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Bayesian Inference for Stochastic Multipath Radio
Channel Models

Christian Hirsch , Ayush Bharti , Troels Pedersen , and Rasmus Waagepetersen

Abstract— Stochastic radio channel models based on under-
lying point processes of multipath components (MPCs) have
been studied intensively since the seminal papers of Turin
and Saleh–Valenzuela (SV). Despite this, inference regarding
parameters of these models has remained a major challenge.
Current methods typically have a somewhat ad hoc flavor
involving a multitude of steps requiring user specification of
tuning parameters. In this article, we propose to instead adopt
the principled framework of Bayesian inference to conduct
inference for the SV model. The posterior distribution is not
analytically tractable and we therefore compute approximations
of the posterior using Markov chain Monte Carlo (MCMC)
methods specific to point processes. To demonstrate the flexibility
of our approach, we additionally propose a new multipath model
and apply our inference method to it. The resulting inference
methodology is computationally demanding and our successful
implementation relies critically on our novel MPC updates within
the MCMC sampler. We demonstrate the usefulness of our
approach on simulated and real radio channel data.

Index Terms— Bayesian inference, Markov chain Monte Carlo
(MCMC) sampling, multipath propagation, parameter estima-
tion, radio channel modeling.

I. INTRODUCTION

STOCHASTIC multipath models, such as the one proposed
by Turin et al. [1] and Saleh and Valenzuela [2], are

widely used for simulating radio channels due to their simple
formulation and low computational cost. In such a model, the
collection of delays and gains of the multipath components
(MPCs) is assumed to be a realization of a marked point
process [3], [4], with the received signal being a superposition
of the MPCs and additive random noise. The parameters of
this underlying point process constitute the parameters of the
stochastic multipath model. By adjusting these parameters, the
multipath model can mimic different propagation scenarios.
Usually, suitable values of the model parameters are esti-
mated from channel measurements collected from a particular
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environment. Despite the simple formulation of stochastic
multipath models, this is a nontrivial task since the likelihood
function of the multipath model is analytically intractable. The
computational problems related to the likelihood arise because
the MPCs are unobservable due to the finite measurement
bandwidth and additive noise.

Currently, parameters of stochastic multipath models are
usually estimated using a multistep procedure as in [1], [2],
[5], [6], [7], [8], and [9]. First, the MPCs are extracted
from channel measurements using high-resolution algorithms
such as multiple signal classification (MUSIC), RiMAX,
and space alternating generalized expectation-maximization
(SAGE), among others; see [10, Ch. 5] for an overview. In the
case of a cluster-based model like the Saleh–Valenzuela (SV)
model, the next step involves clustering the extracted MPCs.
This is achieved either via manual clustering or through the
use of automated clustering algorithms such as [11], [12],
and [13]. As noted recently [14], [15], the multistep approach
leads to a number of concerns. Despite being widespread, this
approach is not trivial as it involves implementing sophisti-
cated high-resolution and clustering algorithms. These algo-
rithms involve certain heuristic choices and assumptions. The
performance of these algorithms is sensitive to these choices,
and their assumptions may conflict. A major drawback of this
approach is that the performance of the overall estimator is
difficult to assess. As a result, error bounds on the param-
eter estimates are hardly reported in the literature, and the
uncertainty of the parameter settings used in, e.g., standardized
channel models remains unknown.

To overcome these challenges, a host of estimation methods
have been proposed recently that circumvent the need for
extracting MPCs and clustering [14], [15], [16], [17], [18],
[19], [20], [21]. In [16] and [18], a method of moments
estimator is proposed for the SV model [2] and the Turin
model [1], respectively. In [19], a multilayer perceptron is used
to estimate parameters in the SV model. The methods in [14],
[20], and [21] are based on approximate Bayesian computation
(ABC) [22], which is a likelihood-free inference method that
relies on the summary statistics of the channel measurements
to approximate the likelihood function. It is possible to use
automatically generated summary statistics, as shown in [21],
although these did not perform as well as handcrafted sum-
maries. In [15], a kernel-based distance metric is used in
the ABC algorithm, which alleviates the need for summary
statistics at the cost of choosing a kernel. Although some good
choices for summaries and kernels have been proposed, these
choices are nontrivial and affect the accuracy of the method.
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Moreover, the accuracy of the ABC methods depends on two
approximations: the Monte Carlo approximation pertaining
to all the sampling methods and the posterior approximation
depending on the choice of summaries or kernel functions. The
magnitude of the latter effect can be assessed in simulation
studies, but is in general unknown. The ABC methods are
easily applicable to a wide range of stochastic models since
they do not depend on the particular mathematical structure
of the model, which is clearly an appealing feature to the
practitioners. However, a common feature of the methods
in [14], [15], [16], [17], [18], [19], [20], and [21] is that
the parameters of the model are estimated without obtaining
the MPCs, e.g., the delays and gains, for the particular set of
measurement data. While multipath extraction is in some cases
not interesting, it does provide insight into the particular set
of measurement data, which is useful for some applications.

In this article, we propose to carry out approxi-
mate likelihood-based inference for the model parameters.
As in [23], we apply Markov chain Monte Carlo (MCMC)
techniques to handle the computational problems arising from
the analytically intractable likelihood function. In the context
of the Turin model, [1], [23] suggested to obtain estimates by
maximizing a Monte Carlo estimate of the likelihood function,
integrating out the unobserved MPCs.

In the current article, in the context of the more complex
SV model [2], we instead adopt a Bayesian approach and use
MCMC to approximate the analytically intractable posterior
distribution. Unlike [14], [15], [16], [17], [18], [19], [20], [21],
our method is general in the sense that it is not tied to a specific
multipath channel model. Moreover, the proposed method
is not dependent on the choice of summaries and kernels
as the ABC method of [15], thus alleviating the posterior
approximation arising due to them. Recasting the SV model
in the framework of Bayesian hierarchical modeling further
enables us to circumvent intractable likelihood computations
by augmenting the posterior distribution with the MPCs that
comprise an intermediate level of the model. This means that
unlike the ABC method, we are also able to infer number and
locations of MPCs.

