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Abstract— A coupled system of volume integral and hydrody-
namic equations is solved to analyze electromagnetic scattering
from nanostructures consisting of metallic and dielectric parts.
In the metallic part, the hydrodynamic equation relates the free
electron polarization current to the electric flux and effectively
“updates” the constitutive relationship to enable the modeling
of nonlocality. In the metallic and dielectric parts, the volume
integral equation relates the electric flux and the free electron
polarization current to the scattered electric field. Unknown elec-
tric flux and free electron polarization current are expanded using
Schaubert–Wilton–Glisson (SWG) basis functions. Inserting these
expansions into the coupled system of the volume integral and
hydrodynamic equations and using Galerkin testing yield a
matrix system in unknown expansion coefficients. An efficient
two-level iterative solver is proposed to solve this matrix system.
This approach “inverts” the discretized hydrodynamic equation
for the coefficients of the free electron polarization current and
substitutes the result in the discretized volume integral equation.
Outer iterations solve this reduced matrix system while the
inner iterations invert the discretized hydrodynamic equation at
every iteration of the outer iterations. Numerical experiments are
carried out to demonstrate the accuracy, the efficiency, and the
applicability of the proposed method.
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equation, nonlocal effects, plasmonic nanostructures, volume
integral equation.
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I. INTRODUCTION

IN RECENT years, with the dramatic advances in fabrica-
tion technologies, the use of plasmonic nanostructures to

manipulate high-frequency electromagnetic fields has become
more prevalent than ever [1], [2]. Often, metals are used
as the building blocks of these nanostructures since they
support surface plasmon modes at optical frequencies. These
modes localize the electromagnetic fields in the proximity of
the nanostructure and significantly enhance those scattered
from it in the far-field region. This has enabled the use of
metallic nanostructures as nanoantennas [3], resonators [4],
waveguides [5], couplers [6], and sensors [7].

Depending on the frequency, interaction of electromagnetic
fields with metals can be accounted for using various models
and equations under certain assumptions and approximations.
At microwave frequencies, free electrons in a metal have high
mobility, which leads to large conductivity and small skin
depth (compared with the size of the structure) [8]. Therefore,
an electric current, which is confined to the surface of the
metal, is used to represent the electromagnetic field interac-
tions on the metal. At optical frequencies, the free electron
mobility decreases. As a result, there is a time delay in the
response of the electrons to the electromagnetic excitation [9].
To account for this frequency dispersion effect, the classical
Drude model [10] is used to represent the permittivity of the
metal. Furthermore, at the optical frequencies, the skin depth
is usually comparable to the size of a typical nanostructure and
the metals are modeled as “penetrable” materials and volume
electric currents are used to represent the electromagnetic field
interactions on or inside them.

When the frequency is further increased into the ultraviolet
part of the spectrum, spatial dispersion appears in the response
of the free electrons to the electromagnetic excitation. Effec-
tively, the permittivity becomes nonlocal, i.e., it depends not
only on the observation point but also on the source point in
space [11]. This spatial dispersion effect is due to the fact
that at this frequency regime, a free electron exhibits quantum
behavior [12], and the interactions of the electromagnetic
fields with the electrons should ideally be modeled using
full quantum mechanics simulation methods (e.g., density
functional theory [13]). However, the computational cost of
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these methods is very high, and, therefore, they can only
be used when the structure is very small, i.e., only a few
nanometers in size [14]. This makes them unsuitable for
full-scale simulations of plasmonic nanostructures in real-life
scenarios.

This bottleneck can be addressed using a hydrodynamic
equation to model the mechanical motion of the free elec-
trons [11]. This equation assumes that the electrons can
collectively be accounted for as a moving fluid of charges
driven by the electromagnetic fields in the medium. Naturally,
these moving charges (termed as the free electron polariza-
tion current in the rest of the text) generate electromagnetic
fields. This interaction between the free electrons and the
electromagnetic fields can be described by a coupled system
of the Maxwell and hydrodynamic equations [15], [16], [17],
[18], [19]. This system of coupled equations can account for
the nonlocality/spatial dispersion and its numerical solution is
not as costly as that of the full quantum mechanics simulation
methods.

Several methods have been developed to numerically solve
the coupled system of the Maxwell and hydrodynamic equa-
tions [15], [16], [17], [18], [19]. A majority of these meth-
ods are differential equation solvers, e.g., finite element
method [16], finite-difference time-domain method [17], and
discontinuous Galerkin method [18], [19]. These solvers, just
like their traditional versions, which are developed to solve
only the Maxwell equations, suffer from several well-known
shortcomings that might limit their accuracy and efficiency
(see, for example, [20] for details).

Surface integral equation solvers do not suffer from these
shortcomings (see, for example, again [20] for details), and
indeed, they have been extended to analyze scattering from
metallic objects in which the motion of electrons is described
by the hydrodynamic equation [15]. However, this method
requires the derivation of a new Green function for every
type of boundary condition and their combination enforced by
the hydrodynamic equation (for example, boundary conditions
for the free electron polarization current on metal–metal
or metal–dielectric interfaces are different). In addition, this
solver is applicable only when the scatterer has homogeneous
or piecewise homogeneous material properties.

