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A New Quarter Concave Cylinder Linked Dihedral
Reflector for Fully Polarimetric Calibration of

Wideband Nonreciprocal Radar Systems
Xiaojian Xu , Tianjin Liu , and Pengfei Wu

Abstract— Traditionally, fully polarimetric calibration of a
nonreciprocal radar system requires measurements of at least
two passive calibrators, such as a dihedral corner reflector
plus a metal plate or sphere. Interchanging measurements of
multiple calibrators results in not only higher complexity but also
degraded uncertainty. In this work, a new polarimetric passive
calibrator is proposed, which is designed as quarter concave
cylinder linked dihedral (QCCLD). The backscattering of a
single QCCLD contains both depolarizing and nondepolarizing
components when rotating along the radar line of sight (LOS).
This unique characteristic makes it an excellent polarimetric
calibrator, which allows fully polarimetric calibration of
a nonreciprocal radar system by measuring just a single
QCCLD. The theoretical polarimetric scattering matrix (PSM)
is derived based on physical optics (PO). Using complex
exponential (CE) model-based parametric representation, a novel
polarimetric calibration procedure is developed to suppress
undesirable scattering components, which degrade the calibration
accuracy. Experimental calibration results are presented with
the polarization isolation improvement of more than 15 dB over
6–18 GHz frequency band, demonstrating the usefulness of the
proposed QCCLD calibrator for fully polarimetric calibration of
a wideband nonreciprocal radar system.

Index Terms— Electromagnetic (EM) scattering, nonreciprocal
radar system, polarimetric calibration, polarimetric passive
radar calibrator, polarimetric scattering matrix (PSM).

I. INTRODUCTION

POLARIMETRIC scattering matrix (PSM) provides an
exquisite description of the interaction between electro-

magnetic (EM) wave and radar target, which plays important
roles in scattering diagnosis and target identification [1], [2].
In practice, antenna crosstalk and channel imbalance distort
the received signal in polarimetric radar systems, which
have to be solved through fully polarimetric calibration.
There are mainly two tasks in polarimetric calibration
of a radar system: 1) design an appropriate polarimetric
calibrator, which has known theoretical PSM, and 2) develop
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measurement and processing procedures to obtain all the
distortion parameters from measured data. Since the standard
polarimetric calibration signal model has been proposed in
the 1990s [3], [4], different polarimetric calibrators and
improved calibration methods have been proposed for specific
requirements [5], [6], [7], [8], [9]. Recently, in terms of
the new calibrators, Monzon [10] proposed a unidirectional
conducting canonical object to satisfy the requirements as
a cross-polarized bistatic calibration device. Olk et al. [11]
proposed a wire mesh with high cross-polarization level for
the calibration of monostatic and bistatic radar cross section
(RCS) facility operating at W-band. A mainlobe steered
dihedral (MSD) object was proposed by Beaudoin et al. [12],
which can be applied to bistatic polarimetric calibration.
Kong and Xu [13] proposed a rhombus-shaped dihedral,
which can be used for polarimetric calibration and background
clutter extraction simultaneously. Ali and Perret [14] proposed
an augmented depolarizing circular scatterer based on resonant
elements, which performs well in a compact range. For
improved calibration methods, Muth [15], [16] proposed a
nonlinear calibration technique based on Fourier analysis,
suppressing the effects of system drift and background clutter
in measurement environment effectively. Wu and Xu [17]
proposed an improved calibration technique for the case of
quasi-monostatic polarimetric measurement system, which is
very common in RCS test ranges.

For fully polarimetric calibration of a nonreciprocal
radar system, there are eight distortion parameters needing
to be solved, i.e., four crosstalk parameters and four
polarization channel gain factors [9]. Measurements of a single
traditional dihedral corner reflector cannot provide enough
independent equations, resulting in requirement of a second
nondepolarizing calibrator, such as a metal plate, sphere,
or cylinder, and so on. In other words, the measurements of
at least two different conventional calibrators are required for
fully polarimetric calibration of a nonreciprocal radar system.
Extra workload and complexity are added in polarimetric
measurements when interchanging calibrators and concerning
with the accurate position and orientation.