In Bayesian analysis, inference is notoriously difficult when
mixtures of distributions are involved and the clustered struc-
ture of the SV model imposes similar challenges. A cru-
cial technical contribution is therefore that we introduce
novel MCMC so-called split–merge updates that significantly
improve the efficiency of the Monte Carlo computations rela-
tive to the MCMC scheme in [23].

Our new methodology enables us to assess and criticize the
existing models. In this article, we demonstrate the shortcom-
ings of the SV model and propose a new model that may be
a promising candidate for providing a better fit to real indoor
radio channel data.

The rest of the article is organized as follows. Section II
presents the signal model of radio channel measurements,
along with the description of the SV model. The proposed
modified version of the SV model is presented in Section II-C.
The proposed Bayesian inference method and the MCMC
sampling procedure are described in Sections III and IV,
respectively. In Section V, we conduct a simulation study

to assess the performance of the proposed inference method.
The method is applied to measured data in Section VI, and
the concluding remarks are given in Section VII.

II. MODEL FOR RADIO CHANNEL DATA

A. Signal Model

As in [23], we consider frequency-domain measurements
of a single-input, single-output linear, time-invariant radio
channel in the band [−B/2, B/2] obtained by a vector network
analyzer. In each measurement run, the transfer function is
sampled at K equispaced frequencies fk = (k − 1)1 f ,
k = 1, . . . , K , where 1 f = B/(K − 1) is the frequency
spacing between two measurement points, giving the period
τmax = 1/1 f of the time-domain signal. The measurement
data are modeled as a random vector Y = (Y1, . . . , YK ) with
entries

Yk = Hk + Nk, k = 1, . . . , K (1)

where Hk is the transfer function sampled at the kth frequency
fk , and Nk denotes the measurement noise. The noise variables
N1, . . . , NK are assumed to be independent and identically
distributed circular symmetric zero-mean Gaussian each with
variance σ 2. We denote a realization of the measurement
vector Y by y = (y1, . . . , yK ). Repeating the measurements
M times yields the sequence of independent realizations
y(1), . . . , y(M).

Taking the discrete-frequency, continuous-time inverse
Fourier transform of the measurement vector gives the
time-domain measurement (with a misuse of notation)

Y (t) =
1
K

K∑
k=1

Yk exp(i2π fk t) (2)

where i denotes the imaginary unit.
The channel transfer function of a multipath model is of the

form

Hk = Hk(Zm) =

∑
τ∈Z

ατ exp(−i2π fkτ), k = 1, . . . , K (3)

where Zm = {(τ, ατ )}τ∈Z constitutes a marked point process
on R+ × C. The point process Z contains the propagation
time delays τ . The mark associated with a delay τ is the
complex-valued gain ατ . The support of the point process Z
is the interval I = [τ0, τmax], where τ0 is the delay of the
line-of-sight (LOS) path.

For the Turin model [1], Z is assumed to be an inhomoge-
neous Poisson process. That is, delays τ essentially appear
independently of each other. This may not be realistic as
clusters of delays may arise where each cluster is due to
reflections from a particular environmental element. Saleh and
Valenzuela [2] instead suggested a more elaborate model for
Z , which according to [3] and [4] can be viewed as a clustered
point process as detailed in the following.

B. SV Model
We let C = {t0, t1, . . .} denote the arrival times of clusters

of MPCs. For the SV model, t0 = τ0 and the remaining arrival
times {t1, t2, . . .} form a homogeneous Poisson process of
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intensity1 λ0 = exp(κ0) on [τ0,∞). To each ti , i ⩾ 0, a cluster
X ti = {τi,1, τi,2, . . .} is associated, where conditional on C , X ti ,
i ⩾ 0, are independent and each X ti is a Poisson process on
[ti ,∞) of intensity λ1 = exp(κ1) > 0. Let X = ∪i⩾0 X ti . Then
Z = C ∪ X and Zm = Cm ∪ Xm where Cm and Xm are the
marked point processes obtained by attaching gains αti or ατi,k

as marks to each point in C or X . Following terminology in
spatial statistics, we will often refer to points in C and X as
“parents” and “offspring,” respectively.

Conditional on the delays Z , the gains are assumed to be
independent zero-mean complex Gaussian random variables
with a phase that is uniform on [0, 2π). Thus, the magnitudes
of the gains are Rayleigh distributed. Following Saleh and
Valenzuela [2], we assume that their second moments satisfy:

E[|αti |
2
| Z ] = exp(γ0 + γ1ti )

E[|ατi,k |
2
| Z ] = exp(γ0 + γ1ti + γ2(τi,k − ti )) (4)

for some parameters γ0, γ1, γ2 > 0.
As noted in [3], the cluster process X is an example of a

Cox point process [24]. This is because conditional on C , X
is a Poisson process with intensity function

3(τ) =

∑
t∈C

λ1kt (τ ) (5)

where kt (τ ) = 1{τ ⩾ t}. Here, the indicator function
1{A} is equal to 1 if event A holds. Hence, evaluation of
the conditional distribution of X given C does not require
information regarding the parent–offspring relationships. This
simplifies greatly the construction in Section IV of an MCMC
sampler for simulation of C and X given the radio channel data
Y. In particular, we can modify the MCMC sampler from [23]
to sample X given Y and C .

However, with γ1 ̸= γ2, the formulation of the gain
distribution in (4) presents an obstacle for exploiting the
aforementioned simplification. Evidently, unless γ1 = γ2, the
evaluation of the right expression in (4) requires knowledge
of the parent ti for the offspring τi,k . In the interest of
computational feasibility, we have chosen to restrict attention
to the case γ1 = γ2. In the data example in Section VI, we in
fact obtain a very good fit assuming γ1 = γ2 indicating that
this is not a severe restriction for the considered data.