In this work, these shortcomings are avoided by switching
to a volume integral equation formulation. The proposed
scheme represents the scattered electromagnetic field in the
form of a (volumetric) convolution between the background
medium’s Green function and the electric flux (induced in
the metallic and dielectric parts of the scatterer) and the
free electron polarization current (induced in the metallic
part). In both the metallic and dielectric parts, the volume
integral equation, which relates the electric flux and the free
electron polarization current to the scattered electric field,
is enforced. In the metallic part, the hydrodynamic equation,
which relates the free electron polarization current to the
electric flux, is enforced. To numerically solve this coupled
system of equations, first the scatterer is discretized into a
mesh of tetrahedrons. The electric flux and the free elec-
tron polarization current are expanded using a combination
of “full” and “half” Schaubert–Wilton–Glisson (SWG) basis

Fig. 1. Description of the scattering problem.

functions [21] defined on these tetrahedrons. Inserting these
expansions into the coupled system of the volume integral
and the hydrodynamic equations and applying Galerkin test-
ing yield a matrix system in unknown expansion coeffi-
cients. The boundary condition for the normal component
of the free electron polarization current (which should be
set to zero on a metal–dielectric interface) is enforced by
excluding the half SWG functions, which are defined on
the tetrahedrons that have a face on the metal–dielectric
interface, from the expansion of the free electron polarization
current.

An efficient two-level iterative solver is developed to solve
the matrix system resulting from this discretization. This
solver “inverts” the discretized hydrodynamic equation for the
coefficients of the free electron polarization current and sub-
stitutes the result in the discretized volume integral equation.
Outer iterations solve this reduced matrix system, while the
inner iterations invert the discretized hydrodynamic equation
at every iteration of the outer iterations. Note that a prelim-
inary version of the method proposed in this work has been
described in [22] as a conference contribution.

The remainder of this article is organized as follows.
Sections II-A–II-C describe the formulation of the coupled
system of the volume integral and the hydrodynamic equa-
tions, its discretization, and the two-level iterative solution,
respectively. Section II-D explains how the mesh element size
is selected and provides several comments on possible exten-
sions of the proposed method and its applications. Section III
presents the numerical results that demonstrate the accuracy,
the efficiency, and the applicability of the proposed scheme.
Finally, Section IV summarizes this work and outlines future
research directions.

II. FORMULATION

A. Coupled System of the Volume Integral and the
Hydrodynamic Equations

Let VD represent a composite scatterer that consists of
dielectric and metallic parts (Fig. 1). Vdiel and VH represent
these parts, respectively. Both Vdiel and VH are non-magnetic
but their relative permittivity (for bound electron polarization)
as denoted by εb(r) can be inhomogeneous. The boundary
surface of VH is represented by SH. The scatterer resides in an
unbounded homogeneous background medium with permittiv-
ity ε0 and permeability μ0. The electric field of the excitation
is denoted by Einc(r) and its frequency is denoted by ω.
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Upon this excitation, equivalent volumetric electric current
J(r) is induced in VD and this current generates the scattered
electric field Esca(r). The incident electric field Einc(r), the
scattered electric field Esca(r), and the total electric field E(r)
satisfy the fundamental field relationship.

E(r) = Einc(r) + Esca(r). (1)

Using the volume equivalence principle [20], J(r) is expressed
in terms of E(r) and the electric flux D(r) as follows:

J(r) = jωD(r) − jωε0E(r), r ∈ VD (2)

and Esca(r) is expressed as follows:
Esca(r) = LVD[J](r). (3)

Here, LV [X](r) is the volume integral operator given by the
following equation:
LV [X](r) = − jωμ0

∫
V

X
(
r′)G

(
r, r′)dv ′

+ 1

jωε0

∫
V

∇∇ · [X(
r′)G

(
r, r′)]dv ′

where G(r, r′) = exp(− jk0 R)/(4π R) is the Green function,
k0 = ω

√
μ0ε0 is the wavenumber in the background medium,

and R = ∣∣r − r′∣∣ denotes the distance between the observation
point r and the source point r′.

The motion of the free electrons in VH is accounted for
using a nonlocal hydrodynamic equation. Let JH(r) represent
the polarization current associated with these free electrons.
Then, JH(r) is expressed in terms of E(r) and D(r) as [15]

JH(r) = jωD(r) − jωε0εb(r)E(r), r ∈ VH. (4)

In addition, JH(r) is “driven” by E(r). This relationship
is described by the nonlocal hydrodynamic Drude equation
as [11]

β2∇[∇ · JH(r)] + ω(ω − jγ )JH(r)

= − jωω2
pε0E(r), r ∈ VH. (5)

Here, ωp is the plasma frequency, β2 = 0.6v2
F, vF is the Fermi

velocity, and γ is a damping constant. The hydrodynamic
(5) has to be complemented by a boundary condition on the
boundary surface of VH [as denoted by SH (Fig. 1)] [11]

n̂(r) · JH(r) = 0, r ∈ SH. (6)

Here, n̂(r) is the outward pointing unit normal vector on SH.
This boundary condition ensures that the normal component
of JH(r) vanishes on SH (i.e., free electrons do not flow from
the metallic part into the dielectric part or the background
medium). Note that the hydrodynamic (5) together with the
boundary condition (6) introduces an electromagnetic wave
solution with a longitudinal electric field in VH in addition to
the one with a transverse electric field [11].

The proposed scheme defines D(r) and JH(r) as unknowns.
To eliminate E(r), E(r) from (4) is inserted into (2). This
yields an expression for J(r) in terms of D(r) and JH(r) as
follows:

J(r) = jωκ(r)D(r) + JH(r)
εb(r)

, r ∈ VH (7)

where κ(r) = 1 − 1/εb(r). Substituting (7) into (3) and
inserting the resulting equation and E(r) from (4) into (1) yield
the volume integral equation in unknowns D(r) and JH(r) as
follows:
Einc(r) = D(r)

ε0εb(r)
− jωLVD[κD](r)

− JH(r)
jωε0εb(r)

− LVH

[
JH

εb

]
(r), r ∈ VD. (8)

Similarly, the hydrodynamic (5) should be expressed in only
D(r) and JH(r). Inserting E(r) from (4) into (5) yields

β2∇[∇ · JH(r)] +
[
ω(ω − jγ ) − ω2

p

εb(r)

]
JH(r)

= − jωω2
p

D(r)
εb(r)

, r ∈ VH. (9)

Equations (8) and (9) are the final form of the coupled system
of the volume integral and the hydrodynamic equations in
unknowns D(r) and JH(r). This system is discretized using the
scheme described in Section II-B. Note that this discretization
scheme ensures that the boundary condition (6) is enforced
correctly.

