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The Shannon Information Capacity of an Arbitrary
Radiating Surface: An Electromagnetic Approach

Said Mikki

Abstract— Utilizing a cross-disciplinary approach, we explore
Shannon information-theoretic characterizations of the informa-
tion capacity limits of generic electromagnetic (EM) surfaces
intended for possible use in wireless communication links. Our
principal task is to first formulate at a general and rigorous
level the EM theory of the information that can be extracted
from the Maxwellian fields radiated by an arbitrarily shaped
continuous surface. This is then followed by a detailed derivation
and illustration of practical physics-informed algorithms for
computing approximations of the Shannon capacity of surfaces
with any given geometry operating in Gaussian channels. Our
formalism can address both near- and far-field information
capacity scenarios, with a mathematical treatment that includes
a complete characterization of the source-field polarization struc-
ture, mutual coupling, and interactions.

Index Terms— Antenna theory, capacity limits, electromagnetic
(EM) theory, information theory.

NOMENCLATURE

A Vector in R3.
A Dyad in R3.
A · B Vector–vector inner product in R3.
A · B Dyad–vector product in R3.
A Column array of arbitrary length.
��A 2-D array (matrix) of arbitrary size.
��A · B Matrix–column array product.
��A · ��B Matrix–matrix array product.
A ⊗ B Vector–vector tensor product.
��A †, A

†
Hermitian operation of a matrix or dyad.

��AT , A
T

Transpose operation of a matrix or dyad.

���A�F , �A�F Frobenius norm of a matrix or dyad.

I. INTRODUCTION

THE subject matter of this article belongs to the elec-
tromagnetic (EM) theory of information, a topic that

while not totally new as such [1], [2] is currently reemerging
into multiple fields [3], [4], [5], [6], [7], [8], [9]. This is
an interdisciplinary discourse cutting through both EM and
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information theory, where there has been an interest in syn-
thesizing selected ideas taken from EM theory, EM engi-
neering, information theory, system theory, communication
theory, and signal processing, by coherently integrating them
into one or few closely related formalisms in which both
information and physical degrees of freedom are subjected
to careful evaluation, analysis, and manipulation at the same
theoretical and computational technical levels [10]. In the EM
theory of information, it appears that there are three major
research problems, namely, statistical correlation processes,
often manifest at microscopic or local levels [11], [12],
[13], [14], [15], [16], [17]; system representations of con-
tinuous phenomena, where the objective is to devise exact
and rigorous signal processing models of physical fields [18],
[19], [20]; and mutual information in wave processes [18],
especially characteristics most commonly seen at the global
level of point-to-point or end-to-end link capacity [21], for
example, using the popular degree-of-freedom approach [5],
[22]. Our main focus in this article is on the third major
problem in the EM theory of information, i.e., that of the
physics-informed approach to the analysis, understanding,
and use of capacity concepts. This subject has numerous
applications. For example, a physics-based take on information
capacity may open the door for new ideas in conventional
Shannon theory by introducing applications outside coding
and error-correction methodologies [18]. Also, an EM under-
standing of capacity can lead to a better understanding (and
hence design) of the overall communication link by injecting
EM knowledge into the signal processing part [23]. Perhaps
the most obvious example of such potential is the recent
interest in capacity-driven optimization and design of various
systems [24], [25], [26], [27], [28].

To present a concrete contribution, we further restrict our
attention to a specific type of information transmitting systems,
EM surfaces, but we try to maintain as much generality in the
definition of such structures as possible. The idea of a radiating
or transmitting surface is fundamental in different fields.
Indeed, the concept encompasses a diverse range of prob-
lems and applications; for example, the following conditions
hold:

1) In antenna and scattering theories, with the use of the
surface equivalence theorem, it is possible to show that
any radiating structure whatsoever can be modeled as a
system of surface current distributions [29], [30].

2) Intelligent transmitting surfaces to be deployed as
large-and-complex EM surface structures mounted in
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Fig. 1. Left: example of a transmitting spherical continuous surface St
with observation (receiving) system comprised of another spherical surface
So accessed by a measuring apparatus So. Right: examples of several discrete
Nt -approximations of transmitting surfaces with various 3-D geometrical
shapes giving rise to the discrete current distribution source model J̄ (ω).

dense and dynamic wireless communication environ-
ments intended to control and improve the network per-
formance by injecting new signals into the channel for
use in information transmission, estimation, or testing.