C. Generalizations and Modifications of the SV Model

The physical interpretation of the SV model is not obvious
and is still being discussed in the literature [25], [26]. In partic-
ular, the parent point process C is not necessarily Poisson and
may be generalized in numerous ways. For example, C could
be replaced by a regular point process to ensure a desired
degree of separation between the parent times in C . In this
article, we consider the case where C is the so-called Strauss
process and coin the resulting model the Strauss–SV model.

For a specific parent configuration c, the Strauss point
process density is of the form (see [24])

f (c) =
1

Z(κ0, ψ, R)
exp(κ0n(c))ψ sR(c) (6)

1The term “intensity” is widely used in the theory of spatial point processes.
In propagation studies, the term “arrival rate” is often used instead.

where n(c) is the number of parents in c, sR(c) is the number
of pairs of parents within distance R > 0 from each other,
0 ⩽ ψ ⩽ 1 are the parameters, and Z(κ0, ψ, R) is a
normalizing constant. Choosing a small ψ means that there is
a low probability of seeing parents close to each other. With
ψ = 0, a so-called hard core process is obtained where parents
can never be closer than R. A Poisson process of intensity
exp(κ0) is obtained with ψ = 1.

A complicating feature of the Strauss model is that the
normalizing constant Z(κ0, ψ, R) is an analytically intractable
function of κ0, ψ , and R. For any fixed (κ0, ψ, R), it can be
evaluated using the MCMC methods; see [24]. However, this
is computationally demanding, and in our Bayesian setting we
would need to recompute Z(κ0, ψ, R) each time an update is
proposed for κ0, ψ , or R. This presents a major computational
problem; see also the discussion in Section VII. However,
for any fixed (κ0, ψ, R), the simulations of the Strauss pro-
cess can easily be obtained by a simple birth–death MCMC
sampler [24] that does not require knowledge of Z(κ0, ψ, R).
Hence, simulation of Strauss–SV does not present a problem.

Furthermore, in (5), the kernel function kt (·) can be replaced
by an arbitrary positive function instead of the indicator
function used for the SV model. For the SV model, X is an
infinite point process. However, due to fast decay of the gains,
gains are negligible when their delays are far from the LOS
delay τ0. This suggests replacing kt (τ ) = 1{τ ⩾ t} in (5) by
a rectangular kernel kt (τ ) = w−1

1{t ⩽ τ ⩽ t + w} of kernel
width w > 0. By similar considerations, we also restrict C
to the finite interval [τ0, τmax]. Then X becomes a finite point
process on Iw = [τ0, τmax + w] so that it can be stored on a
computer and is amenable to MCMC computations. Moreover,
for single-point MCMC updating of the parents C , using a kt

of bounded support simplifies computations because removing
or inserting a point τ in C only affects a finite number of
MPCs in X .

According to our simulation studies, once the kernel width
w is chosen sufficiently large (relative to the decay of the
gains), the results obtained are representative for the original
SV model.

III. BAYESIAN INFERENCE FOR THE SV MODEL

To calibrate the SV model parameters θ = (γ0, γ1,

κ0, κ1, σ
2) to data, we use Bayesian inference assigning a

prior density p(θ) to θ . Alternatively, one could use maximum
likelihood estimation; see [23]. However, there are decisive
benefits of Bayesian inference in the context of the SV model
as follows.

1) Prior Information: The most obvious advantage of
Bayesian inference is of course that it allows use of prior
information e.g., obtained from physical considerations
or previous experience with radio channel models in
similar settings. Prior information is especially useful
in the context of complex stochastic models such as the
SV model.

2) Parameter Identifiability: Even for the simpler Turin
model, several parameter configurations can lead to
local maxima of very similar quality; see [23]. This
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issue is amplified for the more complex SV model.
However, maximum likelihood estimation focuses only
on the global maximum and ignores all the local modes.
In contrast, in a Bayesian analysis, the different maxima
are visible in a multimodal posterior distribution.

3) Optimization Instability: The aforementioned multi-
modality is obviously a challenge for optimization of
the likelihood function. Furthermore, for the Turin or
SV model, the likelihood function or its derivatives must
be approximated using Monte Carlo methods [23]. This
can render the optimization process numerically unstable
and the final result can be quite sensitive to Monte
Carlo errors. In contrast, Monte Carlo approximation of
posterior means and standard deviations is numerically
more stable.

4) Bayesian Hierarchical Modeling and Posterior Aug-
mentation: The stochastic multipath models can be
viewed as hierarchical models with θ as the upper level,
the MPC point process Zm at the intermediate level,
and the data y at the lower and final level. Com-
puting the likelihood p( y | θ) requires marginalization
with respect to Zm which is analytically intractable.
Hence, direct evaluation of the posterior p(θ | y) ∝

p( y | θ)p(θ) is not feasible. In contrast, the aug-
mented likelihood p( y, cm, xm | θ) including the parents
cm and offspring xm in Zm is analytically tractable;
see Section III-A. We can therefore explore the joint
posterior p(θ , cm, xm | y) ∝ p( y, cm, xm | θ)p(θ) and
hence also p(θ | y) using MCMC (see Section IV). More
specifically, if {(θ i , cmi , xmi )}

M
i=1 represents a sample

from the joint posterior p(θ , cm, xm | y), then obviously
{θ i }

M
i=1 is a sample from the marginal posterior p(θ | y).

The joint posterior further informs about the unobserved
MPCs which are of interest in their own right.

A. Augmented Likelihood

In the following, we derive p( y, cm, xm | θ). First,
p( y, cm, xm | θ) factorizes as

p( y, cm, xm | θ)= p( y | zm, σ
2)p(xm | cm, κ0, γ )p(cm | κ0, γ ).