To simplify the measurement and calibration procedure,
a new single polarimetric calibrator consisting of a quarter
concave cylinder linked dihedral (QCCLD) reflector was first
proposed by Wu and Xu [18], [19], which can accomplish
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Fig. 1. Geometry of the QCCLD calibrator. (a) Frontal view. (b) Profile
view. (c) Top view.

fully polarimetric calibration for nonreciprocal radar systems
by measuring just itself. In this article, starting from our
previous work, further in-depth studies of the QCCLD
calibrator are made as follows. The scattering mechanisms are
analyzed in detail. In addition, the theoretical PSM varying
with rotation angle along the radar line of sight (LOS) is
derived based on physical optics (PO). A novel polarimetric
calibration procedure based on parametric representation using
complex exponential (CE) model [20], [21], [22], [23] is
presented to suppress the interference of undesirable scattering
components for enhanced accuracy. Finally, experimental
results are presented to validate the usefulness of the QCCLD
polarimetric passive calibrator.

This article is organized as follows. The three-dimensional
(3-D) geometry, theoretical PSM, and scattering mechanism
of the proposed QCCLD calibrator are analyzed in Section II.
In Section III, the polarimetric measurement signal model
and the CE model parametric representation-based calibration
procedure are presented. Experimental measurements and
calibration results are illustrated in Section IV with analysis to
validate the proposed QCCLD calibrator. We summarize this
article in Section V.

II. GEOMETRY, THEORETICAL PSM, AND SCATTERING
MECHANISM OF QCCLD

A. Geometry and Theoretical PSM

The previous work [19] has suggested that the frequency
dispersion characteristic of a concave cylindrical surface is
more stable than a metal plate. Besides, less diffraction wave
and interaction with the concave cylinder are excited by
a triangular-shaped dihedral than a rectangular-shaped one.
As illustrated in Fig. 1, the QCCLD calibrator is designed as
a combination of a separated triangular-shaped dihedral and
a quarter of concave cylinder, which is determined by three
parameters, i.e., the height h, the radius of the concave cylinder
r , and the width of the triangular plate w.

When the calibrator is rotating with an angle of θ along the
radar LOS, the PSM can be expressed as

S(θ) = Scyl

[
1 0
0 1

]
+ Sdih

[
− cos 2θ sin 2θ

sin 2θ cos 2θ

]
(1)

TABLE I
SCATTERING MECHANISMS OF THE QCCLD CALIBRATOR

Fig. 2. Scattering mechanisms of the QCCLD. (a) Top view. (b) Profile view.

where Scyl and Sdih are the scattering components of concave
cylinder and dihedral at 0◦ rotation, respectively, which are
derived in Appendix-A based on PO. Substitute (A13) and
(A18) into (1), the theoretical backscattering PSM of the
QCCLD calibrator can be written as

SHH(θ) = j
√

r
2λ

he−j2k
(

1−
√

2
)

r
− j

wh
√

2λ
cos 2θ (2)

SHV(θ) = j
wh
√

2λ
sin 2θ (3)

SVH(θ) = j
wh
√

2λ
sin 2θ (4)

SVV(θ) = j
√

r
2λ

he−j2k
(

1−
√

2
)

r
+ j

wh
√

2λ
cos 2θ (5)

where H and V stand for horizontal and vertical polarizations,
respectively.

B. Backscattering Mechanism Analysis

The backscattered field of QCCLD calibrator consists of
four kinds of mechanisms, i.e., the specular reflection wave,
the multiple reflection wave, the diffraction wave, and the
surface wave. The scattering mechanisms are illustrated in
Fig. 2, where the EM wave incidents along the y-axis. The
number markers of different scattering centers (SCs) are
detailed in Table I.
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Fig. 3. Backscattering RCS and HRRP of QCCLD with 0◦ rotation. (a) RCS.
(b) HRRP.