3) Reconfigurable reflecting EM surfaces, often operated
in scattering modes, are deployed in order to control
and modify the prorogation characteristics of complex
and unpredictable media, especially as envisioned for
the forthcoming 6G technology [31], [32], [33], [34].

In such applications (and others not discussed here), a generic
transmitting surface St may be viewed as an artificial active
or passive “EM source” assigned the task of contributing
information to the communication channel, whether in the
form of an individual concrete antenna element, a contin-
uous distribution of transmitting sources, or reconfigurable
reflector. The unifying concept here is that the surface is a
continuous EM source conformal to a geometrically shaped
two-manifold where we find that both EM and geometrical
degrees of freedom inextricably coupled together. On the other
hand, in information theory, capacity and entropy concepts
have been mostly developed for point-to-point communica-
tion schemes where the dominant mathematical model is the
random variable and the random process [35]. Unfortunately,
a continuous EM source requires a random field theory [36]
for its proper mathematical treatment [37]. To the best of our
knowledge, a complete and fully rigorous stochastic calcu-
lus theory of the Maxwellian field suitable for the purpose
of communication system analysis has not been constructed
yet.1 To evade this shortcoming, in this article, we propose
a computational approach that can be used to approximate
fundamental capacity limits of arbitrarily shaped EM surfaces
under quite generic statistical scenarios.

1However, there have been several attempts to study various aspects of the
EM problem from the statistical viewpoint, e.g., random media, propagation
modes in fluctuating domains, and channel models in wireless networks [38],
[39], [40]. Nevertheless, we do not consider most of these theories proper
stochastic calculus theories. In the latter case, the very differential and integral
operators themselves must be replaced by stochastic generalizations [41],
where it turns out that the rules of ordinary calculus in Maxwell’s theory
may not apply [42].

There are three major theoretical considerations that must be
considered while attempting to build a satisfactory EM theory
of information for radiating surfaces. We mention here that
some of what the author believes is currently the most urgent.

1) The information capacity of a surface would, in general,
depend on how the latter’s radiated fields are measured.
The measurement apparatus is formally analogous to a
receiver system in wireless communication systems.

2) The information capacity of a continuous source sup-
ported by a surface St depends on the purely geometrical
features of the surface as encoded by its Riemannian
structure, i.e., the local metric relations and how they
vary from one point on the surface to another. In addi-
tion, the attained capacity depends on other physical
parameters such as the electrical area (size) of the
surface (physical area normalized with respect to the
wavelength).

3) The information capacity depends on the type of the
radiated field, i.e., whether near or far fields, distance of
the observation system to the source, and the radiation
fields’ rich polarization and wavelength substructures.

We believe that these problems and the related considerations
have not received sufficient attention in the sprawling liter-
ature on EM capacity. In fact, capacity studies tend to be
approached from the perspective of rather specific examples
and systems, hence sometimes avoiding the most general
formulation possible for the sake of concreteness. In our
approach, we intentionally try to keep the discussion as
general and fundamental as possible while carefully addressing
each of the abovementioned physics-based contributions to
the purely information-theoretic definition of capacity. Our
strategy is based on identifying and isolating a proper physical
structure—whether geometrical or EM—that dominates a cor-
responding information-theoretic aspect of the overall system.
However, we use a computational approach where eventually
a concrete (still general) algorithm for computing capacity
electromagnetically is devised and illustrated with several
examples. The proposed method is suitable for integration
with standard full-wave EM solvers, especially the method
of moment (MoM) [43].

This article is organized as follows. In Section II, we provide
a broad outline of the rather general (and very complex)
problem of describing the information-theoretic setting of the
EM communication system in space–time. The purpose is to
motivate the need for our alternative (simpler) strategy, which
is to be developed in the following. We begin formulating
the latter (computational) approach in Section III, where the
key necessary mathematical ideas of the frequency-domain
formalism, based on the deployment of a hierarchy of finite
point dipole model approximations, is outlined. Formulas
for the information capacity are then derived in Section IV
for the ubiquitous additive white Gaussian noise (AWGN)
model. Extensive numerical examples and analysis are then
provided in Section V,2 followed by conclusion. A series of

2These examples focus on the fundamental aspects of our algorithm and
the theory behind it. For future work, a fuller analysis of the impact of
depolarization and diffraction’s effects on the information capacity may be
helpful (e.g., wave scattering off buildings and other scatterers and antennas).
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supporting appendixes is also inserted at the end to complete
the presentation found in the main part of this article.