(7)

The first factor on the right-hand side is the Gaussian
probability density for the channel response data given the
MPCs, the second factor is the conditional density of the
offspring MPCs xm given cm and the parameters κ0 and
γ = (γ0, γ1), and the third factor is the density of cm given
κ0 and γ .

More precisely, the complex Gaussian density is given by

p( y | zm, σ
2)=(2πσ 2)−K exp

(
−

1
2

K∑
k=1

(
|yk − Hk(zm)|/σ

)2

)
(8)

where we recall that σ 2 > 0 is the noise variance, and Hk(zm)

is the complex-valued channel transfer function (3) evaluated
at the frequency fk .

Second, technically, the densities p(xm | cm, κ) and
p(cm | γ ) are to be understood as densities of the offspring and

parent MPCs with respect to unit-intensity Poisson processes
on I [24, Sec. 6.1]. Since the parents Cm form an inde-
pendently marked homogeneous Poisson point process with
intensity exp(κ0), we deduce from [24, Sec. 3.3] that its density
is given by

p(cm | κ0, γ ) =

∏
τ∈c

f (ατ | γ )× exp
(
κ0#c + |I |(1 − κ0)

)
(9)

where f (ατ | γ ) is the complex Gaussian density for the
channel gains, #c is the cardinality of the set c, and |I | is
the length of the interval I .

Concerning the density of the offspring MPC, we use that
conditional on Cm, X is a Poisson point process of intensity
3 given in (5). Hence, the density of Xm becomes

p(xm | cm, κ1, γ )

=

∏
τ∈x

f (ατ | γ )× exp
(

|I | −

∫
I
3(t)dt

)
×

∏
τ∈x

3(τ) (10)

with κ1 entering through 3(·); see (5).

B. Strauss–SV Model

For the Strauss–Valenzuela model, complications arise from
the intractable normalizing constant of the Strauss point pro-
cess density. The problem of conducting Bayesian inference in
cases where the prior or likelihood involves an intractable nor-
malizing constant has been studied in several papers, e.g., [27],
[28], [29], [30]; see also the review [31]. Unfortunately, the
methods proposed tend to add considerable additional compu-
tational complexity to an already computationally challenging
problem. However, recent results [32] in the context of mixture
models suggest that this approach may be worth exploring in
future work on channel data inference.

For simplicity, we do not attempt efficient sampling of the
Strauss process at this stage. Instead, leaving such refinements
to future work, we assume that the user is able to specify fixed
sensible values of κ0, ψ , and R reflecting prior beliefs of the
parent MPCs. For the remaining parameters, we proceed as
for the SV model.

IV. MCMC SAMPLING OF THE POSTERIOR

The posterior p(θ , cm, xm | y) is a high-dimensional and
complex density and only known up to a constant of propor-
tionality. We therefore apply the MCMC methods to sample
from the posterior. Briefly, an MCMC algorithm generates
an ergodic Markov chain whose equilibrium distribution is
the target distribution of interest—in our case the posterior
density p(θ , cm, xm | y). After a suitable burn-in, the states of
the Markov chain represent a correlated sample from the target
distribution. We say that the Markov chain is mixing fast if the
correlation between consecutive states is small. The Markov
chain is constructed using the Metropolis–Hastings scheme
where in each step of the Markov chain, updates are suggested
for one or more components of the posterior. These updates are
then accepted or rejected according to the Metropolis–Hastings
ratio.

A complicating feature of our posterior is that the point
process components cm and xm are not of fixed dimension.
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Therefore, specialized Metropolis–Hastings updates are
needed, as outlined in [24] and implemented for radio channel
data in [23]. More specifically, [23] used a birth-death–
move algorithm to sample the conditional distribution of
MPCs given radio channel data. We refine this algorithm by
adding split–merge steps and also extend the algorithm by
adding updates for θ . Below we give a brief summary of
the different types of updates used. We refer to [23] for a
detailed description of MCMC for sampling MPCs, where
several MCMC chains were run using a parallel tempering
scheme to improve mixing. However, the introduction of
split–merge steps improves mixing considerably so that the
further computational task of using parallel tempering can be
avoided.

A. Updates of MPCs
Given a current state (θ , cm, xm), we propose a new state

for the MPC components using a birth/death proposal, a move,
or a split/merge proposal. These three proposals are selected
each with probability 1/3. These probabilities were selected
after a few pilot runs. We believe the performance of the
MCMC algorithm is fairly robust to the choice of these
probabilities as long as extreme values close to 0% or 100%
are avoided. Henceforth, we describe in detail how to pro-
ceed for updating the MPC components xm. For the parent
MPCs, we proceed similarly, except that we do not perform a
split/merge step.

1) Birth/Death: In case of a birth/death step, with proba-
bility a half, we propose a birth, i.e., to add a new MPC to
xm. The delay τ of the proposed new MPC is sampled on
I from a density proportional to the intensity (5). Next the
associated gain ατ is sampled from the symmetric Gaussian
density f (ατ | γ ). Otherwise, we propose a death, where a
current MPC is selected at random for removal.

2) Move: Relying exclusively on birth/death steps leads
to a very slowly mixing MCMC sampler. To move from an
MPC configuration to another which differs only by a minor
modification of a single MPC, this MPC would have to be first
removed and then reinserted slightly changed in a subsequent
birth step. If the configuration between these two steps is
highly unlikely a posteriori, the MCMC sampler will rarely
explore this option. We therefore introduce a move step that
simply proposes to update the delay or path gain of an MPC
without changing the dimensionality.