Fig. 4. Backscattering RCS and HRRP of QCCLD with 45◦ rotation. (a) RCS.
(b) HRRP.

The ultrawideband (UWB) backscattering RCS
from 100 MHz to 36 GHz with a 100 MHz frequency
step of a specific QCCLD calibrator with h = 190 mm,
w = 96 mm, and r = 48 mm is calculated using method of
moment (MoM) code of FEKO software [24]. Fig. 3(a) and (b)
shows the RCS and high-resolution range profile (HRRP) at
0◦ rotation. A Chebyshev window function is used to suppress
the sidelobe. The RCS increasing with frequency shows a
periodical oscillation characteristic due to the vector addition
of SC1 and SC2, corresponding with (2) and (5) of the
theoretical PSM. In addition, the traveling wave of SC8 can
only be excited at VV polarization at this rotation angle [25].
Fig. 4(a) and (b) shows the RCS and HRRP at 45◦ rotation.
It is seen that SC1 dominates in co-polarization component,
while SC2 dominates in cross-polarization component. The
fully polarimetric HRRP sequences of QCCLD calibrator
varying with rotation angle along radar LOS are shown in
Fig. 5, where Hamming window function is used. It is seen
that the SC1 keeps constant, while the SC2 varies periodically
with the rotation angle.

III. POLARIMETRIC MEASUREMENT SIGNAL
MODEL AND CALIBRATION PROCEDURE

A. Polarimetric Signal Model Based on QCCLD Calibrator

The measurement signal model for polarimetric calibration
of a nonreciprocal radar system can be described in the form
of matrices as [9]

M = R(S + B)T + N (6)

where M is the measurement signal matrix, S denotes the
true PSM of target, and T and R represent the transmitting
and receiving distortion matrices, respectively. The undesirable
signals B and N stand for the clutter and noise matrices,
respectively.

In practical measurements, the signal-to-noise ratio (SNR)
can be high enough by pulse accumulation, so the effect
of N can be ignored. The background clutter B of
measurement environment can usually be well suppressed by
vector subtraction or Fourier analysis method proposed by
Muth [15], [16]. Then, the polarimetric measurement signal
model can be simplified as

M = RST (7)

with [
MHH MHV
MVH MVV

]
=

[
RHH RHV
RVH RVV

][
SHH SHV
SVH SVV

]
×

[
THH THV
TVH TVV

]
. (8)

Normalize the receiving and transmitting distortion matrices
as [

RHH RHV
RVH RVV

]
=

[
RHH 0

0 RVV

][
1 εR

H
εR

V 1

]
(9)[

THH THV
TVH TVV

]
=

[
1 εT

V
εT

H 1

][
THH 0

0 TVV

]
(10)

where εR
H = RHV/RHH, εR

V = RVH/RVV, εT
H = TVH/THH, and

εT
V = THV/TVV refer to the crosstalk parameters of receiving

and transmitting polarization channels.
The polarization channel gain matrix can be constructed by

pointwise product as[
gHH gHV
gVH gVV

]
=

[
RHHTHH RHHTVV
RVVTHH RVVTVV

]
(11)

where gHH, gHV, gVH, and gVV represent the polarization
channel gain factors.

Therefore, the polarimetric calibration model with eight
distortion parameters of a nonreciprocal radar system is
expressed as[

MHH MHV
MVH MVV

]
=

[
gHH gHV
gVH gVV

]
⊙

[
1 εR

H
εR

V 1

][
SHH SHV
SVH SVV

]
×

[
1 εT

V
εT

H 1

]
(12)

where the operator ⊙ stands for a Hadamard product.
Substitute the theoretical PSM of QCCLD into (12),

we have

MHH(θ) = gHH
[(
εR

Hε
T
H − 1

)
Sdih cos 2θ

+
(
εR

H + εT
H

)
Sdih sin 2θ +

(
1 + εR

Hε
T
H

)
Scyl

]
(13)

MHV(θ) = gHV
[(
εR

H − εT
V

)
Sdih cos 2θ

+
(
1 + εR

Hε
T
V

)
Sdih sin 2θ +

(
εR

H + εT
V

)
Scyl

]
(14)