II. FUNDAMENTAL CONSIDERATIONS

Imagine a generic EM transmitting system represented by
a radiating surface St endowed with the structure of a dif-
ferentiable (smooth) manifold. Without loss of generality, one
may take these two-surface to be a perfectly electric conductor
(PEC), but the following formulation can be extended to
more generic EM boundary conditions. We assume that an
information source system is modeled as S = {si , i ∈ I },
where si is a random variable whose probability distribution
is pi(s) and I is an index set (could be finite, countable,
or uncountable). Each random variable si might be discrete
or continuous though we focus on the continuous case in the
following. One way of thinking about the signal si is that
it represents the information symbols injected into a “point
port” of the continuous surface St (see the following). Our
main objective of this article is to investigate the information
capacity of the radiating system St when connected to (excited
by) the information source S.

In the standard setting of classical EM systems, i.e., the
regime where macroscopic Maxwell’s equations hold [44],
information may be injected into the device only through spe-
cialized structures called ports [29], [45]. These are waveguide
structures capable of confining EM fields across the transverse
plane, while energy flows along the waveguide axis [46]. For
simplicity, we assume that at each port, only one waveguide
field mode (the dominant mode) is excited, which is denoted
by E j

p(x, t), where x ∈ R3 is the position, t ∈ R is the time,
j ∈ {1, . . . , Np} is the port index, and Np is the number of
point ports. The port excitation field is further assumed to be
separable into two main factors, a pure time signal controlled
by both the information source and the waveguide field mode’s
spatial profile. The EM excitation at the j th point port can be
written as

Eex
j (x, t) =

∞∑
n=−∞

sin, j u(t − nTs)E j
p(x, t). (1)

This is the general mathematical model of the information
data stream injected into the j th point port. Here, sin, j is the
nth time slot symbol, which is the outcome of the stochastic
experiment of drawing from the random variable sin when
applied to the j th point port. The time pulse u(t) carries
information with symbol data rate fs = 1/Ts . In such a model,
the map in, j : Z × N → I is deployed in order to perform
signal multiplexing, so different information symbols si ∈ S
could be transmitted using the same point port if desired.

Let Ft(x, x�; t, t �) be the time-dependent current Green’s
function (2-D tensor of rank 2) of the transmitting surface
St [7]. The induced surface current due to the j th point port
is given by

Jt, j (x, t) =
∫

St

d2x �
∫

R

dt �Ft(x, x�; t, t �) · Eex
j (x�, t �). (2)

Since the operator relation linking the excitation field and the
induced current is linear [47], [48], then the total current due

to all point ports exciting the antenna simultaneously is the
direct sum of all currents of the form (2), giving rise to [49]

Jt(x, t) =
∫

St

d2x �
∫

R

dt �Ft(x, x�; t, t �) · Eex(x�, t �) (3)

where

Eex(x�, t �) =
Np∑
j=1

∞∑
n=−∞

sin, j u(t − nTs)E j
p(x

�, t �). (4)

The total transmitting current (5) will now radiate into the
surrounding space, giving rise to EM fields E(x, t) and H(x, t).
For simplicity, we focus only on the electric field, which can be
expressed in terms of the surface current distribution through
the following Green’s function formula [50], [51]:

E(x, t) =
∫

St

d2x �
∫

R

dt �G0(x, x�; t, t �) · Jt(x�, t �). (5)

Here, G0 is the forward electric-field free-space dyadic Green’s
function (3-D tensor of rank 2), i.e., Green’s function of the
domain surrounding the antenna where no random scattering
objects are assumed to exist [52].

Next, we introduce the surface So, which is the
two-manifold where observations of the antenna’s radiated
field will be collected.3 The received or observed field is the
collection

O(So) := {E(x, t) ∈ R
3, x ∈ So}. (6)

Clearly, this is an infinite set, so the problem of estimating
a field-theoretic information capacity starting from EM data
cannot be dealt with directly using the standard Shannon
theory since the latter works best with a finite number of
random variable [35], [53].

