration
performance and applies the proposed method for wideband
beamforming under more complex situations.
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