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Broadband Statistically Designed
Thinned-Binned Array Antennas

Giovanni Buonanno , Member, IEEE, Sandra Costanzo , Senior Member, IEEE,
and Raffaele Solimene , Senior Member, IEEE

Abstract— Statistically thinned arrays are obtained by thinning
a reference filled array, according to a probabilistic law that is
dictated by the reference current. The remaining radiators are
still separated by commensurable distances, even if randomly
located. Hence, wideband operations are prevented by grating
lobes’ occurrence. To overcome the above limitation, a new and
simple strategy is presented in this article for randomly deploying
the elemental radiators across the array aperture. More in detail,
unlike classic thinned arrays, elements surviving the thinning are
not positioned on a priori fixed deterministic lattice. Instead, their
positions are modeled as random variables, which are determined
by exploiting the binned strategy. Numerical examples reveal that
the new proposed scheme allows for a considerable enlargement
of the frequency band, without incurring in grating lobes’
appearance.

Index Terms— Density-tapered arrays, nonuniformly spaced
arrays, random binned arrays, thinned arrays.

NOMENCLATURE

φ(u, v) Reference array factor.
i(x, y) Reference aperture current.
Fk(u, v) Array factor (k = 1 for statistically thinned

arrays and k = 2 for statistically thinned-
binned arrays).

Fk(u, v) Mean of the array factor (k = 1 for
statistically thinned arrays and k = 2
for statistically thinned-binned arrays).

σ 2
k (u, v) Variance of the array factor (k = 1 for

statistically thinned arrays and k = 2 for
statistically thinned-binned arrays).

M SEk(u, v) Mean square error between the actual and
reference array factors (k = 1 for
statistically thinned arrays and k = 2
for statistically thinned-binned arrays).

Pk(u, v) Power pattern (k = 1 for statistically thinned
arrays and k = 2 for statistically thinned-
binned arrays).
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Pk(u, v) Mean of the power pattern.
σ 2

P(u, v) Variance of the power pattern (subscript k is
omitted for simplicity).

FR(u, v) Real part of the array factor (subscript k is
omitted for simplicity).

FI(u, v) Imaginary part of the array factor
(subscript k is omitted for simplicity).

μR(u, v) Mean of FR(u, v).
μI(u, v) Mean of FI(u, v).
σ 2
R(u, v) Variance of FR(u, v).

σ 2
I(u, v) Variance of FI(u, v).

K(u, v) Covariance function of FR(u, v) and
FI(u, v).

LS2
η(u, v) η-percent level surface.

I. INTRODUCTION

WHEN a very narrow beam is required to comply
with high resolution, large antenna arrays should be

used. If a uniform space between the radiators is chosen,
a huge number of elements must be distributed over the array
aperture. Indeed, since the main-beam width is mainly linked
to the size of the array aperture, whereas the number of
radiators basically impacts the sidelobe structure, the number
of radiators can be greatly reduced [1], [2], [3], [4].

To this end, thinned arrays are one of the most efficient
and widely adopted option allowing to reduce the system
weight and simplifying the feeding network. Indeed, since
isophoric excitation coefficients are generally adopted, ampli-
fiers can operate at the peak efficiency [5]. For these reasons,
thinned arrays can be positively exploited in various scenar-
ios, such as satellite communications, radio astronomy, high-
resolution ground-based radars, adaptive arrays, as well as
in all those applications where resolution matters more than
gain [6], [7], [8].

Thinned arrays are obtained by removing/turning off some
elements from a preassigned array grid [9]. Typically, the
starting grid is a periodic one. To achieve such a task, different
methods have been proposed in the literature.

Many methods cast the problem in terms of a constrained
optimization. In this framework, many randomized search
algorithms have been proposed and compared in the litera-
ture [10], [11], [12], [13], [14], [15]. These methods offer a
certain degree of flexibility since constraints for beam pattern
shaping can be embodied in the optimizations stage. However,
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they require to heuristically set a number of parameters, and
what is more, the high computational cost makes them better
suited for small- and medium-sized arrays [9].

The iterative Fourier technique introduced in [16], and its
developed versions [17], [18], exploits the Fourier transform
relationship between the excitation coefficients and the pattern.
This technique can require a lower computational cost, thus
being usefully adopted for large arrays, in principle; however,
it still requires running an iterative algorithm and the choice
(heuristic) of a threshold for declaring which element must
be turned on. Therefore, like the other techniques mentioned
above, even this methodology does not allow to provide an
a priori analytic description of the performance.

Let us also mention the dynamic programming approach
presented in [19]. This method is deterministic and applicable
to large arrays. Numerical results reported in [19] prove the
effectiveness of this technique, although based on a suboptimal
optimization procedure.