In order to attain a better conceptual grasp of the general
structure of the EM theory of information capacity, we try to
capture the essentials of the process of information transmis-
sion by a continuous surface St as follows:
S transmitting−−−−−−→

surface St

J(x, t)
electromagnetic radiation−−−−−−−−−−−−→

G(x,x�,t,t �)
E(x, t)

observation−−−−−−→
apparatus So

O.

(7)

We would like to analyze the information-theoretic struc-
ture of the transformation S → O. One way to do so
is by comparing the Shannon information contents of the
two systems comprised of the information source S and the
observation or receiver apparatus O. The most obvious way to
do that is through the concept of mutual information between
the two random variables [35]. This naturally leads to the
relative capacity concept to be defined in detail in Section IV.
However, the problem as formulated above is too complex to
deal with in such very general form. In Section III, we propose
a relatively simpler model where some of the inessential
constraints of the general transformation (7) will be relaxed in
order to reduce the mathematical complexity of the analysis.

3When a full closed manifold So is used, the two-manifold St is obviously
contained inside the volume bounded by So. It is such latter scenario what
interests us most in this article since it is more fundamental than the
transmit–receive scenario in a communication theory where the receiver is
localized at a specific spatial region away from the transmitter.
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III. DISCRETE MEMORYLESS FREQUENCY-DOMAIN EM
MODEL AND THE APPROXIMATION HEIRARCHY

Historically speaking, several methods have been proposed
to deal with the information content of continuous classical,
quantum, and random fields. Most often, one may first attempt
locating a suitable effective Hilbert space representation of
the original spatiotemporal classical radiation problem, so the
number of degrees of freedom becomes countable, followed by
a suitable pragmatic criterion to be employed for truncating the
originally infinite dimension to a finite number [18]. Another
approach, which we follow here, relies on already starting
the description of the problem by reducing the radiating
currents and fields themselves to a finite number of elementary
excitations or modes (oscillators), which is the method often
used in quantum information theory for instance [54], [55].

In the point source approximation hierarchy approach, the
number of “point ports” is increased such that, basically, the
entire surface St is “covered” by excitations. Therefore, our
key idea is to replace the infinite number of field-current
oscillators in the system S → O by a finite number of oscil-
lators in both sides, namely, Nt at St and No at So, effectively
replacing (7) by a scheme in the form S(Nt) → O(No). This
basic idea is shown in Fig. 1. In the left panel, we show an
illustrative example comprised of a continuous transmitting
spherical surface St observed by another continuous spherical
measurement system So. On the right panel, a discretized
version of the sphere is shown in addition to some examples of
other possible nonspherical geometrical shapes, such as linear,
rectangular (patch), and arbitrary-curved radiating surfaces.

In order to perform the calculations in a practical manner,
we further restrict ourselves to narrowband signals, so our
capacity results will be frequency dependent. To do so, we first
need to impose two fundamental assumptions.

1) The transmitting surface port-to-current system is
memoryless-in-time, i.e., the following condition holds:

Ft(x, x�; t, t �) = Ft(x, x�; t − t �). (8)

2) The surrounding medium is memoryless-in-time, i.e.,
shift-invariant or, equivalently

G0(x, x�; t, t �) = G0(x, x�; t − t �). (9)

These two assumptions jointly imply that the communication
channel from the source S to the field E(x, t)—or the obser-
vation set O—is time-invariant. This allows us to use the
Fourier transform method and hence work in the frequency
domain [49], [56].

Remark 1: It should be noted that in general, the
memoryless-in-time current Green’s function Ft(x, x�; t − t �)
is not memoryless-in-space. Indeed, except for quite few
and rather uninteresting cases where St obeys global spatial
translation symmetry, one cannot in general write Ft(x, x�; t −
t �) = Ft(x − x�; t − t �) [19], [49]. Therefore, in terms of
the current excitation problem, most radiating structures, e.g.,
all antennas, do have spatial memory [19], [20]. This is
one of the main reasons why a fully fledged spatiotemporal
EM theory of information and signal processing is highly
nontrivial [7], [10].