B. Discretization

To numerically solve the coupled system of (8) and (9),
first, VD is discretized into a mesh of tetrahedrons. Then, the
unknowns D(r) and JH(r) are expanded as follows:

D(r) =
ND∑

n=1

{ID}nfD
n (r), r ∈ VD

JH(r) =
NH∑

n=1

{IH}nfH
n (r), r ∈ VH. (10)

Here, {ID}n and {IH}n are the unknown coeffcients, and fD
n (r)

and fH
n (r) are the basis functions constructed using the SWG

functions defined on the triangles of the tetrahedral mesh [21].
The SWG basis function associated with triangle n is defined
as follows:

fn(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f+
n (r) = |Sn|

3
∣∣V +

n

∣∣ (r − r+
n

)
, r ∈ V +

n

f−
n (r) = − |Sn|

3
∣∣V −

n

∣∣ (r − r−
n

)
, r ∈ V −

n

0, elsewhere.

(11)

Here, V +
n and V −

n are the tetrahedrons “touching” triangle n
on its two sides, r±

n are the corners of V ±
n that are not on

Sn (i.e., free nodes), |Sn| is the area of Sn , and |V ±
n | are the

volumes of V ±
n .

The basis set fD
n (r) includes “full” SWG basis functions

as defined by (11) on every pair of tetrahedrons in VD and
“half” SWG basis functions defined by f+

n (r) of (11) in single
tetrahedrons that have their Sn on the surface of the scatterer.
The use of full SWG functions enforces the continuity of the
normal component of D(r) across any pair of tetrahedrons
in VD (even when εb(r) in V +

n and V −
n are different). The

inclusion of half SWG functions ensures that the normal
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component of D(r) on the surface of the scatterer is accounted
for. ND in (10) is the total number of full and half SWG basis
functions used in the expansion of D(r) in VD.

The basis set fH
n (r) consists of only the full basis functions

as defined by (11) on every pair of tetrahedrons in VH and
does not include the half SWG basis functions defined in
single tetrahedrons that have their Sn on SH (metal-dielectric
interface). Note that JH(r) does not flow from the metallic
part into the dielectric part or the background medium and its
normal component on SH is zero as described by the boundary
condition in (6). Exclusion of the half SWG basis functions
from fH

n (r) ensures that this boundary condition is correctly
enforced. NH in (10) is the total number of full SWG basis
functions used in the expansion of JH(r) in VH.

Inserting the expansions (10) into (8) and (9) and Galerkin
testing the resulting equations using fD

m (r), m = 1, 2, . . . , ND

and fH
m (r), m = 1, 2, . . . , NH yield a coupled matrix system

of dimension (ND + NH) × (ND + NH) as follows:[
ZDD ZDH

ZHD ZHH

]
︸ ︷︷ ︸

Z

[
ID

IH

]
︸︷︷︸

I

=
[

Vinc

0

]
︸ ︷︷ ︸

V

. (12)

In (12), the entries of the block matrices ZDD of dimension
ND × ND, ZDH of dimension ND × NH, ZHD of dimension
NH × ND, ZHH of dimension NH × NH, and the tested incident
field vector Vinc of dimension ND are given by the following
equations:

{ZDD}mn = 1

ε0

〈
fD
m (r),

fD
n (r)
εb(r)

〉
− jω

〈
fD
m (r),LVD[κfD

n ](r)〉
(13)

{ZDH}mn = − 1

jωε0

〈
fD
m (r),

fH
n (r)
εb(r)

〉
−

〈
fD
m (r),LVH

[
fH
n

εb

]
(r)

〉
(14)

{ZHD}mn = jωω2
p

〈
fH
m (r),

fD
n (r)
εb(r)

〉
(15)

{ZHH}mn = β2
〈
fH
m (r),∇[∇ · fH

n (r)
]〉 + ω(ω − jγ )

× 〈
fH
m (r), fH

n (r)
〉 − ω2

p

〈
fH
m (r),

fH
n (r)
εb(r)

〉
(16)

{Vinc}m =
〈
fD
m (r), Einc(r)

〉
(17)

respectively. Here, the inner product between vector functions
a(r) and b(r) is defined as follows:〈

a(r), b(r)
〉
=

∫
Va

a(r) · b(r) dv (18)

where Va is the support of a(r). Since LVD(X)[r] and
LVH(X)[r] are “global” operators, one can see from (13)
and (14) that ZDD and ZDH are dense matrix blocks. On the
other hand, since fD

n (r) and fH
n (r) have “local” supports (two

tetrahedrons for a full SWG function and one tetrahedron for
a half SWG function), one can see from (15) and (16) that
ZHD and ZHH are sparse matrix blocks (the maximum number
of nonzero entries in one row of these blocks is seven). Note
that the detailed expressions for the matrix entries in (13)–(16)
and the vector entries in (17) are provided in the Appendix.

C. Solution of the Matrix equation

To take advantage of the sparsity of ZHD and ZHH directly,
the coupled matrix system (12) is solved iteratively for the
unknown coefficient vectors ID and IH. Two approaches can
be used for this purpose.