3) Split/Merge: An MCMC sampler relying solely on
birth/death and move steps may get stuck in configurations
where two MPCs (τ, ατ ) and (τ ′, ατ ′), with τ close to τ ′,
represent the contribution of a single underlying MPC in the
true unobserved MPC configuration. For any k = 1, 2, . . . ,
f ∈ R, if τ is close to τ ′

ατ exp(−i2π1 f kτ)+ ατ ′ exp(−i2π1 f kτ ′) ≈

(ατ + ατ ′) exp(−i2π1 f kτ). (11)

If the right-hand side represents well the contribution of a
true MPC, then removal of any of (τ, ατ ) or (τ ′, ατ ′) will be
highly unlikely. Hence, the MCMC algorithm will not be able
to explore the configuration where a single MPC replaces the
two current MPCs.

To deal with this issue, we introduce a split/merge step.
The split–merge steps have previously been considered in the
context of Bayesian inference for mixture models or cluster
point processes [33], [34], [35] where groups of observations
are split or merged according to the underlying mixture com-
ponent memberships. Our split–merge step is quite different
since it pertains splitting one MPC into two MPCs or merging
two close MPCs into one. More precisely, we allow an MPC
(τ, ατ ) to merge with its nearest neighbor (τ ′, ατ ′) so as to
form a new MPC with magnitude given by |ατ | + |ατ ′ | and
located at (τ + τ ′)/2. We found it most effective to sample
the phase of the new component at random. Note that from a
conceptual point of view, it would have also been possible to
define a Metropolis–Hasting step by updating the magnitude
as |ατ + ατ ′ |. However, in the implementation the chosen
approach made it easier to treat the magnitude and the phase
separately.

To ensure reversibility of the MCMC sampler, the merge
step is complemented by a split step, where a single MPC
can split into two, where the magnitudes of the resulting path
gains add up to the magnitude of the path gain of the original
MPC and the delays of the two new MPCs are generated in a
neighborhood of the original MPC. In case of a split–merge
proposal, a split step or a merge step is chosen at random
each with probability of half. The details of the split–merge
Metropolis-Hastings ratios are given in the Supplementary,
along with a block diagram of the structure of the MPC
MCMC updating scheme.

B. Remaining Details of the MCMC Sampler
We use simple random walk Metropolis updates for the

components of θ . With the model specification (4), the param-
eters γ0 and γ1 tend to be strongly negatively correlated which
hampers the mixing of the MCMC sampler. To mitigate this,
we found it helpful to reparameterize

γ0 + γ1τ = (γ0 + γ1tm)+ γ1(τ − tm).

Replacing the original parameter γ0 by

γ̄ 0 = γ0 + γ1tm

where tm is the center of the observation interval. This repa-
rameterization is akin to centering the covariate of a linear
regression.

Each step of the MCMC sampler comprises an update of
the offspring MPC (using birth–death, move, or split–merge).
The Metropolis–Hastings steps updating the parent MPCs are
expensive since they entail recomputing the likelihood of both
the process of parent MPCs and the process of offspring
MPCs. Therefore, we update cm only each 10th step in the
sampler. The same goes for θ since it does not seem useful
to update θ after each minor change in the point process state
xm ∪cm due to an MPC update. Hence, θ is only updated each
25th step (updating all the components of θ ).

The MCMC algorithm for the Strauss–SV model follows the
specification above, except, following Section III-B, which we
fix k0, ψ, and R at prescribed values.
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Fig. 1. Power-delay profile (magnitude of time-domain measurements (2)
against time) of the indoor channel data.

C. Setting Prior Distributions

We now elaborate on the elicitation of priors. For each of the
parameters κ0, κ1, γ̄ 0, γ1, and σ 2, we use a uniform prior on a
bounded interval with endpoints informed by the measurement
settings in [36]. The time window for the data is of length 75.
We expect to see on average at least 0.5 and at most 80 parents
for the given time window. Similarly, the range for arrival rate
of offspring is set based on the time resolution in the data, i.e.,
we can only observe as many offspring points as the number
of time points in the window. The ranges of γ̄ 0 and γ1 are
set to reflect reasonable behaviors of the decay of the gains.
For γ̄ 0, the prior range corresponds to a dynamic range of
[−108, −32 dB] for the intercept of the power-delay spectrum,
encompassing that of the measurement data shown in Fig. 1.
The range of γ1 corresponds to a drop of around 65 dB (data
in Fig. 1 has a drop of around 40 dB) to a drop of 0 dB over
the measurement interval. Finally, the range for σ is set by
inspecting the noise level in the power-delay profile of the
data.

V. SIMULATION STUDY

From a strictly Bayesian point of view, the posterior distri-
bution obtained given the data at hand and an appropriately
elicited prior is the (self-contained) solution to the statistical
inference problem. Following this line of thought, frequentist
properties of the inference procedure are irrelevant. Neverthe-
less, from a more pragmatic point of view, users may not be so
sure about the priors chosen and often posterior means are used
as computationally convenient point estimates of unknown
parameters. We have therefore conducted a simulation study to
explore in our setting the performance of MCMC approximate
posterior means as point estimates.

To that end, we consider the SV model on the time interval
I = [25, 100 ns]. We generate 100 mock datasets with on
average ten cluster parents each giving rise to on average four
offspring MPCs distributed according to a rectangular kernel
with bandwidth 15. Furthermore, we choose the Rayleigh
parameters γ̄ 0 = −22, γ1 = −0.1, and a thermal noise
with log-variance ln(σ 2) = −20. We set M = 1 and the
number of frequency points to K = 750 as per [36], and then
perform Bayesian inference with 40 000 000 iterations of the
MCMC sampler from Section III. To avoid the burn-in of the

TABLE I
RANGES FOR THE UNIFORM PRIOR DISTRIBUTIONS

chain, we discard the first 20 000 000 iterations. Uniform prior
distributions are set for each parameter as per Section IV-C,
and the resulting prior ranges are shown in Table I.