MVH(θ) = gVH
[(
εT

H − εR
V

)
Sdih cos 2θ

+
(
1 + εR

Vε
T
H

)
Sdih sin 2θ +

(
εR

V + εT
H

)
Scyl

]
(15)

MVV(θ) = gVV
[(

1 − εR
Vε

T
V

)
Sdih cos 2θ

+
(
εR

V + εT
V

)
Sdih sin 2θ +

(
1 + εR

Vε
T
V

)
Scyl

]
. (16)
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B. Polarimetric Calibration Procedure

It is seen that the fully polarimetric measurement signals in
(13) and (16) have the general form of

Mpq = apq + cpq cos 2θ + spq sin 2θ (17)

where the subscripts p and q stand for the electric polarization
vectors either H or V for the receiver and transmitter.

The Fourier analysis method can be used to obtain all
coefficients apq, cpq, and spq from measurement data to
suppress the effect of background clutter [15], [16]. The signal
can be described as the Fourier series

M = a0 + c1 cos θ + s1 sin θ + c2 cos 2θ + s2 sin 2θ + · · ·

(18)

Mathematically, the coefficients apq, cpq, and spq of QCCLD
calibrator correspond to a0, c2, and s2 of each polarization [19].
Take HH polarization for example, we have

aHH
0 = gHH

(
1 + εR

Hε
T
H

)
Scyl (19)

cHH
2 = gHH

(
εR

Hε
T
H − 1

)
Sdih (20)

sHH
2 = gHH

(
εR

H + εT
H

)
Sdih. (21)

Assuming the calibrator rotates from 0 to 2π with 2N angle
samples in measurement, the coefficients for any polarization
can be calculated from measured data as

apq
0 =

1
2N

2π∑
θ=0

Mpq(θ) (22)

cpq
2 =

1
N

2π∑
θ=0

Mpq(θ) · cos 2θ (23)

spq
2 =

1
N

2π∑
θ=0

Mpq(θ) · sin 2θ. (24)

In fact, the coefficients apq
0 , cpq

2 , and spq
2 represent the three

different scattering components of QCCLD for polarimetric
calibration, i.e., apq

0 is the constant component or the concave
cylinder component, cpq

2 denotes the second-order cosinusoidal
component or the dihedral component with 0◦ rotation, and spq

2
denotes the second-order sinusoidal component or the dihedral
component with 45◦ rotation.

The scattering components separated by Fourier analysis
method from the rotated QCCLD MoM data shown in Fig. 5
are illustrated in Fig. 6. A Hamming window function is used
to suppress the sidelobe in HRRPs.

It is seen from Fig. 6 that there are undesirable components
excited by interaction, diffraction, and surface waves, resulting
in RCS deviation deviating from the theoretical PSM derived
from PO. For example, the interferential component in
Fig. 6(b) at about 0 cm is caused by the double-bounce
interaction between concave cylinder and dihedral, i.e., SC3
in Fig. 2. To suppress the interference of undesirable compo-
nents, a CE model-based parametric representation approach
[20], [21], [22], [23] is used to extract the main SC.

The CE model expression of target scattering function is√
σ( f ) =

M∑
i=1

ai e
−

(
αi +j 4πri

c

)
f (25)

Fig. 5. Fully polarimetric HRRP sequences of QCCLD calibrator varying
with rotation angle along radar LOS. (a) HH. (b) HV. (c) VH. (d) VV.

Fig. 6. Scattering components separation using the Fourier analysis method.
(a) RCS and (b) HRRP of the constant component. (c) RCS and (d) HRRP
of the second-order cosinusoidal component. (e) RCS and (f) HRRP of the
second-order sinusoidal component.

where M is the model order or the number of scattering
components;ai , αi , and ri are the complex amplitude, the
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frequency dispersion factor, and the distance from phase center
of the i th SCs, respectively, which can be estimated by state
space approach (SSA) [22]; f is the radar frequency vector.