1) Single-Level Iterative Solver: The coupled system (12)
is iteratively solved as a whole using a transpose-free quasi-
minimal residual (TFQMR) scheme [23]. The computational
cost of matrix–vector multiplication ZĨ required at every
iteration of TFQMR scales as O(N2

D)+O(ND NH)+O(NH)+
O(NH). The four terms in this expression represent the com-
putational cost of multiplying matrix blocks ZDD, ZDH, ZHD,
and ZHH with the relevant part of Ĩ, respectively. Then, the
overall computational cost of this single-level iterative solver
scales as follows:
O(

Nit N2
D

) + O(Nit ND NH) + O(Nit NH) + O(Nit NH) (19)

where Nit is the number of iterations required for the relative
residual error to converge to a user-defined value.

2) Two-Level Iterative Solver: In this approach, before an
iterative solver is used, the coupled system (12) is first reduced
into a smaller matrix system. This is done by inverting the
second row of (12) for IH, i.e., IH = −Z−1

HHZHDID, and
inserting this expression into the first row. This yields a smaller
matrix system of dimension ND × ND in unknown ID as
follows: (

ZDD − ZDHZ−1
HHZHD

)
ID = Vinc. (20)

Then, TFQMR is used to solve (20) for ID. Matrix–vector mul-
tiplication (ZDD − ZDHZ−1

HHZHD)ĨD required at every iteration
of TFQMR is carried out as described below.

Step 1: Compute the first term ZDDĨD.
Step 2: Compute the second term ZDHZ−1

HHZHDĨD in three
steps as

Step 2.1: Compute y = ZHD ĨD.
Step 2.2: Compute x = Z−1

HHy by solving y = ZHHx for
x. This is done iteratively using TFQMR.

Step 2.3: Compute ZDHx.
Step 3: Substract the result of Step 2.3 from that of Step 1.

Computational costs of Step 1, Step 2.1, Step 2.2, and Step 2.3
scale as O(N2

D), O(NH), O(N in
it NH), and O(ND NH), respec-

tively. Here, N in
it is the number of iterations required for the

relative residual error to converge to a user defined value
during the solution of the matrix equation y = ZHHx at
Step 2.2 (i.e., inner iterations). Then, the overall computational
cost of this two-level iterative solver scales as follows:
O(

Nout
it N2

D

) + O(
Nout

it NH
) + O(

Nout
it N in

it NH
)

+O(
Nout

it ND NH
)

(21)

where Nout
it is the number of iterations required for the relative

residual error to converge to a user defined value during the
solution of the matrix (20) (i.e., outer iterations).

Comparing (21) to (19), one can see that the single-level
iterative solver would certainly be faster than the two-level
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iterative solver for Nit ≤ Nout
it . However, numerical results

presented in Section III-A show that Nout
it is much smaller than

Nit and N in
it is small, and therefore the two-level iterative solver

is significantly faster than the single-level iterative solver. The
difference between Nit and Nout

it can be explained by the fact
that the dimension of (20) is almost half of that of (12)
and inserting IH = −Z−1

HHZHDID into the first row of (12)
[to obtain (20)] effectively takes care of the scaling difference
between the volume integral and the hydrodynamic equations.

Note that for both the approaches, the computational cost
of matrix–vector multiplications ZDDĨD and ZDH ĨH can be
reduced using the fast multipole method [24], [25], [26], [27]
and its multilevel versions [28], [29], [30], [31] as well as other
matrix compression schemes like those described and referred
to in [32], [33], [34], and [35]. But this does not change the
conclusions of the above comparison since the difference in
the computational cost of the two iterative solvers is mainly
due to the difference in the number of iterations.

D. Comments

A metallic medium that is described by the hydrodynamic
(5) supports the propagation of electromagnetic waves with
electric fields along the transverse and longitudinal direc-
tions [11]. Let the (complex) wavenumbers associated with
these electromagnetic waves be denoted by kT(r) and kL(r),
respectively. The expressions of kT(r) and kL(r) are given
by [11]

kT(r) = k0

√
εb(r) − ω2

p

ω2 − jωγ

kL(r) = 1

β

√
ω2 − jωγ − ω2

p

εb(r)
. (22)

For example, for gold, εb(r) = 1, ωp = 1.20 × 1016 s−1,
β = 1.07 × 106 m/s, and γ = 1.36 × 1014 s−1 [36], [37].
Fig. 2 shows the plots of the values of kT(r) and kL(r)
computed for gold in the frequency range ω ∈ [0.5ωp, 1.5ωp].
Note that during the computation of square roots in (22), the
positive imaginary part of the result is selected to avoid a
nonphysical growing wave. The figure clearly shows that in
this frequency range, both the real and imaginary parts of
kL(r) are significantly larger than those of kT(r), respectively.
This means that to accurately capture the behavior of the
electromagnetic fields in VH (inside the metallic part), the
mesh of tetrahedrons must resolve the wavelength associated
with kL(r). Note that within the frequency range considered
here, since k0 is significantly smaller than both kL(r) and
kT(r), the mesh in Vdiel = VD − VH (inside the dielectric part)
can ideally be coarser than the one in VH. But since these
two volumes share a surface and a conformal discretization is
used, the mesh in Vdiel is denser than what it would ideally be.
This unnecessary computational overhead can be alleviated by
switching to a nonconformal discretization scheme, such as the
one described in [38] and [39]. Development of such a scheme
is underway.

Several comments about the possible extensions of the
proposed method are in order.

Fig. 2. Wavenumbers of the electromagnetic waves with the transverse and
longitudinal electric fields, kT(r) and kL(r), versus ω/ωp.

1) The formulation in Section II-A assumes that the scat-
terer includes only one type of homogeneous metalic
structure (described by a set of hydrodynamic equation
parameters γ , β, and ωp). The formulation can easily
account for additional metal types described by assign-
ing different values to γ , β, and ωp in relevant matrix
entries as long as the structures made of different metals
do not touch each other. This limitation stems from
the fact that the boundary condition (6) is not valid on
metal–metal interfaces and therefore the discretization
scheme described in Section II-B is not applicable
anymore. Development of a formulation that removes
this limitation and allows for modeling of metal–metal
interfaces is currently underway.

