
4350 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 5, MAY 2023

Lower Bounds to the Q Factor of Electrically Small
Resonators Through Quasistatic Modal Expansion

Mariano Pascale , Sander A. Mann , Dimitrios C. Tzarouchis , Member, IEEE,
Giovanni Miano , Andrea Alù , Fellow, IEEE, and Carlo Forestiere

Abstract— The problem of finding the optimal current dis-
tribution supported by small radiators yielding the minimum
quality ( Q) factor is a fundamental problem in electromagnetism.
Q factor bounds constrain the maximum operational bandwidth
of devices including antennas, metamaterials, and nanoresonators
and have been featured in seminal papers in the past decades.
Here, we determine the lower bounds of Q factors of small-size
plasmonic and high-permittivity dielectric resonators, which
are characterized by quasi-electrostatic and quasi-magnetostatic
natural modes, respectively. We expand the induced current
density field in the resonator in terms of these modes, leading to
closed-form analytical expressions for the electric and magnetic
polarizability tensors, whose largest eigenvalue is directly linked
to the minimum Q factor. Our results also allow to determine
in closed form the corresponding optimal current density field.
In particular, when the resonator exhibits two orthogonal reflec-
tion symmetries, the minimum Q factor can be simply obtained
from the Q factors of the single current modes with nonvanishing
dipole moments aligned along the major axis of the resonator.
Overall, our results open exciting opportunities in the context
of nano-optics and metamaterials, facilitating the analysis and
design of optimally shaped resonators for enhanced and tailored
light–matter interactions.

Index Terms— Dielectric resonators, eigenvalues and eigen-
functions, plasmons, Q factors, resonances, scattering.

I. INTRODUCTION

CHU’s limit [1] determines the minimum radiation quality
(Q) factor of electrically small antennas. This limit

applies to both self-resonant and non-self-resonant antennas,
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provided that a convenient tuning network is used for the
latter. The minimum Q factor is associated with an optimal
current distribution supported by the antenna. The search for
such lower bounds originated with the works of Chu [1],
Wheeler [2], and Harrington [3], and several techniques have
been proposed over the years by many contributors includ-
ing Collin and Rothschild [4] and McLean [5]. Thal [6],
by restricting the sources to only the electric surface currents
producing nonzero fields within the volume of the antenna,
arrived at stricter bounds than his predecessors. Then, in a
series of contributions, starting in [7], Gustafsson et al. pro-
vided shape-dependent bounds on the radiator’s minimum Q,
linking it to the available volume in which the search of
the optimal current is constrained. They also reduced the
variational problem of finding the minimum Q of antennas
to determine the largest eigenvalues of the polarizability ten-
sor. In subsequent years, Gustafsson and coworkers refined
these ideas [8], [9], [10] exploiting the expressions for the
reactive stored energy derived by Vandenbosch [11] and [12],
Geyi et al. [13], and Geyi [14], and they also included
magnetic-type antennas. Efficient numerical determination of
the optimal current density field by expanding it in terms
of the characteristic modes was also recently demonstrated
by Chalas et al. [15], Capek and Jelinek [16], Jelinek and
Capek [17], and Capek et al. [18]. Capek et al. [19] also
recently investigated the role of symmetry in the evaluation of
fundamental bounds. Yaghjian [20] has recently proven that
the Chu lower bound on Q can be overcome using highly
dispersive material to tune the antenna.

In the literature (e.g., [10], [11], [12]), the antennas are
divided into two categories, depending on the features of the
current density field they support. Antennas of the electric
type support currents with zero curl, that is, longitudinal
current density fields, while antennas of the magnetic type
support currents with zero divergence, that is, transverse
current density fields. As we shall see, this distinction naturally
applies also to plasmonic and high-permittivity resonators.
Plasmonic resonances [21], [22] emerge in scatterers made of
dispersive materials with a negative real part of the permittivity
(metals). In the small-size limit, the plasmonic resonances
can be described within the quasi-electrostatic approxima-
tion of Maxwell’s equations [23], [24], [25]: they are sup-
ported by quasi-electrostatic current density modes, which
are longitudinal vector fields. On the other hand, dielectric
resonances [26], [27] emerge in scatterers made of materials
with a high and positive real part of the permittivity. In the
small-size limit, the dielectric resonances can be described
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by the quasi-magnetostatic approximation of Maxwell’s equa-
tions [28]: they are supported by quasi-magnetostatic current
density modes, which are transverse vector fields. Quasi-
electrostatic and quasi-magnetostatic modes are the natural
modes of the small-size scatterers [29].

This article tackles the problem of the lower bound of the Q
factor for small-size plasmonic and dielectric resonators with
arbitrary shape, expanding the current density field induced
in the resonator in terms of its quasi-electrostatic or quasi-
magnetostatic density resonant modes. This expansion leads
to: 1) the analytical and closed-form expressions of the electric
and magnetic polarizability tensors of the resonator, whose
eigenvalues have been linked to the minimum Q [7], [8];
2) the analytical expression of the minimum Q from the dipole
moments of the quasistatic current modes of the resonator;
and 3) the closed-form expression of the optimal current.
In particular, the determination of the optimal current with-
out the use of an optimization procedure or the numerical
solution of integral equations is a considerable advantage over
other expansions, such as those based on the characteristic
modes [30] of the resonator. This work also unveils the
connection between the resonator’s minimum Q factor and
the Q factor of its natural modes. In particular, we have
also found that the minimum Q factor of a resonator with
two orthogonal reflection symmetries can be obtained from
the Q factors of the single current modes with nonvanishing
dipole moments along the major axis through their parallel
combination. Moreover, when a plasmonic resonator supports
a spatially uniform quasi-electrostatic current mode, this mode
is guaranteed to have the minimum Q factor. Due to dual-
ity, when a dielectric resonator supports a curl-type quasi-
magnetostatic current mode of the form r̂ × c where c is a
constant vector and r̂ is the radial direction, this mode exhibits
the minimum Q factor.