Thinned arrays can be designed using a statistical approach
as well [5]. Indeed, in the so-called statistically designed
density-tapered arrays [5], also addressed as statistically
thinned arrays (STAs) [20], one starts from the reference
filled array (generally a half wavelength spaced array) and
then removes radiators by tossing a coin. In particular, the
excitation coefficients are modeled as binary Bernoulli random
variables that are used to determine whether an element is
switched ON or OFF [9]. Moreover, since the Bernoulli variable
distributions are linked to the excitation coefficients of the
reference array factor, spatial-density tapering is obtained.
Compared to the previously mentioned thinning methods,
STAs are extremely quick. For this reason, they are suited
for large and very large arrays, and they have also been
suggested for real-time adaptive pattern formation [7]. On the
contrary, only the average array factor is guaranteed to be
equal to the reference array factor. Instead, the array factor is
a random process statistically oscillating around the average
one. Therefore, to accurately predict the key radiation pattern
parameters (such as the peak sidelobe level), the statistical
characterization of such a random process is required. Usually,
the second-order moment, i.e., the average power pattern,
is considered. However, this is not enough to foresee the
statistical fluctuations of the pattern. Recently, a rigorous and
complete statistical description of STAs has been provided
in [21]. Also, STAs are usually employed for single-beam
patterns, whereas in [22], it is shown that STAs can be
employed to generate multibeam patterns.

The starting array grid is usually uniform. Hence, after the
thinning, the distances between the remaining radiators are
commensurable, and thus, grating lobes occur when the oper-
ation frequency increases. Indeed, STAs are actually random
periodic arrays [24].

In order to achieve a broadband behavior, in this article,
we propose a new and simple strategy that merges the classical
STAs with the so-called binned arrays [25]. More in detail,
after the statistical thinning, the position of each element
that remained in the grid is randomly moved within a bin
centered around the initial element’s location. The proposed
method preserves the very low computational cost, and it

inherits the STAs’s ability to reduce the number of elements,
as well as the very large bandwidth (without grating lobes)
instead characterizing the binned arrays. In addition, unlike
totally random arrays [1], [26], [27], the binning step also
imposes some constraints on the radiators’ positions so that
only the adjacent ones could be closed. More in detail, due
to the binned step, each radiator is deployed according to
a uniform probability density function only within a single
bin. This entails that the array aperture is (probabilistically)
more “uniformly” filled with respect to the space tapering [28]
and to the totally random arrays. As a further aspect, mutual
coupling can be considered less relevant. Moreover, it is worth
highlighting that the proposed methodology is so flexible that
it can be applied advantageously also in reflectarrays applica-
tions [29], [30] and, due to the characteristics of the treated
arrays, it can exploit broadband matching techniques [31]
and wideband methodologies for the integration of different
technologies [32].

The array factor provided by the new proposed scheme is
of course still a random process. Therefore, also, in this case,
the estimation of the statistical features of the array factor
must be pursued, and this is actually the main contribution to
be pursued in this article. To this end, the mean square error
(MSE) between the random array factor and the reference one
is first derived. This is related to the mean power pattern that,
in the sidelobe region, is commonly employed to estimate the
sidelobe level. However, we go a bit further. We derive also
the power pattern variance that, due to Cantelli’s inequality,
allows to obtain an easy way to compute a lower bound
for the cumulative distribution function of the power pattern.
Then, this result is refined by assuming a certain symmetry
for the reference current. These theoretical results allow for a
more accurate characterization of the power pattern statistical
fluctuations and allow to introduce isosurfaces below which
the pattern resides with an assigned probability. In particular,
since the isosurfaces are analytically linked to the parameters
of the array (i.e., the reference excitation currents, the number
of elements in the original grid, and the thinning level), it is
possible to a priori estimate the array factor features. Vice
versa, such results allow for array synthesis since one can
set the array characteristics, which ensures, with a given
probability, the array factor properties.

Eventually, the new scholar content conveyed in this article
concerns: the introduction (for the first time, at the authors’
knowledge) of a combined thinned/binned scheme and a
rigorous theoretical treatment allowing to estimate the array
factor probability distribution, which in turn permits to foresee
the array factor behavior and to link it to the array parameters.
In particular, previous expertise developed while addressing
separately thinned arrays [21], [22] and binned arrays [27],
[33], [36] is applied, to the combined case at hand. Finally,
as opposed to our previous contributions, 2-D arrays are
addressed here.

This article also includes a numerical section and an appen-
dix. The former is devoting to show some selected numerical
experiments that highlight a considerable frequency band
enlargement (compared to classic STAs). The Nomenclature
consists of a glossary of the most important quantities, whereas
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the Appendix details some mathematical derivations that are
omitted in the main text.

II. PROBLEM STATEMENT

Let us consider a planar array whose aperture is defined
as [−Lx/2, Lx/2] × [−L y/2, L y/2], with Lx and L y being
the array dimensions in meters. Let u = sin θ cos φ −
sin θ0 cos φ0 ∈ [−2, 2] and v = sin θ sin φ − sin θ0 sin φ0 ∈
[−2, 2] be the observation variables, with θ ∈ [0, π] and
φ ∈ [0, 2π] being the elevation and the azimuth angles,
respectively, and (θ0, φ0) represents the steering direction. The
circularly bounded domain, D, centered at the origin of the
uv plane, and having radius equal to 2 represents the so-called
full scan range [34].

We start by the following problem: given the space factor
φ(u, v) due to a real and positive aperture current i(x, y), i.e.,

φ(u, v) =
� Lx /2

−Lx /2

� L y/2

−L y/2
i(x, y)e j 2π

λ (xu+yv)dxdy (1)

in which λ is the wavelength in vacuum and x and y are
in meters, find an approximation of φ(u, v) in terms of the
following array factor (the mutual coupling between radiators
is assumed to be negligible [1], [3], [25], [26])

F(u, v) = C
N�

n=1

Bne j 2π
λ

(xn u+ynv) (2)

with Bn, xn, and yn being random variables.
It must be remarked that the usual framework for random

arrays is to consider uniform excitation coefficients. This
is because beam shaping can be achieved, to some extent,
through the (random) space-density tapering. Actually, it has
been shown that random excitation coefficients (which are
dependent on the random positions) can allow for a more
general shaping [27]. However, this type of random arrays
is ruled out in the present study.