In the frequency domain, all dynamic quantities vary sinu-
soidally in time as per exp(−iωt), while all fields and currents
become complex [29]. Fix a spatiotemporal Fourier mode
exp(ik · x − iωt), where k is the wavevector. Then, the
dispersion relation of the vacuum is |k| = k, where k = ω/c
and c is the speed of light [57]. The dyadic Green’s function
is given by [52]

G(x, x�; ω) = γω
1

ik R

(
I − R̂ ⊗ R̂

)
eikR

−γω

[
1

(ik R)2
− 1

(ik R)3

](
I − 3R̂ ⊗ R̂

)
eikR

(10)

where

γω := −μ0ωk

4π
, R := x − x�, R̂ := R

|R| . (11)

The 3-D tensor I is the unit dyad. The radiated field can
be expressed in terms of this Green’s function using the
formula [51]

E(x; ω) =
∫

x�∈St

d2x � G0(x − x�, ω) · J(x�; ω) (12)

where in what follows we are interested in the exterior region
R3 − St 	 x, but the integration is performed over the entire
surface St 	 x�.

Our objective is to first construct an algorithm for estimating
the capacity of a transmitting surface St with respect to an
observation surface So whose local unit normal vector is
N̂o(x), x ∈ So. There are Nt point sources applied at the
transmitting side, where the i th point source is positioned at
xi while equipped with two polarization degrees of freedom
α̂1

i and α̂2
i satisfying

α̂s
i · N̂i = 0, α̂s

i · α̂s �
i = δss �, �α̂s

i � = 1, s, s� = 1, 2. (13)

Here, N̂i := N̂o(xi ) is the local normal to the surface
St and δss � is the Kronecker delta function. The following
formal characterization of a generic Nt -discretization of the
continuous surface St is then introduced:

S t := {
xi ∈ St; α̂s

i ∈ R
3, s = 1, 2

}N t

i=1 (14)

while α̂s
i , s = 1, 2, are shown in (13). Locally, the current

distribution J(x, ω) may be expanded as follows [49], [58]:

J(x) = α̂1(x)J 1(x) + α̂2(x)J 2(x). (15)

Therefore, for a discrete Nt -term point approximation of a
generic continuous transmitting current J(x), we may write

J(x, ω;S t) =
N t∑

i=1

2∑
s=1

α̂s
i J s

i (ω)δ(x − xi) (16)

where δ is the Dirac delta function (cf. Remark 2). The
relation (16) serves as a local expansion of the i th current
source on the transmitting surface. Note that J s

i (ω) ∈ C is a
frequency-dependent complex number, while the polarization
vectors α̂s

i , s = 1, 2, are frequency-independent [19].
Remark 2: The Dirac delta function in (16) is a surface

delta function [59]. The physical dimensions of the current
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source amplitudes J s
i are A · m. Each polarization unit vector

α̂s
i , i = 1, . . . , Nt and s = 1, 2, is a function of the position

xi . (For simplicity, this is indicated by the use of only the
index i .) Such position dependence is essential for the general
case since closed curved surfaces in R3 cannot always be
modeled by a single coordinate chart, and hence, the use of
local coordinate systems, here exemplified by the expansion
(15) of the current into local components along α̂1

i and α̂2
i ,

becomes mandatory for a correct treatment of the general case
(for more details, see [49], [60]).

Substituting (16) into (12), the following formula is
obtained:

E(x, ω;S t) =
N t∑

i=1

2∑
s=1

G0(x − xi , ω) · α̂s
i J s

i (ω). (17)

Remark 3: Expression (17) describes the EM field outside
St and is the key EM model that will be used in this article.
It is sometimes referred to in the literature as the infinitesimal
dipole model (IDM) and has been successfully utilized in
various applications, e.g., see [61], [62], [63], [64], [65],
[66]. The relation (17) is valid in both the near- and far-field
zones [49], [61], [62] and has been verified extensively both
computationally and experimentally [65], [67], [68]. A discrete
IDM is known to be singular at the surface St itself because
Green’s functions are themselves singular at x = x� [52].
However, in practical computational applications, pertinent to
communications and power transfer, one most often works
under the condition x 
= x� (exterior domain scenario), so the
radiated fields as such are never singular [49], [61]. To improve
the accuracy of (17) for near-field (NF) predictions, one often
needs to increase Nt [66] or use global optimization [62], [65],
[69], [70], [71].