The article is organized as follows: in Section II we summa-
rize the definition and main properties of the quasi-electrostatic
and quasi-magnetostatic current modes of a small-sized scat-
terer of arbitrary shape. Then, in Section III, we address the
problem of finding the minimum Q and the corresponding
optimal current distribution by expanding the current density
field induced in the resonator through its quasistatic current
modes. In Section IV, many examples are shown, exemplifying
the application of the introduced method to small-sized plas-
monic and high-permittivity dielectric resonators of arbitrary
shape. In Appendix A, we derive the expression of the Q factor
for plasmonic and dielectric resonators from their stored
energy and radiated power.

II. RESONANCES OF SMALL-SIZE SCATTERERS

We consider a linear, homogeneous, isotropic, and nonmag-
netic scatterer, occupying a volume V with boundary S = ∂V
surrounded by vacuum. We define the characteristic linear
dimension ℓc of the scatterer to be the radius of the smallest
sphere that surrounds it (see Fig. 1). We indicate with χ(ω)

the susceptibility of the scatterer in the frequency domain,
which we generally assume to be frequency dispersive. If ℓc

is much smaller than the operating wavelength, resonant
electromagnetic scattering can occur due to different mech-

Fig. 1. Arbitrarily shaped plasmonic/dielectric resonator enclosed by the
circumscribing “radiansphere” of radius ℓc . In this work, we determine the
lower bounds of Q factors of small- size plasmonic and dielectric resonators
characterized by quasi-electrostatic and quasi-magnetostatic current modes.

anisms (e.g., [28], [31]), including plasmonic and dielectric
resonances. In the following, we summarize the properties of
the resonances and the resonant modes of solid scatterers.
In Appendix B, we do the same for surface scatterers (i.e.,
shells).

A. Plasmonic Resonances

Plasmonic resonances arise in small-size scatterers with a
negative real part of the permittivity (e.g., metals). These
resonances are associated with the eigenvalues of the integral
operator that gives the electrostatic field as a function of the
surface charge density on the surface S [23], [24]

j∥h(r) = χ
∥

h ∇r

∮
S

n̂
(
r′

)
· j∥h

(
r′

)
4π |r− r′|

d2r′ in V . (1)

Here, j∥h(r) is a quasi-electrostatic current mode of the
scatterer and χ

∥

h is the corresponding eigenvalue. The eigen-
values of this operator are discrete, real, positive, and size-
independent, and χ

∥

h ≥ 2 [24]. The quasi-electrostatic current
modes are longitudinal vector fields in V : they are curl-free
and div-free within V , but have a nonvanishing normal
component on S [24]. These current modes are orthogonal,
i.e., 〈

j∥h, j∥k
〉

V
=

∥∥∥j∥h
∥∥∥2

δh,k ∀h, k (2)

according to the scalar product

⟨f, g⟩V =
∫

V
f∗ · g d3r. (3)

Moreover, j∥h(r) satisfies the charge-neutrality condition∮
S σh(r) d2r = 0, where σh(r) = (iω)−1 j∥h(r) · n̂(r) is the

surface charge density on S associated with the mode. The
electric dipole moment of j∥h(r) is

Ph =

∮
S
σn(r)r d2r =

1
iω

∫
V

j∥h(r) d3r. (4)

If the mode j∥h has a vanishing electric dipole moment,
it is classified as dark, bright otherwise [32]. If the shape
of the resonator has two orthogonal reflection symmetries, the
dipole moment of each mode is aligned along one of these
directions. When the scatterer has a quasi-electrostatic current
mode j∥h = c, that is spatially uniform in V with direction
c (as it happens, for instance, in spheres and ellipsoids),
the orthogonality condition (2) implies that all the remaining



4352 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 5, MAY 2023

current modes, i.e., j∥k ∀k ̸= h, have a vanishing electric dipole
moment along c

c ·
∫

V
j∥k(r)d

3r = (iω)c · Pk = 0 ∀k ̸= h. (5)

The current density field J(r) induced in the scatterer by an
incident electric field Einc is given by [24], [31]

J(r) ≈ iωε0

∑
h

χ
∥

h χ(ω)

χ
∥

h + χ(ω)

〈
j∥h, Einc

〉
V

j∥h(r)
∥j∥h∥2

(6)

where ε0 is the vacuum permittivity. The resonance frequency
ωh of the quasi-electrostatic current mode j∥h is the frequency
at which the real part of the denominator of (6) vanishes,
i.e., [24]

Re{χ(ωh)} = −χ
∥

h . (7)

We now introduce the resonance size parameter ξh , defined
as

ξh =
ωh

c0
ℓc (8)

where c0 denotes the light velocity in vacuum. Assuming that
the hth current mode j∥h is bright and “isolated” (namely, its
resonance frequency is sufficiently far from the resonance
frequencies of the other modes), and the dispersion relation
of the scatterer is of Drude type, we show in Appendix A1
that its Q factor has the following expression:

Q∥h = −3ℓ3
c

∮
S
σ ∗h (r) ·

∮
S

σh
(
r′

)
|r− r′|

d2rd2r′∮
S
σ ∗h (r)

∮
S
σh

(
r′

)∣∣r− r′
∣∣2d2rd2r′

1
ξ 3

h

(9)

which can also be rewritten as

Qh =
1

χ
∥

h

6π∥j∥h∥2

ω2
h∥Ph∥

2

ℓ3
c

ξ 3
h

=
1

χ
∥

h

6π∥j∥h∥2∥∥∫
V jh(r)d3r

∥∥2

ℓ3
c

ξ 3
h

. (10)

If the mode is dark, the Q factor presents a more compli-
cated expression which diverges faster than 1/ξ 3

h [31].
1) Modal Expansion of the Electric Polarizability Ten-

sor: Following [33], the electric polarizability tensor of the
scatterer is the linear correspondence, ←→γ e : (E0ê) → P,

between the electric field (E0ê) and the electric dipole moment
[34], [35]:

P =
∮

S
σ(r)r d2r (11)

where σ(r) is the solution of the surface integral equation∮
S

σ
(
r′

)
4π |r − r ′|

d2r′ =
(
ε0 E0 ê

)
· r on S (12)

subjected to the charge neutrality condition; E0 is a real
number and ê is a unit vector.