For thinning purposes, the coefficients Bn are relevant only
to decide if elements should remain in the array. Hence, they
are assumed to be Bernoulli random variables, that is, P(Bn =
1) = pn and P(Bn = 0) = 1 − pn, with 0 ≤ pn ≤ 1. Since
Bn, xn , and yn are random variables, F(u, v) is a stochastic
process. Accordingly, the corresponding synthesis problem
is formulated in terms of their determination, by imposing
that the average array factor matches the desired one, that
is, F(u, v) = E[F(u, v)] be as close as possible to φ(u, v).
To this end, in the following, we first briefly recall the basics
concerning classic STAs. This is done to make this article self-
contained, to introduce the necessary notation and to establish
a reference against which to compare the new random scheme.
Then, the new hybrid scheme is introduced.

III. CLASSIC STAS

As mentioned above, STAs lead to random periodic arrays,
which are obtained by removing radiators from a uniform-
filled array, according to a probabilistic law. The resulting
array factor can be written as [5]

F1(u, v) = C1

Nx�
n=1

Ny�
m=1

Fnme j 2π
λ (xnd u+ymdv) (3)

where {Fnm} are Bernoulli random variables and

xnd = − Lx

2
+ Lx

2Nx
+ (n − 1)

Lx

Nx
for n = 1, . . . , Nx (4)

ymd = − L y

2
+ L y

2Ny
+ (m − 1)

L y

Ny
for m = 1, . . . , Ny . (5)

The corresponding average array factor is then given by

F1(u, v) = C1

Nx�
n=1

Ny�
m=1

pnme j 2π
λ

(xnd u+ymdv) (6)

with pmn = Fnm .
In order to lead F1(u, v) approximating φ(u, v), the terms

pnm must be necessarily related to i(x, y). In particular,

pnm = α
i(xnd, ymd)

max{i(xnd, ymd)} . (7)

The constant 0 < α ≤ 1 determines the intensity of the
thinning. When α = 1, the natural thinning is obtained.
Thinning can be made more severe by reducing α. Now, if

C1 = Lx L y

αN
max{i(xnd, ymd)} (8)

with N = Nx Ny , then (6) is rewritten as

F1(u, v) = Lx L y

N

Nx�
n=1

Ny�
m=1

i(xnd, ymd)e
j 2π

λ (xnd u+ymdv) (9)

which clarifies how F1(u, v) approximates φ(u, v). Indeed,
(9) can be seen as a zero-order quadrature approximation
of φ(u, v). Of course, the lower (Lx L y)/N , the better the
approximation.

It is seen that the radiators are more densely located where
the reference current i(x, y) is higher, leading to the expected
spatial-density tapering. Also, even though radiators cannot be
closer than min{Lx/Nx , L y/Ny}, their separation distances are
commensurable. This entails the periodic (random) behavior of
F1(u, v). Hence, depending on Lx/Nx , L y/Ny , and the level
of thinning, grating lobes can enter the scan-range domain D.
As a consequence, the bandwidth-steering product can be
greatly reduced compared to aperiodic arrays [35].

IV. STATISTICALLY THINNED-BINNED ARRAYS

In order to avoid grating lobes and thus enlarge the opera-
tional frequency band, the spacing between radiators must not
be commensurable. To this end, a simple strategy is proposed:
first, thinning is run, and then, a binning procedure follows.
This new random array scheme is addressed as statistically
thinned-binned arrays (STBAs).

More in detail, let us assume that statistical thinning is
achieved so that the resulting array factor is provided by (3).
Then, the locations of the element that survived the thinning
are randomly perturbed as

xn = xnd + γn

ym = ymd + βm (10)

in which xnd and ymd are the positions in the reference
uniform grid, whereas {γn}Nx

n=1 and {βm}Ny

m=1 are assumed to be
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[independent and identically distributed (i.i.d.)] random vari-
ables uniformly distributed over [−Lx/(2Nx ), Lx/(2Nx )] and
[−L y/(2Ny), L y/(2Ny)] (i.e., the bin), respectively. There-
fore, the resulting array factor can be written as

F2(u, v) = C2

Nx�
n=1

Ny�
m=1

Fnme j 2π
λ (xn u+ymv) (11)

where the final positions xn and ym are also random variables.
It is worth remarking that the choice of xn and ym coincides

to the one used in the classic binned arrays [25]. However,
as shown in [33], [34], [35], and [36], this scheme alone would
not allow to shape the array factor. This drawback is, however,
overcome by the joint use of the thinning procedure. Also,
since {Fnm} are real coefficients, as for STAs, the array factor
is a Hermitian function, i.e., F2(−u,−v) = F∗

2 (u, v), where
∗ stands for complex conjugation.

Eventually, the random array is generated as follows. First,
thinning is achieved by using the reference current in cor-
respondence to the deterministic parts of xn and yn, that
is, by setting pnm = α[i(xnd, ymd)/ max{i(xnd, ymd)}]. This
procedure is equivalent to the classic STAs, and it allows to set
the thinning independently of the random part of the radiators’
positions. Then, radiators are deployed according to (10).