Assuming that the kth SC can be reconstructed by the m1th
to m2th scattering components, the scattering function of the
kth SC can be written as√

σk( f ) =

m2∑
i=m1

ai e
−

(
αi +j 4πri

c

)
f (26)

where m1 and m2 of the kth SC can be determined by the
boundary locations rm1 and rm2 of the main lobe in the HRRP
domain, respectively.

In practice, considering the widening of the main lobe
caused by the distortion parameters (crosstalk parameters and
channel gain factors), the locations rm1 and rm2 are obtained
by the following mathematical optimization as:

[rm1, rm2]
= arg min{|χ1| + |χ2| + |χ3| + |χ4| + |χ5|}

subject to



χ1 = sHH
2 /cHH

2 −
(
εR

H + εT
H

)
/
(
εR

Hε
T
H − 1

)
χ2 = cHV

2 /sHV
2 −

(
εR

H − εT
V

)
/
(
1 + εR

Hε
T
V

)
χ3 = cVH

2 /sVH
2 −

(
εT

H − εR
V

)
/
(
1 + εR

Vε
T
H

)
χ4 = sVV

2 /cVV
2 −

(
εR

V + εT
V

)
/
(
1 − εR

Vε
T
V

)
χ5 =

(
aHV

0 aVH
0

)
/
(
aHH

0 aVV
0

)
−

(
εR

H + εT
V

)(
εR

V + εT
H

)(
1 + εR

Hε
T
H

)(
1 + εR

Vε
T
V

)
rm2 + rm1 = 2rm0

rm2 − rm1 > 0

(27)

where rm0 is the peak value location of the main lobe in HRRP.
The objective function is minimized by gradually increasing
the distance between rm1 and rm2.

The SC extraction result from Fig. 6 is shown in Fig. 7.
It is seen that after SC extraction based on CE model
parametric representation, the undesirable components are well
suppressed and the main SCs agree well with the theoretical
value of PO. In addition, the RCS uncertainty of CE model
representation is shown in Appendix-B. After separation
and extraction of the three scattering components for each
polarization, the distortion parameters can be solved by the
polarimetric calibration model described above.

The polarimetric calibration procedure for nonreciprocal
radar systems using the QCCLD calibrator is summarized in
four steps.

Step 1: Obtain the fully polarimetric measurement data from
a nonreciprocal radar system of the QCCLD calibrator rotated
along the radar LOS.

Step 2: Separate the scattering components using the Fourier
analysis method. Then, extract the main SCs using CE model-
based parametric representation approach.

Step 3: Solve the polarimetric calibration model to obtain
the eight distortion parameters of the nonreciprocal radar
system.

Step 4: Use the obtained distortion parameters for fully
polarimetric calibration of the radar target under test.

The flowchart of the polarimetric calibration procedure is
shown in Fig. 8.

Fig. 7. SCs extraction using CE model-based parametric representation
approach. (a) RCS and (b) HRRP of the constant component. (c) RCS and
(d) HRRP of the second-order cosinusoidal component. (e) RCS and (f) HRRP
of the second-order sinusoidal component.

Fig. 8. Polarimetric calibration procedure.

IV. EXPERIMENTAL RESULTS

The fully polarimetric measurement experiments based
on the proposed QCCLD calibrator are carried out in an
indoor test range. Fig. 9 illustrates the manufactured QCCLD
calibrator and the nonreciprocal polarimetric radar system. The
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Fig. 9. Measurement on the manufactured QCCLD polarimetric
calibrator. (a) QCCLD calibrator under test. (b) Polarimetric measurement
system.

TABLE II
MEASUREMENT PARAMETERS

Fig. 10. Configuration of the measurement experiment.

size of the QCCLD is the same as described in Section II-B
with h = 190 mm, w = 96 mm, and r = 48 mm. The
radar system consists of two wideband dual-polarized horn
antennas and a vector network analyzer (VNA). The size of
the two antennas is 85 mm and the distance between them is
100 mm, resulting in a quasi-monostatic angle of 1.06◦. The
configuration of the experiment is illustrated in Fig. 10. The
targets under calibration are a square metal plate sized 150 mm
in width and a triangular-shaped dihedral whose height and
width are 300 and 150 mm, respectively. The calibrator and
targets under test are mounted on a metal pylon coated with
radar absorbing material (RAM). The measurement parameters
are listed in Table II.