The left panel of Fig. 2 shows the histograms for the
distributions of the 100 approximate posterior means for each
of the parameters κ0, κ1, γ̄ 0, γ1. For the parameters κ1 and γ1,
the true parameter value is within two standard errors from the
overall estimated posterior mean. Although the true values of
κ0 and γ0 fall outside the intervals, they are still fairly close
to the corresponding overall means. We hypothesize that the
deviations for κ0 and γ̄ 0 are caused by the simulated datasets
where there is little difference between labeling an MPC as
parent or offspring, thereby making it harder to statistically
identify the parameters. The general impression is that the
bias of the posterior means is relatively small compared with
the sampling variability of the posterior means. Moreover, the
sampling distributions of the posterior means are unimodal
with moderate deviations from normality.

As mentioned in Section III, it is natural to expect
cross-correlations for different pairs of parameter estimates.
To quantify these effects, Fig. 2 (right) shows pair plots of
the posterior means for the 100 mock datasets. For instance,
we can observe a substantial negative correlation between the
intensity parameters κ0 and κ1. This indicates that it is often
difficult to discriminate between parents and offspring. On the
other hand, upon reparametrization the posterior means of
γ̄ 0 and γ1 are essentially uncorrelated. Since substantial corre-
lations often translate to higher rejection rates in the MCMC
sampler, this decorrelation helps accelerate the procedure. The
Bayesian inference for one dataset takes roughly 10 h on an
Intel Xeon 2.5 GHz with 1 GB allocated RAM running on a
CentOS Linux distribution.

Studying further frequentist properties of our proce-
dure, we considered coverage of 90% credibility intervals
by considering the percentages of simulations where the
true parameters fall outside the credibility intervals. For
the parameters κ0, κ1, γ̄ 0, γ1, and ln(σ 2), this happened in
17%, 36%, 25%, 11%, and 14% of the simulations, respec-
tively, showing that the intervals in general have less coverage
than the nominal 90%. Bayesian credibility intervals are in
general not guaranteed to attain nominal frequentist coverage
so these results are not indicative of a failure of our method.
According to the Bernstein–von Mises theorem, nominal fre-
quentist coverage may be obtained asymptotically by including
more data in the inference. However, it is not sufficient to
increase the number of observations by just decreasing the
sampling frequency 1 f since we still observe just one single
signal realization. Instead, one should aim for increasing the
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Fig. 2. Histograms for the distributions of the MCMC approximate posterior means of the parameters κ0, κ1, γ̄ 0, γ1 in the 100 simulation runs (left); pair
plots of the posterior means in the 100 simulation runs (right). The red vertical lines indicate the true parameter values and the black vertical dashed lines
show the overall mean of the 100 approximate posterior means. The green lines show the boundaries of 95% (frequentist) confidence intervals for the true
posterior mean obtained from the sample of the 100 approximate posterior means for each parameter considered. The confidence intervals are obtained in a
standard way as overall mean ±2× the standard error of the overall mean. The lower row shows the correlation between posterior means of γ0 and γ1 without
reparametrization.

number M of independent signal realizations. Alternatively,
to obtain better finite sample frequentist coverage, one may
explore more sophisticated (although challenging to imple-
ment) noninformative priors as discussed in [37].

We end this section by illustrating the effectiveness of the
split/merge step. Considering first the Turin model, we gen-
erate 150 randomly scattered MPCs on the time interval
I = [25, 100 ns]. We again take K = 750 together with
Gaussian noise of variance σ 2

= exp(−25). Then, we run
the MCMC sampler for 500 000 steps with a random initial
MPC structure to sample the conditional distribution of the
MPCs given the simulated radio channel data. Fig. 3 (top)
shows MCMC samples for exploring the posterior distribution
of the number of MPCs under the Turin model where the
samples are generated with and without split–merge steps.
It appears that the posterior mean of the number of MPCs
is higher than the true number of MPCs for the particular
simulated dataset considered. The important point, however,
is that the convergence to the equilibrium distribution around
the posterior mean is faster when split–merge steps are
used.

For the SV model, the conclusion is similar. We keep the
basic simulation setting from the Turin model, but now with
MPCs organized in ten clusters each consisting of 15 offspring.
MCMC samples of the number of MPCs under the SV model
are shown in Fig. 3 (bottom). The improvement in terms of
convergence speed when using split–merge steps is even more
pronounced than for the Turin model.

Fig. 3. Total number of MPCs in an MCMC sampler with and without the
split/merge step in the Turin model (top) and the SV model (bottom). The
dashed line shows the true number of MPCs.

VI. APPLICATION TO MEASUREMENT DATA

We now analyze real indoor channel data from [36]. The
data consist of the channel response for K = 750 equally
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TABLE II
POSTERIOR MEANS (STANDARD DEVIATIONS) FOR FIT MODEL PARAMETERS

Fig. 4. Posterior distributions of the parameters for the Turin model (left), SV model (middle), and the Strauss–SV model (right). The dashed lines indicate
the posterior means. The x-axis are the prior ranges.

Fig. 5. Posterior distribution of ln(σ ) in the three models. The dashed line
indicates the posterior mean. The x-axis is the prior range.

spaced frequencies in the range from 2 to 4 GHz. To fit the
model to data, we rely on Bayesian inference as elucidated in
Section V. After transforming the data into the time domain,
Fig. 1 illustrates that we may restrict the attention to MPCs
located in the time interval I = [25, 100 ns]. Beyond that, the
channel impulse response becomes negligible.

We fit three different models to the data, namely, the SV
model, the Strauss–SV model, and the Turin model (i.e., the
SV model with λ1 = 0). In each of the cases, the fits are
based on 8 × 107 iterations of the MCMC sampler with the
priors from Section IV. For the SV and Strauss–SV model,
we choose a kernel width of 15 ns. For the Strauss–SV model,
we fix ψ := 0.5 as the interaction parameter and R := 15 ns
as the interaction radius. That is, the interaction radius is of the
same magnitude as the kernel width. We also fix the intensity
parameter as exp(κ0) := 2.5 whereby the Strauss process has
on average 25 points in the sampling window I .