The corresponding average array factor is then given as
(setting C2 = C1)]

F2(u, v)

= C2

Nx�
n=1

Ny�
m=1

�
pnm

N

Lx L y

×
� xnd+ Lx

2Nx

xnd − Lx
2Nx

� ymd+ L y
2Ny

ymd− L y
2Ny

e j 2π
λ xu e j 2π

λ yvdxdy

�

= Lx L y

N

Nx�
n=1

Ny�
m=1

⎧⎨⎩i(xnd, ymd)

×e j 2π
λ

(xnd u+yndv)
sin
	
π Lx

λNx
u



π Lx
λNx

u

sin
	
π

L y

λNy
v



π
L y

λNy
v

⎫⎬⎭.

(12)

Equation (12) can be considered as a quadrature approx-
imation of φ(u, v), but differently from (9), here only the
relatively slowly varying i(x, y) is approximated by a stepwise
function. In particular, it is easy to verify that

F2(u, v) = F1(u, v)sinc

�
π

Lx

λNx
u

�
sinc

�
π

L y

λNy
v

�
(13)

from which it is readily seen that the sinc functions just forces
zeros where grating lobes in F1(u, v) could appear.

We conclude this section by observing that, for both STAs
and STBAs, the number of radiators is described by the same
random variable, namely

γ =
Nx�

n=1

Ny�
m=1

Fnm . (14)

Since {Fnm} are independent Bernoulli random variables, then
γ is a Poisson binomial random variable whose mean and
variance are given as

γ̄ =
Nx�

n=1

Ny�
m=1

pnm (15)

σ 2
γ = γ̄2 − γ̄2 =

Nx�
n=1

Ny�
m=1

pnm(1 − pnm). (16)

For large arrays, the number N is high. Hence, by Lya-
punov’s central limit theorem [37], γ can be considered
Gaussian distributed, i.e., γ ∼ N (γ̄, σ 2

γ ). Accordingly,

P{γ̄ − 3σγ ≤ γ ≤ γ̄ + 3σγ} = 99.7%. (17)

A. MSE Between the Actual and Reference Array Factors

So far, we have only discussed the new random array
scheme from the point of view of the mean array factor.
However, the average alone is insufficient to characterize a
stochastic process. In order to capture how the array fac-
tor deviates from the desired one, the following MSE is
considered:

M SEk(u, v) = |Fk(u, v) − φ(u, v)|2
= σ 2

k (u, v) + |Fk(u, v) − φ(u, v)|2 (18)

in which σ 2
k (u, v) is the variance of the array factor and k = 1

for STAs and k = 2 for STBAs. In particular, for STAs, the
variance is given by

σ 2
1 (u, v) = |F1(u, v)|2 − |F1(u, v)|2

= C2
1

Nx�
n=1

Ny�
m=1

pnm(1 − pnm) (19)

whereas, for STBAs, it is given by

σ 2
2 (u, v)

= |F2(u, v)|2 −
���F2(u, v)

���2
= C2

2

Nx�
n=1

Ny�
m=1

pnm

�
1 − pnm

���e j 2π
λ (xn u+ymv)

���2�

=
�

Lx L y

αN

�2

×
Nx�

n=1

Ny�
m=1

⎧⎪⎨⎪⎩pnm

⎡⎢⎣1 − pnm

������
sin
	
π Lx

λNx
u



π Lx
λNx

u

sin
	
π

L y

λNy
v



π
L y

λNy
v

������
2⎤⎥⎦
⎫⎪⎬⎪⎭.

(20)

As can be seen, while the variance of STAs is angle-
independent, for STBAs, it is not true. Moreover, σ 2

2 (u, v) >
σ 2

1 (u, v), especially with u and v increasing. The latter repre-
sents the tradeoff for avoiding grating lobes. Indeed, the MSE
pertaining to STAs is a periodic function (because F1(u, v) is
periodic), while for STBAs, the periodicity is lost.

From (18), it can be inferred that where φ(u, v) ≈ 0, the
MSE equals the average power pattern, i.e., M SEk(u, v) ≈
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Pk(u, v) = |Fk(u, v)|2 = |Fk(u, v)|2 +σ 2
k (u, v), with Pk(u, v)

being the power pattern. Furthermore, at points where the
mean array factor is close to zero, both M SEk(u, v) and
the mean power pattern are basically given by the variance of
the array factor. Therefore, for STAs, the mean power pattern
is given by (19), while for STBAs, it is given by (for u and
v far from the origin)

|F2(u, v)|2 ≈ σ 2
2 (u, v) ≈

�
Lx L y

αN

�2 Nx�
n=1

Ny�
m=1

pnm. (21)

According to [5], when |Fk(u, v)|2 � σ 2
k (u, v), the mean

power pattern can also be called average statistical side-
lobe (average value of the sidelobe) SL . Unlike STAs, for
STBAs, the parameter SL is a function of u and v. Further-
more, the average relative sidelobe level can be defined as
(with k = 1, 2)

δk ≈ σ 2
k (u, v)

|Fk(0, 0)|2 (22)

which represents an estimate of the peak sidelobe level of
the average power pattern. According to the previous discus-
sion, δk ≈ M SEk(u, v)/|Fk(0, 0)|2, where φ(u, v) ≈ 0 and
Fk(u, v) ≈ 0.