2) In [40], the nonlocal hydrodynamic Drude model [as
described mathematically in (5)] has been extended to
account for the classical kinetic effects of the charge
carrier diffusion in the nonlocal response. This so-called
generalized nonlocal optical response (GNOR) model
expresses the relationship between JH(r) and E(r) as
follows:[
β2 + D(γ + jω)

]∇[∇ · JH(r)] + ω(ω − jγ )JH(r)

= − jωω2
pε0E(r), r ∈ VH. (23)

Here, β, γ , and ωp are the same as those in (5) and the
additional parameter D is the charge carrier diffusion
constant. Comparing (5) and (23), one can easily see
that the only difference between the two equations is the
additional term D(γ + jω) in (23). Furthermore, both the
nonlocal models use the same boundary condition given
in (6). Therefore, the implementation of the GNOR
model within the numerical scheme proposed here is
rather trivial and can simply be done by replacing β2 by
β2 + D(γ + jω).

3) In [41] and [42], an analytical method that relies on
the Mie series expansion of the fields has been used
to study the nonlocal response of nanospheres in three
different scenarios: electromagnetic scattering, electron
energy-loss spectroscopy, and atomic spontaneous emis-
sion. Even though examples presented in Section III
involve only electromagnetic scattering problems under
plane-wave excitation, the proposed numerical scheme
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is applicable to other problems with different types of
excitation, including electron energy-loss and atomic
spontaneous emission.

III. NUMERICAL RESULTS

In this Section, several numerical examples are presented to
demonstrate the accuracy, the efficiency, and the applicability
of the proposed solver. All the scatterers considered in these
examples reside in free space with permittivity ε0 and perme-
ability μ0. For all the examples, the excitation is a plane wave
with electric field

Einc(r) = p̂E0e− jk0k̂inc·r. (24)

Here, the unit vector p̂ represents the direction of the polar-
ization, E0 is the electric field amplitude, and the unit vector
k̂inc represents the direction of propagation. Unless otherwise
stated, p̂ = x̂, E0 = 1 V/m, and k̂inc = ẑ for all the examples
considered here. All the TFQMR iterations (outer and inner
iterations for the two-level iterative solver and the iterations
for the single-level iterative solver) are terminated when the
relative residual error (RRE) reaches a desired level, i.e., when
the condition ||b − AIn||/||b|| ≤ χRRE is satisfied. Here, In is
the solution at iteration step n, A is the matrix, b is the right-
hand side vector, and χRRE is the convergence threshold.

A. Metallic Sphere

In this example, electromagnetic scattering from a gold
nanosphere [Fig. 3(a)] is analyzed using the proposed method.
The radius of the sphere is 1 nm. The hydrodynamic equation
parameters for gold are ωp = 1.20 × 1016 s−1, γ = 1.36 ×
1014 s−1, vF = 1.39 × 106 m/s, and εb(r) = 1 [36]. Note that
for this problem, VD = VH and Vdiel = ∅.

Two sets of simulations are carried out. For the first set of
simulations, frequency is set to ω = 0.5 ωp and three levels of
mesh are used. These meshes use ND = {5494, 9216, 17 546}
and NH = {5030, 8612, 16 694} basis functions to discretize
D(r) and JH(r) induced inside the sphere, respectively. The
single-level and two-level iterative schemes are used to solve
the matrix system (12), which is preconditioned from left
using a diagonal preconditioner, and the matrix system (20),
respectively. For the iterations of the single-level scheme and
the outer iterations of the two-level scheme, χRRE = 10−4.
For the inner iterations of the two-level scheme, χRRE = 10−8.
Note that the accuracy of the inner iterations has to be high to
ensure that the outer iterations converge. This does not increase
the computational cost significantly because the converge rate
of the inner iterations is already very fast.

Fig. 3(b) shows plots of the radar cross section (RCS)
computed on the xy-plane from the solutions obtained by
the single-level and two-level iterative schemes for the mesh
with ND = 17 546 and NH = 16 694 and the analytical
Mie series with nonlocal response material model [43], [44].
The results agree very well. Table I shows comparison of the
performance of the single-level and two-level iterative solvers.
The two-level iterative solver is significantly faster due to fact
that Nout

it is much smaller than Nit and N in
it is small (see the

computational complexity comparison in Section II-C). Note
that the numbers for N in

it presented in Table I are the range of
the inner iterations.

Fig. 3. (a) Description of the scattering problem involving a gold nanosphere.
(b) RCS computed on the xy-plane at ω = 0.5 ωp from the solutions obtained
using the single-level and two-level iterative schemes and the Mie series with
nonlocal response material. (c) ECS computed from the solutions obtained
using the two-level iterative scheme and the Mie series with nonlocal and
local response material models versus ω/ωp.

TABLE I

PERFORMANCE OF THE SINGLE-LEVEL AND TWO-LEVEL ITERATIVE

SOLVERS IN ANALYZING SCATTERING FROM A GOLD NANOSPHERE

For the second set of simulations, a total of 60 simulations
are carried out using the two-level iterative solver at equally
spaced points in the frequency range ω ∈ [0.5ωp, 1.5ωp].
In these simulations, D(r) and JH(r) induced inside the sphere
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are discretized using ND = 143 254 and NH = 140 022 basis
functions, respectively. For the outer and inner iterations of the
two-level iterative scheme, χRRE = 10−4 and χRRE = 10−8,
respectively.