Fig. 11 shows the measured fully polarimetric magnitude
of the QCCLD calibrator at the center frequency of 12 GHz.
It is seen that the mean values of the co-polarization signals
are not zero due to the concave cylinder scattering component.

Fig. 11. Fully polarimetric measurement magnitudes of QCCLD varying
with rotation angle at a center frequency of 12 GHz. (a) HH. (b) HV. (c) VH.
(d) VV.

Fig. 12. Fully polarimetric calibration of a target square metal plate.
(a) Before and (b) after polarimetric calibration of RCS curves. (c) Before
and (d) after polarimetric calibration of normalized HRRPs.

Fig. 12 illustrates the measured and fully polarimetric
calibrated data for a target square metal plate. It can be
seen that, before calibration, the polarization isolation of the
measured data is about 30 dB. On the other hand, after
polarimetric calibration, it becomes more than 45 dB in most
cases over the 6–18 GHz frequency band, 15 dB better than
the raw data.

In Fig. 13, the results of a target triangular-shaped dihedral
with 0◦ rotation before and after polarimetric calibration
are presented, respectively. The dihedral is a dominant co-
polarization target under this rotation. It is found that for most
cases, the cross-polarization component is about 50 dB down
from the co-polarization component after calibration, 20 dB
better than the uncalibrated data.
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Fig. 13. Fully polarimetric calibration of a target triangular-shaped dihedral
with 0◦ rotation. (a) Before and (b) after polarimetric calibration of RCS
curves. (c) Before and (d) after polarimetric calibration of normalized HRRPs.

V. CONCLUSION

In this work, a new QCCLD calibrator is proposed for
fully polarimetric calibration of nonreciprocal radar systems.
The PSM of the calibrator consists of both depolarizing
and nondepolarizing scattering components as rotating along
the radar LOS. Therefore, fully polarimetric calibration for
nonreciprocal radar systems can be accomplished through
measurements of just a single QCCLD calibrator, greatly
simplifying the measurement procedure. With the using of
a CE model-based parametric representation, the interference
of undesirable components is well suppressed during the
fully polarimetric calibration process. Theoretical analysis and
experimental results demonstrate that the QCCLD can be an
excellent candidate for either indoor or outdoor uses.

APPENDIX

A. Theoretical PSM of QCCLD Based on PO Solution

The relationship between the target scattering matrix and
RCS is shown as [26]

σpq = 4π |Spq|
2 (A1)

where Spq denotes the element of the PSM, and σpq represents
RCS.

According to the PO theory [25], the element of the PSM
can be expressed as

S = j
k

2π

∫∫
A

n̂s · êr × ĥi · e−jkr⃗(î−ŝ)da (A2)

where
k wavenumber;
n̂s unit normal of the illuminated surface;
êr unit vector along scattering polarization;
ĥi unit vector of incident magnetic field;
r⃗ position vector from origin to the surface patch da;
î unit vector of incident wave;

Fig. 14. Separated dihedral component of the QCCLD calibrator.

ŝ unit vector of scattering wave;
A illuminated region of the surface.
For the separated dihedral component, considering the

location of double-bounce scattering as the phase reference
center, the Cartesian coordinate system xyz is established in
Fig. 14.

Suppose that the incident EM wave first illuminates the left
plate, then reflect to the right plate and finally back to the
receiver, the scattering component can be expressed as

S12 = j
k

2π
n̂2 · êr × ĥi

∫ r+w

r

∫
+h r+w−m

2w

−h r+w−m
2w

× e−jkr⃗2·[î−2(î ·n̂1)n̂1−ŝ]dndm (A3)

where dm and dn are the integral elements along the direction
of width and height, respectively.