B. Variance of the Power Pattern

To measure the dispersion of the power pattern around its
mean, the power pattern variance is required. Remarkably,
in the literature, little attention is paid to this parameter, and
usually, the mean of the power pattern is mostly employed to
characterize STAs [5].

To determine the variance of the power pattern, a method-
ology similar to the one used in [21] and [38] is considered.
However, in the present article, the independence between the
real and imaginary parts of the array factor is not needed.
In particular, the variance of the power pattern is given as
(subscript k is omitted for simplicity)

σ 2
P (u, v) = P2(u, v) − P(u, v)

2

= F4
R(u, v) + F4

I(u, v) + 2F2
R(u, v)F2

I(u, v)

− F2
R(u, v)

2 − F2
I(u, v)

2 − 2F2
R(u, v)F2

I(u, v)

(23)

in which FR(u, v) and FI(u, v) are the real and imaginary
parts of the array factor, respectively. Since the number N
is high, Lyapunov’s central limit theorem [37] allows to
consider, for each single (u, v), FR(u, v), and FI(u, v) as
being jointly Gaussian random variables [1]. For this reason,
considering the higher noncentral moments of a Gaussian
random variable [39], (23) can be rewritten as follows
(with (u, v) implied):

σ 2
P = P2 − P

2

= 4μ2
Rσ 2

R + 4μ2
Iσ 2

I + 2σ 4
R + 2σ 4

I − 2μ2
Rμ2

I
− 2μ2

Rσ 2
I − 2μ2

Iσ 2
R − 2σ 2

Rσ 2
I + 2F2

RF2
I (24)

in which μR(u, v) (μI(u, v)) and σ 2
R(u, v) (σ 2

I(u, v)) are the
mean and variance of the real (imaginary) part of the array

factor (see the Appendix for relative details). To compute (24),
F2
RF2

I must be determined. By Isserlis’ theorem [40], it is
obtained (with (u, v) implied)

F2
RF2

I = [(FR − μR) + μR]2[(FI − μI) + μI ]2

= σ 2
Rσ 2

I + 2K2 + μ2
Iσ 2

R
+ μ2

Rσ 2
I + μ2

Rμ2
I + 4μRμIK (25)

in which K(u, v) represents the covariance function of
FR(u, v) and FI(u, v) (see the Appendix).

Finally, (23)–(25) can be employed in conjunction with
Cantelli’s inequality [41] (with ξ being a real number)

Pr
�

P(u, v) ≤ P(u, v) + ξ2
� ≥ 1 − σ 2

P(u, v)

σ 2
P (u, v) + ξ4

(26)

to obtain a lower bound for the distribution of the power
pattern, as a function of (u, v).

C. Distribution of the Power Pattern

Complete punctual (i.e., at a generic point (u, v)) characteri-
zation of the power pattern requires the cumulative distribution
function. As previously stated, FR(u, v) and FI(u, v) can be
considered jointly Gaussian. Hence, their joint density function
can be written as (with (u, v) implied)

g(FR, FI) = e
− 1

2(1−r2)

�
(FR−μR)2

σ2R
−2r (FR−μR)(FI−μI )

σRσI + (FI−μI )2

σ2I

�

2πσRσI
√

1 − r2

(27)

to which the following cumulative distribution function is
associated:
Pr
�

P(u, v) ≤ ξ2
� =

��
F2
R+F2

I≤ξ 2
g(FR, FI )d FRd FI . (28)

Unfortunately, to the best of authors’ knowledge, (28) does
not have a closed-form solution. However, at points (in the
uv plane) where the mean of the array factor approaches
the zero value, the variances of FR(u, v) and FI(u, v)
assume the same values, and their correlation coefficient,
r(u, v), approaches zero (see the Appendix). Accordingly, (28)
becomes a Rayleigh distribution.

A simplification is possible without invoking previous
approximation if assuming that, for each radiator placed (ini-
tially) in (xnd, ymd), with Fnm = pnm, there is another one
placed in correspondence to (−xnd,−ymd), with Fnm = pnm.
This basically means assuming a certain symmetry for the
reference current i(x, y) and it entails that μI(u, v) =
r(u, v) = 0. Note that steering is not impaired since the
steering angle is already embodied within u and v.

Accordingly, (28) becomes a generalized noncentral
chi-square distribution with two degrees of freedom [1],
namely

Pr
�

P(u, v) ≤ ξ2
�

=
� ξ

−ξ

� √
ξ 2−F2

R

−
√

ξ 2−F2
R

e
−
�

(FR−μR)2

2σ2R
+ F2I

2σ2I

�
2πσRσI

d FRd FI . (29)
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Also, for this distribution, there is no closed-form expres-
sion, though some approximations can be found in the litera-
ture [42]. Moreover, it can be conveniently rewritten as

Pr
�

P(u, v) ≤ ξ2�
=
� ξ

−ξ

e
− (FR−μR)2

2σ2R√
2πσR

⎡⎣1 − 2Q

⎛⎝
�

ξ2 − F2
R

σI

⎞⎠⎤⎦d FR (30)

with Q(z) = (1/
√

2π)
!∞

z e−t2/2dt being the Q-function [39].
However, a numerical integration is still required for its
computation. In order to obtain a more tractable expression,
we also assume that σ 2

I(u, v) ≈ σ 2
R(u, v). Note that this is

similar to the assumption made in [43], and it is at least
reasonable far from the main beam of the array factor (see the
Appendix for details). Also, by considering P(u, v)/σ 2