We solve (12) by expanding the unknown σ in terms
of the surface charge density modes σh , i.e., σ(r) =∑

h αh σh(r), on S. Substituting this expression in (12), which
naturally satisfies the charge neutrality condition, multiplying
both members by σk , integrating over the surface S, and
exploiting the orthogonality condition (2), we obtain the

expression for the expansion coefficient αk . Thus, the dipole
moment associated with the surface charge density σ is given
by

P =
∑

h

χ
∥

h

∥j∥h∥2
Ph ⊗ Ph(ε0 E0)ê (13)

where ⊗ denotes the tensor product. From this, the electric
polarizability tensor ←→γ e is given by

←→
γ e =

∑
h

χ
∥

h

∥j∥h∥2
Ph ⊗ Ph . (14)

This expression is the first important result of this work,
as it relates in closed form the polarizability tensor to the
quasi-electrostatic current modes of a plasmonic resonator.

B. Dielectric Resonances

Dielectric resonances arise in small-sized dielectric scatter-
ers with large real part of permittivity. These resonances are
associated with the eigenvalues of the magnetostatic integral
operator that gives the vector potential as a function of the
current density [28], [31]

j⊥h (r) =
χ⊥h

ℓ2
c

∫
V

j⊥h
(
r′

)
4π |r− r′|

d3r′ in V (15)

with the condition j⊥h · n̂|S = 0. j⊥h (r) is a quasi-magnetostatic
current mode of the scatterer, and χ⊥h is the corresponding
eigenvalue. The above equation holds in weak form in the
functional space of the transverse vector fields equipped with
the inner product (3). The spectrum of the magnetostatic
integral operator (15) is discrete, and the eigenvalues are real
and positive [28]. The quasi-magnetostatic current modes are
transverse vector fields defined in V : they are div-free in V
and have zero normal component on S. These modes are
orthogonal, i.e., 〈

j⊥h , j⊥k
〉
=

∥∥j⊥h
∥∥2

δh,k ∀h, k. (16)

The electric dipole moments of the quasi-magnetostatic
current modes are equal to zero. The magnetic dipole moment
Mh of the mode j⊥h is

Mh =
1
2

∫
V

r× j⊥h (r) d3r. (17)

If the shape of the scatterer has two orthogonal reflection
symmetries, the magnetic dipole moment of each mode is
aligned along either one of these directions. If the scatterer
supports a mode of the form j⊥h = r̂ × c, where c is a constant
vector, then the orthogonality condition (16) implies that all
the remaining modes j⊥k with k ̸= h have a vanishing magnetic
dipole moment along c∫

V
j⊥k ·

(
r̂× c

)
d3r = −2c ·Mk = 0, k ̸= h. (18)

For a small dielectric scatterer with high permittivity, the
current density field J(r) induced in V by an incident electric
field Einc is [28]

J(r) ≈ iωε0

∑
h

χ(ω)χ⊥h

χ⊥h −
ω2ℓ2

c
c2

0
χ(ω)

〈
j⊥h , Einc

〉
V

j⊥h (r)
∥j⊥h ∥2

. (19)
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The resonance frequency of the quasi-magnetostatic current
mode j⊥h is the frequency ωh at which the real part of the
denominator of (19) vanishes

Re{χ(ωh)} =
ω2

hℓ
2
c

c2
0

χ⊥h . (20)

In Appendix A2, we show that if the hth mode has a
nonvanishing magnetic dipole moment, its Q factor is

Q⊥h = 6π

∥∥j⊥h
∥∥2∥∥M⊥h
∥∥2

ℓ5
c

χ⊥h

1
ξ 3

h

= 6ℓ3
c

∫
V

j⊥h (r) ·
∫

V

j⊥h
(
r′

)
|r− r′|

d3r′ d3r∫
V

j⊥h (r) ·
∫

V
j⊥h

(
r′

)∣∣r− r′
∣∣2d3r′ d3r

1
ξ 3

h

. (21)

1) Modal Expansion of the Polarizability Tensor: Follow-
ing [33], the magnetic polarizability tensor ←→γ m is the linear
correspondence, ←→γ m : (H0ê) → M, between H0ê (H0 is a
real number and ê is a unit vector) and the magnetic dipole
moment M of the current density field j with zero average
over V that is the solution of the integral equation [10]:∫

V

j
(
r′

)
4π |r− r′|

d3r′ =
1
2

(
H0ê

)
× r, in V . (22)

To solve (22), we expand the current density j in terms of
the quasi-magnetostatic current modes. As we have done in the
solution of the integral equation (12), we obtain the expression
for ←→γ m

←→
γ m =

∑
h

χ⊥h

∥j⊥h ∥2
Mh ⊗Mh . (23)

As a second important result of this work, this relation
expresses in closed form the polarizability tensor as a function
of the quasi-magnetostatic current modes.

III. MINIMUM Q FACTOR AND OPTIMAL CURRENT
DISTRIBUTION FOR PLASMONIC/

DIELECTRIC RESONATORS

We now tackle the problem of determining the optimal
current distribution that supports the minimum Q factor
for small-sized plasmonic and high-permittivity dielectric
resonators.

A. Plasmonic Resonators

The problem of finding the minimum Q consists of deter-
mining the optimal current density j in the functional space
of longitudinal vector fields defined in V , which gives the
minimum value of the functional

ξ 3 Q = −3ℓ3
c

∮
S
σ ∗(r) ·

∮
S

σ
(
r′

)
|r− r′|

d2rd2r′∮
S
σ ∗(r)

∮
S
σ
(
r′

)∣∣r− r′
∣∣2d2rd2r′

(24)

where ξ = ωℓc/c0 and j · n = σ/(iω). This expression of the
Q factor and the following derivation also hold for surface
scatterers provided that the quantity j · n is replaced by ∇s · j.

Vandenbosch [12] showed that the minimization of func-
tional (24) can be successfully achieved by recasting min-
imization as the problem of finding the zeros of a matrix
determinant. Here, we choose to follow the approach of
Gustafsson et al. [7] and [8] and Jonsson and Gustafsson [10].