A. Posterior Results
The posterior distributions of the parameters obtained from

the MCMC samples are illustrated in Figs. 4, 5, and Table II.

The model parameters seem well-determined by the data since
the posterior distributions are close to normal and concentrated
relative to the prior ranges. It is remarkable that the posterior
results for the decay parameters γ̄ 0 and γ1 as well as the
log noise variance ln(σ 2) are very similar for each of the
three models, indicating that these parameters have a physical
interpretation not depending on the specific model choice.
Moreover, the posterior distribution for κ1, the intensity of
offspring, is clearly bounded away from the lower end of the
prior support. This indicates that the SV model fits the data
better than the Turin model which is the limiting case of SV
when κ1 tends to −∞.

Although considering the log intensities κi , i = 0, 1 are
convenient for computation, they are less convenient for
model interpretation. We therefore also report the poste-
rior means of the intensities λi . For the Turin model, the
posterior mean yields an MPC intensity of λ0 = 2.31.
For the SV model, we obtain a cluster center intensity of
λ0 = 0.201 and an intensity of λ1 = 16.57 offspring
per center. In particular, not distinguishing between centers
and offspring, the posterior mean of the combined intensity
λ0(1 + λ1) is 3.68 which exceeds substantially the value in
the Turin model. Finally, for the Strauss–SV model we arrive
at λ1 = 10.77.

Fig. 6 shows the posterior intensities of the locations of
cluster centers (blue) and total intensity (green), i.e., the
centers and offspring combined. To highlight the connection
to the data, we overlay the intensities with the power-delay
profile. The intensity of all the MPCs is quite similar for
the three models. The blue parts of the middle and right
panels illustrate how including Strauss interactions in the
model leads to a clear separation of the cluster centers in
the posterior distribution. The pair plots in Fig. 7 illustrate
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Fig. 6. Histograms corresponding to the posterior intensity of cluster centers (blue) and all MPCs (green) for the Turin model (left), SV model (middle),
and the Strauss–SV model (right).

Fig. 7. Pair plots of samples taken from the posterior in the Turin model (left), the SV model (center), and the Strauss–SV model (right).

parameter dependencies when posterior samples are extracted
from the MCMC sampler.

B. Model Assessment
To compare the fits of the three models, we use posterior

predictive model checks [38], [39]. The checking method pro-
ceeds by first drawing a parameter sample from the posterior
distribution, which is then used in the model to simulate
synthetic data. Repeating this process a large number of
times provides a set of data which can be compared with
the measurement data in terms of summary statistics. Here,
we compare in terms of the posterior 95% envelopes of the
simulated summaries, given as the interval between a lower
quantile (2.5%) and an upper (97.5%) quantile. If the data are
well-represented by the model, the data should lie within the
posterior envelope. Further details of the method of posterior
predictive model checking can be found in [38] and [39].

Fig. 8 shows the squared magnitude of the transfer function
of the data together with 95% posterior predictive envelopes
under the Turin model. The envelopes were computed point-
wise in frequency for 200 posterior predictive simulations of
channel data. Each simulation was obtained by first sampling
the model parameters and MPCs from their posterior distri-
bution under the Turin model, and next, given the resulting
channel transfer function, sampling the channel data from the
model (1). The observed data fall nicely within the envelopes
and it can be concluded that the model is able to explain

the data, i.e., the plot does not lead to questioning the fit of
the Turin model. Very similar envelopes (not shown) were
obtained for the SV model. For comparison, we show in Fig. 8
also the means of the posterior predictive distributions which
are very similar for the Turin model and the SV model.

The similarity between the Turin and SV models regarding
the posterior predictive distributions for the channel data
magnitudes suggests that the posterior distributions of MPCs
are more determined by the observed data than the underlying
models. However, this does not mean that any configuration
of MPCs is equally likely under the two models. The fact
that the posterior distribution of κ1 under the SV model is
clearly bounded away from small values is indicative that the
posterior distribution of delays is concentrated on clustered
configurations which have a higher likelihood for large κ1 for
the SV model than for the Turin model (κ1 = −∞).

To further show that there is a substantial difference in
terms of model fit between Turin and SV, we consider the
power autocorrelation, i.e., the autocorrelation function of
the squared magnitudes of the transfer function. The power
autocorrelation function for the SV model was previously
studied in [40]. As discussed in relation to Fig. 8, the posterior
distribution of the MPCs is to a high degree controlled by
the observed data. Hence, if both the model parameters and
MPCs are drawn from their posterior distribution, it becomes
hard to assess the implications of the different distributional
(clustered or not) assumptions for the MPCs. We therefore use
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Fig. 8. Squared magnitude of the transfer function of the channel data (black) together with means in the Turin model (dotted red) and SV model (dotted
yellow), and 95% envelopes for the Turin model (shaded blue).

Fig. 9. Autocorrelation function for the squared magnitude of the transfer
function of the channel data (blue) together with the average autocorrelation
(black) for the Turin model (top), the SV model (middle), and the Strauss–SV
model (bottom). The shaded blue areas are 95% envelopes.

the following variant of posterior predictive model checking.
As before, we first draw the model parameters from their
posterior distributions. Next, given the model parameters, both
MPCs and the final channel data are generated from (7). For
example, in case of the Turin model, the delays are generated
from a homogeneous Poisson process. In this way, for each
model, we generate 200 posterior predictive simulations of
channel data and compute the autocorrelation function for each
simulation.

Fig. 9 illustrates the posterior predictive means and 95%
envelopes for the power autocorrelation function. In particular,
we observe that both the SV model and the Strauss–SV model
lead to autocorrelations that are substantially higher than those
in the Turin model. However, neither the SV model nor the

Fig. 10. Autocorrelation function for the squared magnitude of the transfer
function of the channel data (blue) together with the average autocorrelation
(black) for a Strauss–SV model with parameters β = 20 and ψ = 0.75. The
shaded blue areas are 95% envelopes.