R(u, v),
which is now a noncentral chi-square random variable with
two degrees of freedom, we obtain

Pr

"
P(u, v)

σ 2
R(u, v)

≤ ξ2

#

≈
� ξ

0

� 2π

0

e
−
� {A cos γ −(μR/σR)}2

2 + (A sin γ )2

2

�
2π

Ad Adγ

=
� ξ

0
Ae− A2+(μR/σR)2

2 I0

�
AμR
σR

�
d A

= 1 − Q1

$√
τ , ξ
%

(31)

in which the term I0 is the modified Bessel function of zero
order, Q1(a, b) is the Marcum Q-function [44] of order 1, and
τ = μ2

R(u, v)/σ 2
R(u, v) ≥ 0 is the so-called noncentrality

parameter [39].
Equation (31) allows to easily obtain a more general proba-

bility characterization of the power pattern. For example, it can
be set Pr {[P(u, v)/σ 2

R(u, v)] ≤ LS2
η(u, v)} = η% and find

an estimation of the η-percent level surface, LS2
η(u, v). This

procedure is further simplified if looking at an approximate
solution. Indeed, for a noncentral chi-square distribution with
two degrees of freedom, the percentile curves can be easily
determined by means of the following approximation [39]:

LS2
η(u, v) ≈ a

&
xη

'
2

9

�
1 + b

a

�
+ 1 − 2

9

�
1 + b

a

�(3

(32)

in which a = 2 + τ , b = τ/(2 + τ ), and xη is the
ηth percentile of the standardized Gaussian random variable.
It is worth emphasizing that (32) allows to calculate the
percentiles of the power pattern, for each (u, v), without the
need to perform any inversion [as for (31)]. In fact, it is enough
to know the mean and the variance of the real part of the
array factor. Obviously, LS2

η(u, v) represents the ηth percentile
of P(u, v)/σ 2

R(u, v). Accordingly, LS2
η(u, v) ·σ 2

R(u, v) is the
ηth percentile of P(u, v).

Finally, it is noted that, as discussed in Section IV-B, also
Cantelli’s inequality (26) can be used to obtain an upper bound
estimation of LS2

η(u, v). Indeed, Cantelli’s inequality is valid
under a more general framework than (32) since it does not
require to assume the mentioned symmetry for i(x, y) nor
to consider σ 2

I(u, v) = σ 2
R(u, v). However, it is expected

Fig. 1. Reference filled array.

to return a less sharp bound, and this justifies the derivation
of (32).

V. NUMERICAL RESULTS

In this section, some numerical results are shown in order
to check the presented theoretical arguments. To this end,
i(x, y) is chosen according to the Hansen design for circular
apertures [45]. The reference filled array is a uniform half-
wavelength (at the minimum operating frequency, i.e., for
λ = λM AX ) square grid, as in [5], where only elements
inside the circle inscribed in the square grid are retained. For
example, Fig. 1 shows a filled array with N = 8021.

The results are presented along the cuts of the array factor,
at the maximum operating frequency (i.e., for λ = λmin).
More in detail, defining u = ρ cos γ and v = ρ sin γ , with
ρ ∈ [0, 2], each cut refers to a given fixed γ . Since the array
factor is Hermitian, it suffices to fix γ within the interval
(−π/2, π/2]. Along a generic cut, the array factor is sampled
with a step equal to �ρ = λmin/(8Lx). This means that along
the u-axis (γ = 0) and v-axis (γ = π/2), the sampling step is
four times finer than the Nyquist step for the power pattern.

Fig. 2 shows a naturally (i.e., α = 1) thinned STBA reali-
zation starting from the array in Fig. 1 and employing the Han-
sen design with parameter H = 1.1977 ⇒ slld B = −30 dB.
The remaining antenna elements are 3612 ≈ 45%N . As expec-
ted from the Hansen reference current, the elements are mainly
concentrated toward the array center. In Fig. 2, the normalized
magnitude of the array factors corresponding to the reference
array ()φ(ρ, γ )d B = 20 log10{|φ(ρ, γ )|/|φ(0, 0)|}), to an STA

realization ()F1(ρ, γ )d B = 20 log10{|F1(ρ, γ )|/|F1(0, 0)|}),
and to an STBA realization ()F2(ρ, γ )d B = 20 log10{|F2(ρ,
γ )|/|F2(0, 0)|}) is compared for three different cuts and
fM AX = 5 fmin (with fmin and fM AX being the minimum and
maximum operating frequencies, respectively). As can be seen,
the near-in sidelobes of both STAs and STBAs are similar to
those of the reference array factor. Far away from the main
lobe, sidelobes increase, although they do not exceed −27 dB.
This is worth noting since the actual goal of thinned arrays
is to obtain a peak sidelobe level as close as possible to
that of the reference array factor, rather than to mimic the
reference pattern behavior. What is more, while )F2(ρ, γ )d B

does not present grating lobes, )F1(ρ, γ )d B does. Therefore,
the broadband nature of the STBAs is evident. Note that the
STA grating lobe periodicity is not the same in each cut since
periodicity occurs along the u- and v-axes. Fig. 3 offers a
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Fig. 2. Geometry of a realization of STBA; comparison, for different cuts, between the magnitude of the reference array factor and the realizations of the
array factor magnitude of STA and the array factor magnitude of STBA. The reference current is given by the Hansen design for circular apertures with a
sidelobe level of −30 dB. The initial number of elements is N = 8021 and α = 1 (natural thinning). The bandwidth is 5:1.