They found that any pair (σopt , γ ) satisfying the integral
equation [7], [8], [10]∮

S

σopt
(
r′

)
4π |r− r′|

d2r′ − γ
1
ℓ3

c
r ·

∮
S
σopt

(
r′

)
r′d2r′ = 0, on S

(25)

gives a local minimum of the functional ξ 3 Q (γ is the
Lagrange multiplier), and among them the absolute minimum
can be found. In particular, they found that the minimum of
the Q factor is given by [7], [10](

ξ 3 Q
)

min =
6πℓ3

c

γe,max
(26)

where γe,max is the maximum among the three eigenvalues of
the electric polarizability tensor ←→γ e. Equation (26) is also
consistent with the formula found by Yaghjian and coworkers
in [36] [see (44)]. The corresponding eigenvector returns the
direction of the dipole moment p̂opt of the optimal surface
charge density σopt

p̂opt =

∫
S
σopt (r)r d2r. (27)

We now expand the optimal current distribution jopt in
terms of the quasi-electrostatic current modes j∥h , jopt(r) =∑

h αh j∥h(r). We determine the coefficients αh by substituting
this expansion in the critical equation (25), using (27) and the
orthogonality (2). Eventually, we obtain

jopt(r) =
∑

h

χ
∥

h

∥j∥h∥2

(
p̂opt · Ph

)
j∥h(r). (28)

This is a third remarkable result of this work: once the
direction of the dipole moment associated with the optimal
current is determined, the optimal current is known in closed
form. This property constitutes a significant advantage over
the previously developed techniques for electrically small
antennas, as in [7], [8], and [12], for which the determination
of the optimal current is not straightforward because it requires
the solution of an integral equation. As we shall see in
Section IV, only a few quasi-electrostatic modes are needed
to achieve a good estimate of the optimal current.

If the shape of the resonator has two orthogonal reflection
symmetry planes with normals ê1 and ê2, the principal axes
of ←→γ e are the triplet (ê1, ê2, ê3), where ê3 is orthogonal to
both ê1 and ê2. The dipole moments of the quasi-electrostatic
current modes are also aligned along these directions. In this
case, the three occurrences of ←→γ e are obtained from (14).
They are given by

γe,i =
∑

h

χ
∥

h

∥j∥h∥2

∣∣êi · Ph
∣∣2

, i = 1, 2, 3. (29)

Only the quasi-electrostatic current modes with dipole
moment directed along êi contribute to the sum. In this
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Fig. 2. Flowchart for the calculation of the minimum Q factor of an arbitrarily
shaped plasmonic resonator using the quasi-electrostatic current modes. First,
we preliminarily calculate the current modes. Then, if the scatterer has two
reflection symmetries, the minimum Q along the principal axis of the electric
polarizability tensor ê1, ê2, and ê3 is obtained from the Q factor of the
current modes with nonvanishing dipole moments oriented along that axis. The
absolute minimum Q is the minimum value among these tree values, which
corresponds to the optimal current. If no such symmetries are present, then
we analytically assembly the polarizability tensor using the dipole moments
and the eigenvalues of the modes, and eventually we find its eigenvalues and
eigenvectors. The minimum Q and optimal currents are then immediately
obtained. A similar flowchart can be drawn for a high-permittivity dielectric
resonator.

case, by combining (29), (26), and (10), we obtain a fourth
important result of this work: the minimum Q along the axis
êi is given by the parallel formula

1(
ξ 3 Q

)
min,i

=

∑
hi

1

ξ 3
hi

Q∥hi

(30)

where the label hi denotes the modes with nonvanishing
electric dipole moments along êi . As shown in (5), due to the
modes’ orthogonality, if there exists a current mode spatially
uniform along êi , it is also the only current mode with
nonvanishing dipole moment along êi , and then it necessarily
exhibits the minimum Q factor.

In conclusion, we summarize in Fig. 2 the algorithm to
determine the minimum Q factor and the corresponding opti-
mal current of an arbitrary shaped plasmonic resonator.

B. High-Permittivity Dielectric Resonators

The problem of finding the minimum Q consists in deter-
mining the optimal current density j, in the functional space of
transverse vector fields defined in V , which gives the minimum
value of the functional

ξ 3 Q = 6ℓ3
c

∫
V

j(r) ·
∫

V

j
(
r′

)
|r− r′|

d3r d3r′∫
V

j(r) ·
∫

V
j
(
r′

)∣∣r− r′
∣∣2d3rd3r′

(31)

where j is the current density field. The above expression also
holds for surface scatterers of high-conductivity, provided that
the volume integrals are replaced by surface integrals.

The minimum Q factor is obtained from the maxi-
mum eigenvalue γm,max of the magnetic polarizability tensor
←→
γ m [10] (

ξ 3 Q
)

min =
6πℓ3

c

γm,max
. (32)

Since the magnetic polarizability tensor has the closed-form
expression (23), the determination of (ξ 3 Q)min only requires
the calculation of the eigenvalues of a 3 × 3 matrix. Equa-
tion (32) is also consistent with the formula found by Yaghjian
and coworkers in [36]. The eigenvector corresponding to
γm,max returns the direction m̂opt of the dipole moment of the
optimal current. Following the same steps we have done for
the plasmonic resonator, the optimal current is readily obtained
in terms of the quasi-magnetostatic current modes:

jopt(r) =
∑

h

χ⊥h
(
m̂opt ·Mh

)
j⊥h (r). (33)

As we will see in Section IV, in many scenarios, only a few
current modes have to be considered to have a good estimation
of the minimum Q factor.

As for the plasmonic resonators, if the shape of the resonator
has two orthogonal reflection symmetry planes with normals
ê1 and ê2, the principal axis of ←→γ m is the triplet (ê1, ê2, ê3),
where ê3 is orthogonal to both ê1 and ê2. Thus, the three
occurrences of ←→γ m are

γm,i =
∑

h

χ⊥h

∥j⊥h ∥2

∣∣êi ·Mh
∣∣2

, i = 1, 2, 3 (34)

where the summation runs only over the quasi-magnetostatic
current modes with magnetic dipole moment directed along êi .
The minimum Q along the axis êi is then obtained by their
parallel combination

1(
ξ 3 Q

)
min,i

=

∑
hi

1
ξ 3

hi
Q⊥hi

(35)

where only the modes with magnetic dipole moment directed
along êi have to be considered. In addition, as shown in (18),
due to the modes’ orthogonality, if there exists a current
curl-type mode in the form r × c, it is the only one with
nonvanishing magnetic dipole moment along direction c. Thus,
it necessarily has the minimum Q factor.