Fig. 3(c) shows plots of the extinction cross section (ECS)
computed from the solutions obtained using the two-level
iterative scheme and the analytical Mie series with nonlocal
and local response material models versus ω/ωp [43], [44].
The figure clearly shows that the result obtained using the
proposed method matches well with the result obtained using
the Mie series with the nonlocal response material model. The
figure also shows that the error in the result obtained by the
proposed method increases with ω. This error can be reduced
using a denser mesh that can capture the behavior of the fields
with large kL(r) more accurately (see Section II-D and Fig. 2).

The first peak observed in all three ECS curves is caused by
the transverse field resonance. Also, a “blue shift” phenom-
enon is shown in this figure, i.e., the transverse field resonance
peak shifts toward higher frequencies when the nonlocal mate-
rial response is taken into account [40]. Furthermore, three
other peaks are identified at ω = 1.13 ωp, ω = 1.29 ωp, and
ω = 1.50 ωp in ECS computed by the proposed solver and the
Mie series with the nonlocal response material model. These
are caused by the longitudinal field resonance. It also can be
concluded from Fig. 3(c) that the transverse field response is
more dominant at ω < ωp while the longitudinal field response
is more dominant at ω > ωp.

B. Metallic Dimer

In this example, electromagnetic scattering from a nan-
odimer [Fig. 4(a)] is analyzed using the proposed solver. The
radius of the spheres is 1 nm, and the shortest distance between
them is 0.2 nm. The hydrodynamic equation parameters for
the material making up the spheres are ωp = 1.20 × 1016 s−1,
γ = 1.36 × 1014 s−1, vF = 1.39 × 106 m/s, and εb(r) = 1.
Note that for this problem, VD = VH and Vdiel = ∅.

A total of 60 simulations are carried out using the two-
level iterative scheme at equally spaced points in the frequency
range ω ∈ [0.5ωp, 1.5ωp]. Both the spheres use the same
mesh of tetrahedrons and two levels of mesh are used. For
simulations at ω < ωp, ND = 104 194 and NH = 100 706,
while for simulations at ω > ωp, ND = 286 958 and NHD =
280 494. For the outer and inner iterations of the two-level
iterative scheme, χRRE = 10−4 and χRRE = 10−8, respectively.

Fig. 4(b) shows plots of the scattering cross section (SCS)
computed from the solutions obtained using the two-level
iterative scheme versus ω/ωp [45]. The transverse field res-
onance peaks are observed at ω = 0.6 ωp and ω = 0.75 ωp,
while the longitudinal field resonance peaks are observed at
ω = 1.13 ωp, ω = 1.29 ωp, and ω = 1.50 ωp. Furthermore, the
figure shows that the nanodimer supports bonding and anti-
bonding modes (generated by the transverse field resonances)
at ω = 0.72 ωp and ω = 0.75 ωp, respectively [15].

C. Composite Sphere

In this example, electromagnetic scattering from a silica-
coated gold nanosphere [Fig. 5(a)] is analyzed using the
proposed solver. The radius of the gold sphere is 1 nm, and

Fig. 4. (a) Description of the scattering problem involving a nanodimer.
(b) SCS computed from the solutions obtained using the two-level iterative
scheme versus ω/ωp.

the thickness of the silica coating is 1 nm. The hydrody-
namic equation parameters for gold are the same as those
in Section III-A, and the relative permittivity of silica is
εb(r) = 2.25. Note that for this problem, VD = Vdiel ∪ VH.

A total of 60 simulations are carried out using the two-level
iterative scheme at equally spaced points in the frequency
range ω ∈ [0.4ωp, 1.4ωp]. In these simulations, D(r) induced
inside the coating and the sphere and JH(r) induced inside
the sphere are discretized using ND = 97 642 and NH =
80 486 basis functions, respectively. For the outer and inner
iterations of the two-level iterative scheme, χRRE = 10−4 and
χRRE = 10−8, respectively.

Fig. 5(b) shows plots of ECS computed from the solutions
obtained by the two-level iterative scheme and the Mie series
with nonlocal response material model for the sphere and
local response material model for the coating versus ω/ωp.
The results agree well; however, as expected, the error in the
result obtained by the proposed method increases with ω. This
error can be reduced using a denser mesh that can capture the
behavior of the fields with large kL(r) more accurately (see
Section II-D and Fig. 2).

The transverse field resonance peak is observed at ω =
0.55 ωp and the longitudinal field resonance peaks are
observed at ω = 1.13 ωp and ω = 1.31 ωp. Comparing
Figs. 3(c) and 5(b), one can see that the transverse field
resonance peak shifts toward lower frequencies due to the
presence of silica coating.

D. Metallic Cylinder

In this example, electromagnetic scattering from a
gold nanocylinder [Fig. 6(a)] is analyzed using the
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Fig. 5. (a) Description of the scattering problem involving a silica-coated
gold nanosphere. (b) ECS computed from the solutions obtained using the
two-level iterative scheme and the Mie series with nonlocal reponse material
for the sphere and local response material for the coating versus ω/ωp.

proposed method. Note that the ends of the cylinder
are rounded here since sharp edges cannot be often
fabricated at nanoscales. Four nanocylinders with length
H ∈ {2.5 nm, 3 nm, 4 nm, and5 nm} are considered. All the
four cylinders have a radius of 1 nm. The hydrodynamic equa-
tion parameters for gold are the same as those in Section III-A.
Note that for this problem, VD = VH and Vdiel = ∅.

A total of 60 simulations are carried out using the two-level
iterative scheme at equally spaced points in the frequency
range ω ∈ [0.5ωp, 1.25ωp]. Four levels of mesh are used for
the four nanocylinders and these meshes use ND = {58 312,
60 948, 61 010, 62 186} and NH = {56 384, 58 900, 58 962,
60 006} basis functions to discretize D(r) and JH(r) induced
inside the cylinder, respectively. For the outer and inner
iterations of the two-level iterative scheme, χRRE = 10−4 and
χRRE = 10−8, respectively.