Fig. 3. 3-D view of the normalized (a) STA and (b) STBA array factor magnitude realizations for the case of Fig. 2.

Fig. 4. Normalized MSE behavior for the case of Fig. 2.

3-D view of STA and STBA realizations, which allows to
better appreciate how STBAs are free from grating lobes.

In Fig. 4, the previous example is addressed from
the perspective provided by M SE1(ρ, γ )/|F1(0, 0)|2 and
M SE2(ρ, γ )/|F2(0, 0)|2. As can be seen, in both cases, the
MSE is very low in the main-lobe region (ρ � 0). In the

sidelobe region, the normalized MSE of STBAs approaches
the array factor variance and keeps nearly constant, whereas
for STAs, though it is lower in between grating lobes, the MSE
reaches almost 0 dB at the grating lobes of the array factor.
In other words, far from the main lobe, while for STBAs,
the sidelobes mainly depend on the array factor variances, for



BUONANNO et al.: BROADBAND STATISTICALLY DESIGNED THINNED-BINNED ARRAY ANTENNAS 2461

Fig. 5. Cuts of the (normalized) 99.9% level surfaces related to the configuration of Fig. 2. The curves are related to STBAs only.

Fig. 6. Geometry of a realization of STBA; comparison, for different cuts, between the magnitude of the reference array factor and the realizations of the
array factor magnitude of STA and the array factor magnitude of STBA. The reference current is given by the Hansen design for circular apertures with a
sidelobe level of −30 dB. The initial number of elements is N = 8021 and α = 0.1103 (≈ 95% of thinning). The bandwidth is 5:1.

STAs, they are affected by both the variance and the mean of
the array factor, the latter being periodic.

By comparing Figs. 2 and 4, it is also evident that the
variance of the array factor (i.e., the mean power pattern),
which is often used to estimate the behavior of sidelobes,
generally returns underestimated (optimistic) values.

Fig. 2 refers to single array realizations, and hence, it is not
sufficient to give a statistical array characterization. To cope
with this issue, of course only for STBAs, we consider the
percentile curves. In particular, we compare the upper bound
arising from (26) and the outcomes provided by (31) and its
approximation (32). The corresponding three 99.9%-percentile
curves are compared to the results returned by a Monte
Carlo “experimental” analysis in Fig. 5. In particular, such
a figure shows a comparison along the three considered cuts
of the normalized (to P2(0, 0) = |F2(0, 0)|2) 99.9% level

surfaces. Also, the experimental percentile curve has been
obtained by running a Monte Carlo simulation with 4000 trials
for each ρ. It is worth specifying that the estimated level
surfaces have been normalized by P2(0, 0). This simplifies
the matter, by avoiding to consider the random nature of the
normalizing factor. This procedure is actually justified since
the coefficient of variation of the power pattern, CV (u, v, ) =
σP (u, v)/P2(u, v), is minimum at (u, v) = (0, 0). Accord-
ingly, P2(0, 0) can be approximated by P2(0, 0) [21]. Nonethe-
less, the realization of the power pattern has been obtained by
normalizing P2(u, v) by P2(0, 0).

It is seen that Cantelli’s inequality actually returns an upper
bound, which, however, is not very sharp. Instead, the per-
centile curves given by (31) and (32) are practically overlap-
ping and, what is more, they are very close to the experimental
curve. Accordingly, it is concluded that both (31) and (32)
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Fig. 7. Normalized mean squared error between the actual and reference array factors for STAs and STBAs for the configuration of Fig. 6.

Fig. 8. Cuts of the (normalized) 99.9% level surfaces related to the configuration of Fig. 6. The curves are related to STBAs only.

Fig. 9. Geometry of a realization of STBA; comparison, for different cuts, between the magnitude of the reference array factor and the realizations of the
array factor magnitude of STA and the array factor magnitude of STBA. The reference current is given by the Hansen design for circular apertures with a
sidelobe level of −30 dB. The initial number of elements is N = 1976 and α = 0.4466 (≈ 80% of thinning). The bandwidth is 5:1.

can be used to foresee the power pattern behavior, but (32)
is preferable because of its simplicity of implementation

(no inversion is required). Hence, hereinafter, we will be
considering only the estimation provided by (32). Cantelli’s
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Fig. 10. Cuts of the (normalized) 99.9% level surfaces related to the configuration of Fig. 9. The curves are related to STBAs only.

Fig. 11. Comparison, for different cuts, between the magnitude of the reference array factor and realizations of the array factor magnitude of STA and the
array factor magnitude of STBA. The reference current is given by the Hansen design for circular apertures with a sidelobe level of −30 dB. The initial
number of elements is N = 8021 and α = 1 (natural thinning). The bandwidth is 20:1.

Fig. 12. Cuts of the (normalized) 99.9% level surface related to the configuration of Fig. 11. The curves are related to STBAs only.

bound instead is a good option to be used in a more general
framework when the hypotheses behind (32) are not met.

The previous example actually showed the broadband nature
of the proposed STBAs scheme and the effectiveness of the
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theoretical tools to foresee the power pattern behavior. Now,
some selected further examples are presented, following the
same rationale as above, to complete the picture.