IV. RESULTS AND DISCUSSION

We now exemplify the outlined method, by evaluating the
minimum Q factor of small-sized plasmonic and dielectric
resonators with different shapes. We first consider shapes that
support uniform quasi-electrostatic modes and curl-type quasi-
magnetostatic modes, which are guaranteed to have the mini-
mum Q factor. Then, we consider shapes with two orthogonal
reflection symmetries, where the minimum Q factor can be
obtained from the Q factors of the quasi-static current modes
through the parallel formula. Eventually, we consider shapes
with no symmetry. The electrostatic eigenvalue problem (1)
is solved by the numerical method outlined in [23] and [37],
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and the magnetostatic eigenvalue problem (15) is solved by
the numerical method described in [28] and [38].

A. Plasmonic Resonator

1) Shapes With Uniform Current Modes: A sphere with unit
radius has three degenerate quasi-electrostatic uniform current
modes, one for each of the three orthogonal direction x̂, ŷ, ẑ,
with eigenvalues χ

∥

x,y,z = 3. We show the surface charge
density of the current mode j∥z =

√
3/(4π) ẑ in Fig. 3(a).

For the considerations made in Section III-A, these modes are
the only bright modes supported by a sphere. Thus, their Q
factors coincide with the minimum Q factor supported by the
sphere for longitudinal currents(

ξ 3 Q
)

min = ξ 3
x,y,z Q∥x,y,z = 1.5. (36)

Similarly, a rotationally symmetric spheroid (around ẑ) has
three uniform current modes, j∥x = j0x̂, j∥y = j0ŷ, and j∥z = j0ẑ,
where j0 = 1/

√
V and V = (4/3)πa2

x az, where ax and az are
the semi-axis. They are the only bright modes of the spheroid.
The expression (10) for the Q factor in this case simplifies to

ξ 3
x,y,z Q∥x,y,z =

6πℓ3
c

V
1

χ
∥

x,y,z
. (37)

The eigenvalue χ
∥

h corresponding to the current mode
aligned along the major axis is the maximum eigenvalue, and
therefore, the minimum Q is associated with it. As an example,
in Fig. 3(a), we consider the case of a prolate and an oblate
spheroid with aspect ratio 2:1.

2) Shapes With Nonuniform Current Modes and Two Reflec-
tion Symmetries: We consider a rod with radius R and height
H = 4R, aligned along ẑ. We modeled the rod as a superel-
lipsoid, with boundary (x/R)2

+ (y/R)2
+ (z/(4R))10

= 1.
We follow the algorithm outlined in Fig. 2. In Fig. 3(b), on the
right of the “=” sign, we show the surface charge density of
the three bright modes with lowest Q and with electric dipole
moment directed along ẑ. We obtain the minimum Q factor by
combining the Q factor of the bright modes using the parallel
formula and the optimal current by applying (28). In the same
figure, on the left of the “=” sign we show the charge density
corresponding to the minimum Q factor. The Q factor of the
first current mode is very close to the Q bound because for
the considered superellipsoid, the first current mode on the
right of the equal sign is almost uniform. The relative error in
the calculation of (ξ 3 Q)min by considering only the first three
current modes is below 0.2%.

In Fig. 3(c), we also consider the case of a sphere dimer
of radius R, aligned along the ẑ-axis with an edge–edge gap
δ = R/10. Similar to the rod, the minimum Q factor is
obtained by combining the Q factor of the bright modes with
electric dipole moments aligned along the ẑ-axis, using the
parallel formula. On the other hand, for the sphere dimer
the first mode exhibits a Q that is quite larger than the
minimum. This is because the dimer of two nearly touching
spheres supports modes that strongly deviate from the uni-
form distribution [39]. The relative error in the calculation
of (ξ 3 Q)min by considering only the first three modes is
below 0.3%.

3) Shapes With Nonuniform Current Modes and No Sym-
metries: We consider a block with three arms of different
lengths. We first compute the quasi-electrostatic modes of this
scatterer. The four bright modes with lowest Q factor are
shown in Fig. 3 on the right of the “=” sign. The direction of
the dipole moment Ph of each mode is also shown in the
insets. Considering that there are no symmetries, we have
to preliminary assemble the polarizability tensor using (12)
and find its maximum eigenvalue. On the left of Fig. 3(d),
we show the surface charge density associated with the optimal
current obtained by (28). The relative error in the estimation of
(ξ 3 Q)min by taking into account only the four modes shown
in Fig. 3(d) is 26%. We have to consider at least 25 modes to
have an error below 10%.

B. Dielectric Resonator

1) Shapes Supporting a Quasi-Magnetostatic Curl-Type
Mode: We now consider a dielectric resonator having the
shape of a spherical shell with unit radius. First, we compute
the quasi-magnetostatic current modes associated with this
shape by (65) of Appendix B2. This shape supports three
degenerate current curl-type modes with nonzero magnetic
dipole moment: j⊥ĉ =

√
3/(2π) r̂ × ĉ where ĉ = x̂, ŷ, ẑ; the

magnetic dipole moment is oriented along ĉ and χ⊥ĉ = 3.
According to the discussion of Section II-B, they are the only
modes with nonvanishing magnetic dipole moment. We show
one of these current modes in Fig. 3(e). Thus, applying (35)
the minimum Q factor is(

ξ 3 Q
)

min =
(
ξ 3

ĉ Q⊥ĉ
)
= 3. (38)