In Fig. 14, the unit normals of the separated left and right
triangular-shaped plates are, respectively

n̂1 =

(
− sin

π

4
,− cos

π

4
, 0

)
(A4)

n̂2 =

(
− sin

π

4
, cos

π

4
, 0

)
. (A5)

The position vectors of the two plates can be written as

r⃗1 =

(
−m cos

π

4
,m sin

π

4
, n

)
(A6)

r⃗2 =

(
−m cos

π

4
,−m sin

π

4
, n

)
. (A7)

In the case of backscattering, the unit vectors of incident
and scattering waves are

î = (1, 0, 0) (A8)

ŝ = (−1, 0, 0). (A9)

For H or V polarization, the vector product in (A3) can be
written as

|êr × ĥi | = (1, 0, 0). (A10)

Substitute (A4)–(A10) into (A3), the double integral is
derived as∫ r+w

r

∫
+h r+w−m

2w

−h r+w−m
2w

e−jkr⃗2·[î−2(î ·n̂1)n̂1−ŝ]dndm =
wh
2
. (A11)

Substitute (A11) into (A3), we get

S12 = j
wh

2
√

2λ
. (A12)
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Fig. 15. Quarter concave cylinder component of the QCCLD calibrator.

Considering the scattering component that the incident EM
wave first illuminates the right plate, we have S21 = S12.
Therefore, the separated dihedral component of QCCLD can
be derived as

Sdih = j
wh
√

2λ
. (A13)

The concave cylinder component is a quarter of cylindrical
surface from a right circular cylinder, whose height and radius
are h and r , respectively, shown in Fig. 15.

The PO integral of the quarter concave cylinder component
can be expressed as

Scyl = j
krh
2π

e−jkr⃗0(î−ŝ)
∫
ψ

n̂ · êr × ĥi e−jkr n̂(î−ŝ)dϕ. (A14)

In the case of backscattering, considering the angle limit of
the integral, (A14) can be simplified as

Scyl = j
krh
2π

ej2k
√

2 r
∫

+ψ/2

−ψ/2
e−j2kr cosϕdϕ. (A15)

Stationary phase method is used to solve the integral
in (A15). The phase function can be expanded in a Taylor
series, and all terms beyond the second derivative are ignored.
The stationary phase method can be described as [25]∫

g(φ)e−j f (φ)dφ ≃

[
2π

j f ′′(φ0)

]1/2

g(φ0)e−j f (φ0). (A16)

The integral in (A15) can be solved as∫
+ψ/2

−ψ/2
e−j2kr cosϕdϕ =

[
λ

2r

]1/2

e−j2kr . (A17)

Substitute (A17) into (A15), the concave cylinder compo-
nent of QCCLD can be written as

Scyl = j
√

r
2λ

· he−j2k
(

1−
√

2
)

r
. (A18)

When the QCCLD is rotating along the radar LOS, the PSM
can be expressed as (2)–(5) in Section II-A.

B. RCS Uncertainty of CE Model Parametric Representation

In Section III-B, the CE model-based parametric represen-
tation approach is used to extract SCs of the three scattering

Fig. 16. RCS error caused by CE model parametric representation approach.
(a) RCS and (b) error of the constant component. (c) RCS and (d) error
of the second-order cosinusoidal component. (e) RCS and (f) error of the
second-order sinusoidal component.

components of QCCLD calibrator for each polarization. Here,
the RCS error caused by CE model is defined as

εCE( f ) =
σCE( f )
σMoM( f )

. (A19)

Take HH polarization as an example for the constant and the
second-order cosinusoidal components and HV polarization as
an example for the second-order sinusoidal component, the
RCS error caused by CE model parametric representation is
illustrated in Fig. 16. It is seen that the RCS uncertainty is
within ±0.01 dB, which is accurate enough for polarimetric
calibration.