We start by rerunning the previous case, but forcing a very
stringent thinning, so that the reduction of antenna elements is
equal about to 95%. The results for this case are reported in
Figs. 6–8. As can be seen, the STBA realization has a much
smaller number of antenna elements, 412 ≈ 5% N and the
sidelobes increase. This is actually expected, since it is well
known that, for aperiodic arrays, the sidelobes strongly depend
on the number of antenna elements [1], [3], [4], [35]. However,
STBAs still do not present grating lobes (unlike STAs). Also,
it is seen once more that the mean power pattern does not
return a reliable sidelobe estimation (see Fig. 7), whereas the
theoretical percentile curve estimations work very well.

The next example is shown in Figs. 9 and 10, and it refers
to a smaller array. More in detail, the filled array consists
of N = 1976, whereas, after the thinning (α = 0.4466),
roughly 20% of the elements remain. Note that the thinning
level has been chosen so as to have approximately the same
elements in the array, as for example, in Fig. 6. From this last
example, the broadband nature of STBAs is evident again.
Also, the theoretical predictions are still very good. Finally,
the peak sidelobe level behavior is practically the same as in
the previous case, confirming the role played by the actual
number of elements in the array.

As mentioned earlier (and confirmed by the numerical
analysis), the STBAs scheme inherits the ability to work on
very wide frequency bands. To further check this statement,
in Figs. 11 and 12, a case with the same setup as in Fig. 2,
but with a 20:1 bandwidth, is considered. Even for this
extremely large frequency band, STBAs sidelobes show quite
low levels, around the same value as in Fig. 2. Instead, the
STAs’ patterns have a higher number of grating lobes, due to
the increased bandwidth. This definitely proves the excellent
frequency behavior of STBAs, by confirming the proposed
theory as a tool to a priori foresee the array behavior and to
properly select the parameters according to possible design
specifications.

VI. CONCLUSION

In this article, a new and simple approach for obtaining
random arrays has been introduced.

It basically consists in pairing two classical schemes: the
statistical thinning and the binned strategy. Accordingly, this
scheme has been termed STBAs. The proposed strategy inher-
its the positive features of the merged schemes. Indeed, the
number of elements is reduced, as in the classical thinning
but, due to the binning procedure, the elemental radiators
that survived the thinning are not separated by commensu-
rable distances. Thus, the array factor is no longer periodic
and grating lobes are avoided. Finally, the proposed strategy
presents some advantages over the totally random arrays as
well. Indeed, because of the binning stage, the radiators
tend to more uniformly fill the array aperture, which leads
to a higher average separation between the elements and,
ultimately, to better exploit the available aperture.

In order to foresee the statistical features of the proposed
random array scheme, the study addressed some theoretical
aspects that, for example, allowed to find closed-form esti-
mations for the percentile-level surfaces in terms of the para-
meters of the array. The selected numerical analysis clearly
shows that STBAs exhibit broadband behavior, without the
appearance of grating lobes. Also, the theoretical estimations
are in excellent agreement with the Monte Carlo analysis. This
is extremely relevant since the closed-form expressions give
a direct link between the array parameters and its statistical
features. Hence, they can be exploited for analysis but also for
synthesis purposes.

APPENDIX

MOMENTS, COVARIANCE, AND CORRELATION

COEFFICIENT OF FR(u, v) AND FI(u, v)

Considering STBA, μR(u, v) and μI(u, v) are the real and
imaginary parts of (12), respectively, i.e.,

μR(u, v) = C2
sin
$
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Hence, the variances of FR(u, v) and FI(u, v) readily arise
as

σ 2
R(u, v) = C2

2

2

Nx�
n=1

Ny�
m=1

pnm

+C2
2

2

sin
	

2π
λNx

Lx u



2π
λNx

Lx u

sin
	

2π
λNy

L yv



2π
λNy

L yv

×
Nx�

n=1

Ny�
m=1

pnm cos

�
4π

λ
(xndu + ymdv)

�

− C2
2

⎡⎣sin
	

π
λNx

Lx u



π
λNx

Lx u

sin
	

π
λNy

L yv



π
λNy

L yv

⎤⎦2

×
Nx�

n=1

Ny�
m=1

p2
nm cos2

�
2π

λ
(xndu + ymdv)

�
(35)

σ 2
I(u, v) = C2

2

2

Nx�
n=1

Ny�
m=1

pnm

−C2
2

2

sin
	

2π
λNx

Lx u



2π
λNx

Lx u

sin
	

2π
λNy

L yv



2π
λNy

L yv

×
Nx�

n=1

Ny�
m=1

pnm cos

�
4π

λ
(xndu + ymdv)

�



BUONANNO et al.: BROADBAND STATISTICALLY DESIGNED THINNED-BINNED ARRAY ANTENNAS 2465
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It can be easily recognized that σ 2
R(u, v) + σ 2

I(u, v) =
σ 2

2 (u, v), as it must be.
The covariance function of FR(u, v) and FI(u, v) is then

given by
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Finally, the Bravais–Pearson correlation coefficient of the
quadrature components is given as: r(u, v) = K(u, v)/
[σR(u, v)σI (u, v)].

It can be easily checked that, if for each radiator placed
in (xnd, ymd), there is another one located in (−xnd,−ymd),
and they both have the same coefficient pnm, then μI(u, v),
K(u, v), and r(u, v) are zero everywhere.
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