This is in agreement with [6], [9], and [12].
2) Shapes With Two Reflection Symmetries: We now con-

sider a dielectric sphere resonator of unit radius. Unlike
the spherical shell, the solid sphere does not support a
mode of the form r̂ × c. We compute the supported
quasi-magnetostatic current modes solving the eigenvalue
problem (15). We limit our analysis to the ones having nonvan-
ishing magnetic dipole moment along the ẑ-axis: j 1

h (r, θ, φ) =
√

3π/2 j1(hπr) r̂ × ẑ, where h ∈ N and j1 is the spherical
Bessel function of the first kind and order 1. They are
associated with the eigenvalues χ⊥h = (hπ)2. The Q factors
of the modes are (ξ 3

h Q⊥h ) = (hπ)2/2. The first three current
modes are shown on the right of the “=” sign in Fig. 3(f), with
their Q factor. The minimum Q factor (ξ 3 Q)min is obtained
by applying (35)(

ξ 3 Q
)−1

min =
∑

h

(
ξh Q⊥h

)−1
=

2
π2

∑
h

1
h2 =

2
π2

π2

6
=

1
3

(39)

which is in agreement with Thal’s analysis. In this parallel,
by only considering the first four modes, we obtain an error
of 15.4%; we have to consider at least 13 modes to have
an error below 5%. The current density field is obtained by
applying (33)

jopt (r, θ, φ) =

√
3

2π
δ(r − 1) r̂× ẑ (40)

where δ is a Dirac delta function. Thus, it corresponds to a
surface current localized on the sphere’s surface, which is the
same optimal current found for a spherical shell.
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Fig. 3. Minimum Q and corresponding optimal charge/current distribution supported by (a)–(d) plasmonic and (e)–(h) dielectric resonators. Plasmonic
resonators. (a) Optimal charge density supported by a sphere and by prolate and oblate spheroids with aspect ratio 2 : 1; the bright modes of these shapes are
the uniform current modes. Optimal charge density supported by geometries exhibiting two reflection symmetries, namely, (b) rod and (c) sphere’s dimer,
and (d) by a shape without symmetries. In (b)–(d), on the right of the “=” sign, plasmonic modes with lowest Q factor, their Q factor (top), and eigenvalues
(bottom). The colormap represents the electric charge density. Dielectric resonators. (e) Current density mode of a spherical shell of the form r̂× c that is the
optimal current density for the spherical shell. Optimal current density supported by geometries exhibiting two reflection symmetries, namely, (f) solid sphere
and (g) ellipsoid, and (h) by a shape with no symmetries. In each panel, on the right of the “=” sign, quasi-magnetostatic modes with lowest Q factor, their
individual Q factor (top), and eigenvalues (bottom). The colormap represents the magnitude of the current density, the arrows its direction.

We now consider a spheroidal shell with aspect ratio 4:1,
with major axis aligned along ẑ. Also this shape does not
support a curl-type mode. We compute the quasi-magnetostatic
resonances by solving the eigenvalue problem (65) of
Appendix B2. The minimum Q factor is associated with the
set of quasi-magnetostatic modes exhibiting a nonvanishing

magnetic dipole moment along the major axis. In Fig. 3(g),
we show the optimal surface current, the eigenvalues, and Q
factor of the three current modes with the lowest Q factor.
The value of the minimum Q factor is obtained using (35):
(ξ 3 Q)min = 39. If we only consider the three modes shown
in Fig. 3(g), an error < 1% is obtained.
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3) Shapes With No Symmetries: We consider a shell with
no reflection symmetries, defined as the boundary of a block
with three arms of different lengths. We preliminarily compute
its quasi-magnetostatic current modes by solving (65), their
magnetic dipole moments Mh by (17), and Q factors by (21).
The four modes with the lowest Q factor are shown in
Fig. 3(h) on the right of the equality sign, with their Q factor
(above) and eigenvalue (below). We assembly the magnetic
polarizability tensor←→γ m using (23) from the dipole moments
of the current modes Mh . The maximum eigenvalue γmax of
←→
γ m gives the minimum Q factor through (26). The optimal

current obtained using (33) is shown on the left of the equality
sign in Fig. 3(h). Only by considering the first three modes,
we obtain an estimate of (ξ 3 Q)min with an error of 12%.

V. CONCLUSION

We have tackled the problem of finding the minimum
Q and the optimal current of electrically small plasmonic
and high-index nano-resonators, a topic of great relevance
for the growing metamaterials and nano-optics community.
We show that this electromagnetic problem is conveniently
described in a basis formed by the quasistatic resonance modes
supported by the scatterer, which are the natural modes of
the resonator in the small-size limit. We demonstrated that
the expansion of the current density in terms of quasistatic
modes leads to analytical closed-form expressions for the
electric and magnetic polarizability tensors, whose eigenvalues
are directly linked to the minimum Q. Hence, we have been
able to determine the minimum Q and the corresponding
optimal current distributions in the scatterers in closed form.
In particular, we found that when the resonator exhibits two
orthogonal reflection symmetries, its minimum Q factor can be
simply obtained from the Q factors of the quasistatic modes of
the radiator with nonvanishing dipole moment along with the
major axis. Moreover, when a plasmonic resonator supports a
spatially uniform quasi-electrostatic current mode, this mode is
guaranteed to have the minimum Q factor. Because of duality,
when a dielectric resonator supports a quasi-magnetostatic
current, curl-type mode, in form r̂ × c where c is a constant
vector and r̂ is the radial direction, this mode also exhibits
the minimum Q factor. The introduced method can also be
applied to find the minimum Q of translational invariant
scatterers [40].

In this article, we considered plasmonic and high-
permittivity resonant scatterers, limiting the search space for
optimal currents either to longitudinal or transverse current
density vector fields [16]. However, in principle, lower bounds
may be obtained by simultaneously considering both types of
vector fields [16], e.g., in dual-mode antennas [9].