Fig. 6(b) show compares of ECS computed from the solu-
tions obtained using the two-level iterative scheme for all the
four nanocylinders versus ω/ωp. As seen from the figure, the
transverse field resonance peak shifts from ω = 0.67 ωp to
ω = 0.69 ωp when the length of the cylinder is increased
from 2.5 to 5 nm. The longitudinal field resonance peaks
are observed at ω = 1.1 ωp and ω = 1.25 ωp. In addition,
this figure shows an extra resonance peak that shifts from

Fig. 6. (a) Description of the scattering problem involving a gold nanocylin-
der. (b) ECS computed from the solutions obtained using the two-level
iterative scheme for all the four nanocylinders versus ω/ωp.

ω = 0.81 ωp to ω = 0.73 ωp with increasing length. Note that
this resonance (associated with the length of the cylinder along
the ŷ-direction) is induced even though the incident electric
field Einc(r) is polarized in the x̂-direction.

E. Metallic Cylinder on Top of a Dielectric Slab

For the last example, electromagnetic scattering from a gold
nanocylinder located on top of a silica substrate [Fig. 7(a)]
is analyzed using the proposed method. The length and the
radius of the cylinder are 4 and 1 nm, respectively. The width,
the length, and the height of the slab are 6, 6, and 1 nm,
respectively. The shortest distance between the cylinder and
the slab is 2 nm. The hydrodynamic equation parameters for
gold are the same as those in Section III-A, and the relative
electric permittivity of silica is εb(r) = 2.25.

Three scattering scenarios are considered: 1) the scatterer is
only the nanocylinder (VD = VH, Vdiel = ∅, ND = 61 010, and
NH = 58 962); 2) the scatterer consists of the nanocylinder
and the substrate (VD = Vdiel ∪ VH, ND = 61 294, and NH =
58 962); and 3) the scatterer is only the substrate (VD = Vdiel,
VH = ∅, ND = 284, and NH = 0). The simulations of these
three scenarios are carried out using the two-level iterative
scheme [reduces to a “traditional” volume integral equation
solver [46], [47] with single-level iterations for scenario (iii)]
at 60 equally spaced points in the frequency range ω ∈
[0.5ωp, 1.25ωp]. Note that for scenarios (ii) and (iii), only
284 basis functions are used to discretize D(r) induced inside
the slab (see the discussion in Section II-D). For the outer and
inner iterations of the two-level iterative scheme, χRRE = 10−4

and χRRE = 10−8, respectively.
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Fig. 7. (a) Description of the scattering problem involving a gold nanocylin-
der on top of a silica cylinder. (b) ECS computed from the solutions obtained
in all three scenarios (the scatterer consists of only the cylinder, the cylinder
and the substrate, and only the substrate) versus ω/ωp.

Fig. 7(b) shows plots of ECS computed in the three sce-
narios described above versus ω/ωp. As expected, ECS of the
silica slab [scenario (iii)] does not involve any resonance peaks
since silica does not have any plasmonic properties. Second,
the slab is located far away from the gold nanocylinder, so the
coupling between them is not expected to be strong, and ECS
in scenario (i) and ECS in scenario (ii) are close to each
other especially at the lower end of the frequency range.
The difference increases at the higher end, which might be
explained by the fact that ECS of the silica slab is larger
at higher frequencies [scenario (iii)] and therefore contributes
more to the total ECS in scenario (ii).

IV. CONCLUSION

Electromagnetic scattering from nanostructures consisting
of the metallic and dielectric parts is analyzed by solving
a coupled system of the volume integral and hydrodynamic
equations. The hydrodynamic equation, which is enforced
only in the metallic part, relates the free electron polarization
current to the electric flux. This equation effectively updates
the constitutive relationship and permits modeling of the
nonlocality. The volume integral equation, which is enforced
in both the metallic and dielectric parts, relates the electric flux
to the scattered electric field. Unknown electric flux and free
electron polarization current are expanded using a combination
of full and half SWG basis functions. The boundary condition
associated with the free electron polarization current on the

metal–dielectric interface is enforced by excluding the half
SWG basis functions, which are located on this interface,
from the expansion of the free electron polarization current.
Inserting these expansions into the coupled system of the vol-
ume integral and hydrodynamic equations and using Galerkin
testing yield a matrix system.

An efficient two-level iterative solver is developed to solve
this matrix system. This approach inverts the discretized
hydrodynamic equation (bottom rows of the matrix system)
for the coefficients of the free electron polarization current
and substitutes the result in the discretized volume integral
equation (top rows of the matrix system). Outer iterations solve
this reduced matrix system, while the inner iterations invert
the discretized hydrodynamic equation at every iteration of
the outer iterations.

Numerical experiments, which involve the computation of
RCS, ECS, and SCS for metallic and composite nanostruc-
tures, are carried out to demonstrate the accuracy, the effi-
ciency, and the applicability of the proposed method.

Future research directions include incorporation of dif-
ferent nonlocal hydrodynamic equations, implementation of
boundary conditions on metal–metal interfaces, acceleration
of the matrix solution using matrix compression schemes, and
application of the proposed solver to different problems with
different types of excitations.

APPENDIX

ENTRIES OF THE MATRIX AND THE RIGHT-HAND

SIDE VECTOR IN (12)

While computing the entries of ZDD, ZDH, ZHD, and ZHH,
it is assumed that εb(r) and κ(r) are constant in a given
tetrahedron, and the values of these constants are obtained
by sampling εb(r) and κ(r) at the center of that tetrahedron.
Therefore, one can define local functions as follows:

εb,n(r) =
{

ε+
b,n = εb

(
r+

c

)
, r ∈ V +

n

ε−
b,n = εb

(
r−

c

)
, r ∈ V −

n

κn(r) =
{

κ+
n = κ

(
r+

c

)
, r ∈ V +

n

κ−
n = κ

(
r−

c

)
, r ∈ V −

n

where r±
c are the centers of V ±

n .