Fig. 11. Posterior predictive ecdfs for the rms-delay spread in the different
models; the dashed vertical lines indicate the posterior predictive means of
the rms-delay spread. The solid black horizontal lines indicate the 2.5% and
97.5% levels so that the 95% posterior predictive intervals are obtained by
forming the intersections with the corresponding cdfs. The solid red vertical
line shows the rms-delay spread of the real channel data.

Strauss–SV model fits the data perfectly. Hence, using our
new methodology we are able to disclose shortcomings of the
widely used existing models. Such shortcomings seem to have
been overlooked in the existing literature using the multistep
approach. It is quite possible that the chosen parameters for
the Strauss parameters are not optimal. Based on the Strauss
parameters (ψ, β, R) = (0.75, 20, 0.15) obtained with trial
and error, Fig. 10 illustrates that there is scope for improved
fit of the Strauss–SV model by changing the values of the
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Fig. 12. Posterior distribution of parameters for five runs of the inference for the Turin model (left), SV model (middle), and the Strauss–SV model (right).
In case of the SV model, the total intensity is exp(κ0)(1 + exp(κ1)).

Strauss parameters, and we think it could be a topic for future
work.

Finally, we analyze the rms-delay spread defined as

τrms =

√
m2

m0
−

(
m1

m0

)2

(12)

where m j is the j th temporal moment of a channel impulse
response measurement, y(t), and is computed as

m j =

∫ τmax

0
t j

|y(t)|2dt, j = 0, 1, 2, . . . (13)

The temporal moments and thus the rms-delay spread are
calculated per measurement realization and are considered as
random variables. As shown in [41], the variance is related
to the power autocorrelation. From the posterior predictive
empirical cdfs (ecdfs) of the rms-delay spread in Fig. 11,
it appears that the rms-delay spread for the SV model and
the Strauss–SV model is much closer to the value found in the
data than that of the Turin model. This confirms the conclusion
from the power autocorrelation analysis. It should be noted,
however, that since the Turin model is more parsimonious in
terms of parameters, we expect it to be less flexible than
the two other models. Nevertheless, all the three models
overestimate the rms-delay spread found in the data. This
suggests that there is still scope for achieving a better fit of
the data by resorting to a more refined model.

C. Diagnostics for the MCMC Sampler and
Posterior Multimodality

We now analyze the performance of the MCMC sampler in
the context of the data example. In addition to considering
estimated autocorrelations and trace plots for the MCMC
samples, we also assessed the chosen burn-in using Geweke’s
diagnostic. This did not reveal problems in case of the Turin
and Strauss–SV models, but a critical value of Geweke’s
diagnostic was obtained for κ0 in case of the SV model; see
the Supplementary for results.

Fig. 12 shows comparison of the posterior results obtained
for replicated MCMC runs. In case of the SV model, the

posterior results for κ0 and κ1 differ over MCMC runs while
the posterior results for the total MPC intensity exp(κ0)(1 +

exp(κ1)) are very similar. This shows a problem of identifia-
bility where the pattern of MPCs is explained well by several
modes corresponding to either few large clusters (small κ0,
large κ1) or many small clusters (large κ0 and small κ1). The
posterior results reported in this section cover the few large
cluster mode.

The problem of identifiability is not uncommon when fitting
a complex model to a dataset with insufficient information
for resolving the nature of the underlying latent components.
In our simulation study, we did not experience this problem.
However, in contrast to the simulation study, our posterior
predictive model checking indicates that the SV model is
misspecified for the data considered. This may further amplify
the problem of identifiability.

Discovering both the modes within one MCMC run with the
current MCMC sampler requires excessively long MCMC runs
and designing an MCMC sampler that could move quickly
between the modes is a very difficult task. From a practical
point of view, the best remedy of the identifiability problem
might be to include stronger prior information on either κ0 or
κ1. Moreover, more research is needed to obtain improved
models for channel data as considered in this section.

VII. CONCLUSION

We proposed a Bayesian inference method for the Turin
and SV models implemented using the MCMC methods. The
proposed method is a statistically sound inference technique as
opposed to the currently used multistep approaches involving
multipath extraction and clustering algorithms. Furthermore,
the method does not rely on side information of hard-to-
estimate quantities such as the number of MPCs or the
number of clusters. Being a Bayesian approach, not only point
estimates but also the whole posterior distribution, and thus
information on estimation accuracy, are provided as the output.

In addition to the Turin and SV models, we considered a
new model, coined the Strauss–SV model, where it is possible
to model regularity of cluster parent configurations. This can
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lead to more parsimonious configurations of cluster parents in
cases where clusters of MPCs are believed to be well-separated
in time.

Our Bayesian methodology is able to fit the considered mod-
els to both the simulated and measured data. To validate the
fit models, we performed posterior predictive model checking.
This check revealed that all the three considered models are
able to fit the transfer function data, but have shortcomings in
fitting the power autocorrelation in the frequency domain and
the rms-delay spread.

For the Strauss–SV model, we fixed the Strauss parameters
in an ad hoc manner. Preliminary experiments indicated that a
better fit might be obtained if the additional flexibility of the
Strauss–SV model is used by including the Strauss parameters
in the Bayesian inference. A thorough investigation of the new
Strauss SV model could be done in future work by adapting
advanced inference methods for doubly intractable posterior
distributions available in the statistics literature.

Our main methodological focus regarding the MCMC sam-
pler was the updating of the MPCs where we in particular
introduced a novel split–merge step. However, there is cer-
tainly also scope for replacing our rather naive random walk
updates with more efficient updates of the model parameters
using, e.g., normal approximations of the posterior [42], [43]
or adaptive MCMC [44].
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