Beyond the limit of small-size resonators, the advantages of
the quasistatic basis become less relevant, and the use of con-
vex optimization over current density becomes necessary [15],
[16], [17], [18] to find the minimum Q. Nevertheless, since the
quasi-electrostatic and quasi-magnetostatic modes form a basis
for the square-integrable currents defined within the scatterer,
they can be used to represent the optimal current solution of
convex optimization problems. We expect that the optimal

current in the Drude plasmonic particle will no longer be
irrotational (as in the small-particle limit). Dually, the optimal
current in high-index resonator will no longer be solenoidal.
In both the cases, the contribution of both the electrostatic and
magnetostatic modes will be needed to determine the optimal
current; nevertheless, if the size of the scatterer is smaller or
comparable to the resonance frequency, we expect that only
few modes will be required to describe the optimal current.

The introduced framework bridges a classic antenna prob-
lem to the field of resonant scattering, and in particular
to the field of plasmonics, metamaterials, and nano-optics.
Our results may be especially appealing to researchers and
engineers working in photonics and polaritonics, leading to
optimal solutions to enable enhanced light–matter interactions
through engineered nanostructures.

APPENDIX

A. Q Factor of Small Scatterers

In this Appendix, we derive the expression of the Q factor
for plasmonic and high-permittivity resonators with character-
istic dimension ℓc much smaller than the operating wavelength
λ, ξ = 2πℓc/λ≪ 1. The Q factor of a self-resonant structure
is defined as 2π times the ratio between the mean value over
the cycle of the stored energy Wstored and the energy Wlost
lost per cycle by damping processes, both evaluated at the
resonance frequency of the h-th mode ωh (e.g., [41], [42])

Q def
= 2π ×

Wstored

Wlost
= ωh ×

Wstored

power loss
. (41)

1) Plasmonic Resonator: In this section, we evaluate the
stored energy, the radiated power, and the Q factor of a
dispersive plasmonic scatterer. We describe the metal using
the Drude model (e.g., [21]) with vanishing dissipation losses

χ(ω) = −
ω2

p

ω(ω + iν)
≈ −

ω2
p

ω2 (42)

where ωp is the plasma frequency and ν is the damping rate of
the free electrons of the metal, which is assumed to be much
smaller than ωp and the operating frequency ω.

a) Mean value of the stored energy: The electrostatic
field Eh associated with the surface charge density σh of the
quasi-electrostatic (plasmon) current mode j∥h is given by [24]

Eh(r) = −
∇r

4πε0

∮
S

σh
(
r′

)
|r− r′|

d S′. (43)

The mean value of the energy stored in the whole
space Wstored in the presence of the metal particle is dom-
inated by its electric share W (e)

stored, which is given by
[34], [43], [44], [45]

W (e)
stored

=
ε0

4

(
1+

∂(ωχ)

∂ω

) ∫
V
∥Eh∥

2d3r+
ε0

4

∫
Ve

∥Eh∥
2d3r (44)

where Ve is the external space. Using the following identity
(see (35) in [20] and [24]):∫

Ve

∥Eh∥
2d3r =

(
χ
∥

h − 1
) ∫

V
∥Eh∥

2d3r (45)
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in (44), we obtain

W (e)
stored =

ε0

4

(
χ
∥

h +
∂(ωχ)

∂ω

) ∫
V
∥Eh∥

2d3r. (46)

Then, we evaluate the norm of the electric field in V∫
V
∥Eh∥

2d3r =
1

4πε2
0χ
∥

h

∮
S
σ ∗h (r)

∮
S

σh
(
r′

)
|r− r′|

d S′ d S (47)

where we have used (43), the divergence theorem, and Eh ·n̂ =
−σh/(ε0χ

∥

h ) on S.
In conclusion, by combining (47) and (46), we obtain

W (e)
stored = β(ω)

1
8πε0

∮
S
σ ∗h (r)

∮
S

σh
(
r′

)
|r− r′|

d S′ d S (48)

where

β(ω) =
1

2χ
∥

h

(
χ
∥

h +
∂(ωχ)

∂ω

)
. (49)

For a Drude metal with vanishing losses [see (42)], we have
((∂(ωχ))/∂ω) = −χ(ω). Moreover by (7), at the resonance
we have χ(ωh) ≈ −χ

∥

h , thus β(ωh) ≈ 1 . In conclusion,
we obtain

W (e)
stored =

1
8πε0

∮
S
σ ∗h (r)

∮
S

σh
(
r′

)
|r− r′|

d S′ d S. (50)

b) Radiated power: The power Ph radiated in free space
by the quasi-electrostatic current mode j∥h with nonzero electric
dipole moment is

Ph =
µ0ω

4

12πc
∥Ph∥

2
=

ωh

2
(k0ℓc)

3

6πε0

1
ℓ3

c
∥Ph∥

2

=
ωh

3
(k0ℓc)

3

ℓ3
c

1
8πε0

∮
S
σ ∗h (r)

∮
S
σh

(
r′

)∣∣r− r′
∣∣2d2rd2r′

(51)

where we used the identity ∥Ph∥
2

=

−(1/2)
∮

S σ ∗h (r)
∮

S σh
(
r′

)
|r− r′|2d3r′d3r.

c) Q factor: We now compute the Q factor using defini-
tion (41), assuming negligible dissipation losses in the mate-
rial. By combining (50) and (51), we get (9). By exploiting
the following identities:

1
8πε0

∮
S
σ ∗h (r)

∮
S

σh
(
r′

)
|r− r′|

d2r d2r′ =
ω2

2ε0

∥j∥h∥2

χ
∥

h

,

−
1
2

∫
V

σ ∗h (r)
∫

V
σh

(
r′

)∣∣r− r′
∣∣2d3r′d3r

= ω2
∥∥∥∥∫

V
jh(r)d3r

∥∥∥∥2

. (52)

Equation (9) becomes (10). It is worth noting that the
expression (9) coincides with the one obtained by Vanden-
bosch [12] for an electrically small nondispersive tuned PEC
radiator of the electric type.