C. Calibration Sensitivity Analysis of a Rotating QCCLD

In practical applications of the rotating QCCLD, the
calibration accuracy is related to various factors, including
the location and posture of the calibrator, and the bistatic
angle between the transmitting and receiving antennas, and
so on. For instance, the incident EM wave can deviate from
the expected orientation due to the imprecise placement of
the calibrator. In this section, the calibration sensitivity of the
rotating QCCLD is analyzed considering the RCS error and
polarization purity affected by the monostatic, bistatic, and
rotation angular errors.
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Fig. 17. Monostatic angular sensitivity of QCCLD. (a) Geometry of
monostatic angular error. (b) RCS versus rotation angle of HV polarization
with 1α = 2o. (c) RCS error and (d) polarization purity varying with
monostatic angular error.

1) Monostatic Angular Sensitivity: The radar EM wave with
a monostatic angular error of 1α is illustrated in Fig. 17(a),
where the QCCLD is rotating along the expected LOS with an
angle of θ . The RCS characteristics are calculated using the
MoM code of FEKO software [24] at the central frequency
of 12 GHz of our experiment for HH and HV polarizations.
The HV polarization RCS versus rotation angle with 1α = 2o

is shown in Fig. 17(b), demonstrating the RCS curves of the
MoM result, the Fourier analysis result, and the difference
between them. Using Fourier analysis method, the RCS
error and the polarization purity versus monostatic angular
error of constant, second-order cosinusoidal, and second-
order sinusoidal components are illustrated, respectively,
in Fig. 17(c) and (d).

It is seen from Fig. 17 that, with the angular error, an extra
fourth-order sinusoidal component occurs [17]. Besides, the
monostatic angular error of up to 0.7◦ is allowed for the RCS
errors of all the three components less than 0.1 dB. In our
experiment, the accessible accuracy can be better than ±0.1◦

using an electronic total station, so this error can be neglected.
In addition, as seen from Fig. 17(d), the monostatic angular
error of up to 2◦ makes no influence on the polarization purity.

2) Bistatic Angular Sensitivity: A symmetrical bistatic
angle of 1β between incident and scattering EM waves is
illustrated in Fig. 18(a). The bistatic angle-sensitive RCS
characteristics of QCCLD are shown in Fig. 18(b)–(d).

From Fig. 18, the bistatic angular error of less than 1◦ is
allowed for the RCS error no more than about 0.1 dB. In the
experiment, a bistatic angle of 1.06◦ is formed because of
the separation between transmitter and receiver. In practice,
either increasing measurement distance or closer installation
of the two antennas can reduce the impact of bistatic angular
error. In addition, it seems that a bistatic angular error of

Fig. 18. Bistatic angular sensitivity of QCCLD. (a) Geometry of bistatic
angular error. (b) RCS versus rotation angle of HV polarization with 1β = 2o.
(c) RCS error and (d) polarization purity varying with bistatic angular error.

Fig. 19. Rotation angular sensitivity of QCCLD. (a) Geometry of rotation
angular error. (b) RCS versus rotation angle of HV polarization with 1θ = 2o.
(c) RCS error and (d) polarization purity varying with rotation angular error.

up to 2◦ makes no noticeable influence on the polarization
purity.

3) Rotation Angular Sensitivity: A misaligned rotation
angle error of 1θ on the rotating QCCLD is shown in
Fig. 19(a). The RCS characteristics in this case are shown
in Fig. 19(b)–(d).

In Fig. 19(c), it is seen that the RCS error caused by
the rotation angular error of up to 2◦ impacts little on the
calibration by using the Fourier analysis method. However,
this angular error makes a severe impact on the polarization
purity, as seen from Fig. 19(d), where it is found that a rotation
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angular error of less than 0.1◦ is allowable for a polarization
purity better than 50 dB. The accessible mechanical accuracy
of rotation angle can be about ±0.1◦ by using a digital
gradienter in our experiment.

In general, the quality of polarimetric calibration depends on
the exact position, orientation, and alignment of the rotating
QCCLD. In practical applications, the calibration error can
be effectively reduced by a careful installation with high-
precision instruments and using the Fourier analysis method.
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