A. Entries of ZDD

If both fD
m (r) and fD

n (r) are full SWG functions, then

{ZDD}mn

= 1

ε0

∫
Vm

fD
m (r) · fD

n (r)
εb,n(r)

dv

− ω2μ0

∫
Vm

fD
m (r) ·

∫
Vn

κn(r′)fD
n (r′)G(r, r′)dv ′dv

+ 1

ε0

∫
Vm

∇ · fD
m (r)

{∫
Vn

κn(r′)∇′ · fD
n (r′)G(r, r′)dv ′

− (
κ+

n − κ−
n

)∫
Sn

G(r, r′)ds′
}

dv.
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If fD
m (r) is a half SWG function and fD

n (r) is a full SWG
function, then

{ZDD}mn

= 1

ε0

∫
V +

m

fD
m (r) · fD

n (r)
εb,n(r)

dv

− ω2μ0

∫
V +

m

fD
m (r) ·

∫
Vn

κn(r′)fD
n (r′)G(r, r′)dv ′dv

+ 1

ε0

∫
V +

m

∇ · fD
m (r)

{∫
Vn

κn(r′)∇′ · fD
n (r′)G(r, r′)dv ′

− (
κ+

n − κ−
n

) ∫
Sn

G(r, r′)ds′
}

dv

− 1

ε0

∫
Sm

n̂m(r) · fD
m (r)

{∫
Vn

κn(r′)∇′ · fD
n (r′)G(r, r′)dv ′

− (
κ+

n − κ−
n

) ∫
Sn

G(r, r′)ds′
}

ds.

Here, n̂m(r) is the unit normal vector on Sm pointing from
Vn− to Vn+ and n̂m(r) · fD

m (r) = 1. If fD
m (r) is a full SWG

function and fD
n (r) is a half SWG function, then

{ZDD}mn = 1

ε0ε
+
b,n

∫
Vm

fD
m (r) · fD

n (r)dv

− ω2μ0κ
+
n

∫
Vm

fD
m (r) ·

∫
V +

n

fD
n (r′)G(r, r′)dv ′dv

+ κ+
n

ε0

∫
Vm

∇ · fD
m (r)

{∫
V +

n

∇′ · fD
n (r′)G(r, r′)dv ′

−
∫

Sn

G(r, r′)ds′
}

dv.

If both fD
m (r) and fD

n (r) are half SWG functions, then

{ZDD}mn = 1

ε0ε
+
b,n

∫
V +

m

fD
m (r) · fD

n (r)dv

− ω2μ0κ
+
n

∫
V +

m

fD
m (r) ·

∫
V +

n

fD
n (r′)G(r, r′)dv ′dv

+ κ+
n

ε0

∫
V +

m

∇ · fD
m (r)

{∫
V +

n

∇′ · fD
n (r′)G(r, r′)dv ′

−
∫

Sn

G(r, r′)ds′
}

dv

− κ+
n

ε0

∫
Sm

n̂m(r) · fD
m (r)

{∫
V +

n

∇′ · fD
n (r′)G(r, r′)dv ′

−
∫

Sn

G(r, r′)ds′
}

ds.

B. Entries of ZDH

fH
n (r) is always a full SWG function. If fD

m (r) is a full SWG
function, then

{ZDH}mn

= − 1

jωε0

∫
Vm

fD
m (r) · fH

n (r)
εb,n(r)

dv

+ jωμ0

∫
Vm

fD
m (r) ·

∫
Vn

fH
n (r)

εb,n(r′)
G(r, r′)dv ′dv

+ 1

jωε0

∫
Vm

∇ · fD
m (r)

{∫
Vn

∇′ · fH
n (r′)

εb,n(r′)
G(r, r′)dv ′

−
[

1

ε+
b,n

− 1

ε−
b,n

]∫
Sn

G(r, r′)ds′
}

× dv.

If fD
m (r) is a half SWG function, then

{ZDH}mn

= − 1

jωε0

∫
V +

m

fD
m (r) · fH

n (r)
εb,n(r)

dv

+ jωμ0

∫
V +

m

fD
m (r) ·

∫
Vn

fH
n (r)

εb,n(r′)
G(r, r′)dv ′dv

+ 1

jωε0

∫
V +

m

∇ · fD
m (r)

{∫
Vn

∇′ · fH
n (r′)

εb,n(r′)
G(r, r′)dv ′

−
[

1

ε+
b,n

− 1

ε−
b,n

] ∫
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G(r, r′)ds′
}

dv

− 1

jωε0

∫
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×
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1
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ds.

C. Entries of ZHD

fH
m (r) is always a full SWG function. If fD

n (r) is a full SWG
function, then

{ZHD}mn = jωω2
p

∫
Vm

fH
m (r) · fD

n (r)
εb,n(r)

dv.

If fD
n (r) is a half SWG function, then

{ZHD}mn = jωω2
p

ε+
b,n

∫
Vm

fH
m (r) · fD

n (r)dv.

D. Entries of ZHH

fH
m (r) and fH

n (r) are always full SWG functions

{ZHH}mn = −β2
∫

Vm

[∇ · fH
m (r)][∇ · fH

n (r)]dv

+ ω(ω − jγ )

∫
Vm

fH
m (r) · fH

n (r)dv

− ω2
p

∫
Vm

fH
m (r) · fH

n (r)
εb,n(r)

dv.

E. Entries of Vinc

If fD
m is a full SWG function, then

{Vinc}m =
∫

Vm

fD
m (r) · Einc(r)dv.

If fD
m is a half SWG function, then

{Vinc}m =
∫

V +
m

fD
m (r) · Einc(r)dv.
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