2) High-Permittivity Dielectric Resonator: We now evalu-
ate the stored energy, the radiated power, and the Q factor
of a high-permittivity dielectric resonator with nondispersive
susceptibility χ(ω) = χ0 ≫ 1 in the frequency range of
interest.

a) Mean value of the stored energy: The stored energy
Wstored is the sum of the stored electric and magnetic energies.
Starting from (44), the stored electric energy W (e)

stored can be
rewritten as

W (e)
stored =

ε0

4

(
1+

∂ωχ0

∂ω

) ∫
V
∥Eh∥

2d3r

+
ε0

4

∫
Ve

∥Eh∥
2d3r ≈

µ0ℓ
2
c

4χ⊥h
∥jh∥

2 (53)

where we have exploited the fact that the second term domi-
nates over the remaining two for χ0 ↑ ∞, and the identity∫

V
∥Eh∥

2d3r = ℓ2
cµ0

∥jh∥
2

χ⊥h ε0χ0
. (54)

The magnetic stored energy is given by

W (m)
stored =

µ0

4

∫
V
∥Hh∥

2d3r+
µ0

4

∫
Ve

∥Hh∥
2d3r

=
1

4µ0

∫
V
∥∇ × Ah∥

2d3r+
1

4µ0

∫
Ve

∥∇ × Ah∥
2d3r

(55)

where Ah = µ0(ℓ
2
c/χ

⊥

h )j⊥h is the vector potential associated
with the magnetoquasistatic current mode. Using the identity

∇ × A · ∇ × B = A · ∇ × ∇ × B+∇ · [A×∇ × B] (56)

and the property [28] ∇ × ∇ × Ah = (χ⊥h /ℓ2
c) Ah, r ∈ V ,

we obtain

W (m)
stored =

1
4µ0

∫
V

Ah · ∇ × ∇ × Ahd3r =
µ0ℓ

2
c

4χ⊥h

∥∥j⊥h
∥∥2

. (57)

Thus, the total stored energy Wstored is

Wstored = W (e)
stored +W (m)

stored =
µ0

2
ℓ2

c

χ⊥h

∥∥j⊥h
∥∥2

. (58)

Using the following identity:

µ0

2
ℓ2

c

χ⊥h
=

1
∥j⊥h ∥2

µ0

8π

∫
V

j⊥h (r) ·
∫

V

j⊥h
(
r′

)
|r− r′|

d3r′d3r (59)

the expression of total stored energy is rewritten as

Wstored = W (e)
stored +W (m)

stored =
µ0

2
ℓ2

c

χ⊥h

∥∥j⊥h
∥∥2

=
µ0

8π

∫
V

j⊥h (r) ·
∫

V

j⊥h
(
r′

)
|r− r′|

d3r′d3r. (60)

b) Radiated Power: The power Pm radiated by the
polarization current mode j⊥h with nonvanishing magnetic
dipole moment is given by

Pm =
ω4

h/c3
0

12c0π
∥Mh∥

2
= ωh

µ0

12π

(
ωh

c0
ℓc

)3 1
ℓ3

c
∥Mh∥

2

= ωh
µ0

48π
(k0ℓc)

3 1
ℓ3

c

∫
V

j⊥h (r) ·
∫

V
j⊥h

(
r′

)∣∣r− r′
∣∣2d3rd3r′.

(61)
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c) Q factor: We now compute the Q factor using the
definition. We assume that the material losses are negligible;
thus, all the contribution to the power loss comes from the
power radiated to infinity Pm . By combining (60) and (61)
and the definition (41), we obtain (21). It is worth noting
that the expression (21) coincides with the one derived by
Vandenbosch [12] for an electrically small tuned PEC radiator
of the magnetic type.

B. Resonant Modes of Surface Scatterers

1) Quasi-Electrostatic Resonances: Resonant electromag-
netic scattering from a small-size non-magnetic scatterer occu-
pying the surface S may occur when the imaginary part of its
surface conductivity 6 is negative [38]. The corresponding
quasi-electrostatic surface current modes are solution of the
eigenvalue problem

j∥h(r) = χ
∥

h ℓc n̂× n̂×∇S

∮
S

∇S′ · j
∥

h

(
r′

)
4π |r− r′|

d2r′ ∀r ∈ S (62)

where ∇S is the surface gradient and ∇ ′S· is the surface
divergence. All the considerations made for the 3-D scatterers
can be transplanted in this case, considering the scalar product
⟨f, g⟩S =

∫
S f∗ · g d2r. The surface current density field Js(r)

induced on the scatterer by an incident electric field Einc is
given by [38]

Js(r) ≈
∑

h

6(ω)ξ

ξ + χ
∥

h 6(ω)
⟨j∥h, Einc⟩S j∥h(r) (63)

where 6 is the surface conductivity of the scatterer. The
resonance frequency ωh of the hth quasi-electrostatic current
mode is the frequency at which the real part of the denominator
in the above equation vanishes [38]

Im{6(ωh)} = −
1

χ
∥

h

(
ωh

c0
ℓc

)
. (64)

The electric dipole moment Ph of the surface current mode
j∥h is obtained by (4), where the integration is now performed
on the surface, while the Q factor is still given by (10).

2) Quasi-Magnetostatic Resonances: Resonant electromag-
netic scattering from a small-size non-magnetic scatterer occu-
pying the surface S may occur when the imaginary part of
its the surface conductivity 6 is positive and sufficiently
high [38]. The corresponding quasi-magnetostatic resonances
are associated with the eigenvalues of the integral operator that
relates the vector potential to the surface current density

j⊥h (r) = −
χ⊥h

ℓc
n̂× n̂×

∫
S

j⊥h
(
r′

)
4π |r− r′|

d2r′. (65)

All the considerations made for 3-D scatterers can then
be transplanted to this scenario. If a surface with surface
conductivity 6 is excited by an incident electric field Einc,
the surface current density field Js(r) induced on the surface
is given by [38]

Js(r) ≈
∑

h

(
6(ω)

−1+ ξχ⊥h (ξ)6(ω)

)
⟨j⊥h , Einc⟩S j⊥h (r). (66)

The quasi-magnetostatic resonance frequency ωh of the hth
mode is the frequency at which [38]

Im{6(ωh)} =
1

χ⊥h

c0

ωhℓc
. (67)

The corresponding size parameter at the resonance is
given by (8). The magnetic dipole moment Mh of the
quasi-magnetostatic current mode j⊥h is obtained by (17),
where the integration is now performed on the surface 6, while
the Q factor is given by (21).
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