The radiated field is observed at the surface So, which may
or may not fully enclose the radiating surface St . If No observa-
tions points are used to gather field measurements obtained via
idealized localized field probes, then the observation system
may be described mathematically as the set

So := {
x j ∈ So; β̂r

j ∈ R
3, r = 1, 2, 3

}N o

j=1
. (18)

Here, at each j = 1, . . . , No, three perpendicular measure-
ments of the field may be enacted along the three Cartesian
directions β̂r

j , r = 1, 2, 3.4

Remark 4: In general, there is no need to consider observa-
tion volumes since it is known from EM theory that the field on
a closed surface fully characterizes EM radiation everywhere
in space [29]. When the observation surface is not closed, it is
possible to use EM machine learning to find an IDM like (16)
that can predict the fields everywhere in a suitable domain
exterior to the transmitting surface St [61], [71], [72].

The signal measured at the j th observation point x j along
the r th direction at frequency ω is denoted by Or

j (ω) ∈ C.
For ideal perfectly localized point probes, this can be given
by

Or
j (ω) = br

j(ω) E(x j , ω;S t) · β̂r
j (19)

4In other words, each axis triplet β̂r
j can be obtained by a local rotation of

the global coordinate system x̂r , r = 1, 2, 3, around the observation point x j .

where br
j(ω) ∈ C is the observation device’s adjustable gain or

responsitivity function. Substituting (17) into (19), we finally
arrive at

Or
j (ω;S t,So) =

N t∑
i=1

2∑
s=1

br
j(ω) β̂r

j · G0(x j − xi , ω) · α̂s
i J s

i (ω)

(20)

for j = 1, . . . , No and r = 1, 2, 3. The expression (20) fully
characterizes the observation made at position x j along the
direction labeled by r when the measurement is conducted
over a discretized source S t using the apparatus modeled as
So at frequency ω. One of the merits of (20) is that it allows
for the directions of observation measurements, labeled by r
and j , to vary locally from position x j to position x j � , with
also different measurement gain (responsitivity) br

j(ω). In this
way, the ability to extract information from the transmitting
surface’s radiated fields is significantly enhanced.

Next, and motivated by the general formula (20), let us
define the matrix element H rs

i j ∈ C as follows:
H rs

i j (ω) := br
j(ω)β̂r

j · G0(x − xi , ω) · α̂s
i (21)

with r = 1, 2, 3; s = 1, 2; i = 1, . . . , Nt; and j = 1, . . . , No.
This is an array of 6Nt No complex numbers that fully char-
acterize EM coupling between the discrete system S t(Nt)
and the discrete measurement apparatus So(No). Due to the
complexity of formula (21), we may simplify the theory by
first isolating those key building blocks giving rise to natural
substructures embedded into H rs

i j .
We start by looking into how the polarization structure

of EM radiation determines the character of the coupling
interaction between a radiating source centered at xi and
observed at x j . To achieve this, we construct the following
matrix relation characterizing the complete EM channel from
the i th source to the j th observation point:

O j (ω) = ��Hi j(ω) · J̄i (ω) (22)

for i = 1, . . . , Nt and j = 1, . . . , No. The 3 × 2 matrix ��Hi j(ω)
is defined as

��Hi j(ω) :=
⎡
⎢⎣

H 11
i j (ω) H 12

i j (ω)

H 21
i j (ω) H 22

i j (ω)

H 31
i j (ω) H 32

i j (ω)

⎤
⎥⎦

3×2

. (23)

On the other hand, the source vector J̄i possesses two degrees
of freedom (surface current source), while the observation
array O j is concocted using the radiated field’s 3-D data, and
hence, it enjoys three degrees of freedom as illustrated by the
following array structures:

J̄i (ω) :=
[

J 1
i (ω)

J 2
i (ω)

]
, O j(ω) :=

⎡
⎢⎣

O1
j (ω)

O2
j (ω)

O3
j (ω)

⎤
⎥⎦. (24)

It should be noted that three degrees of freedom are needed in
the NF zone in order to describe the polarization of the EM NF,
but this number drops to two in the far zone [73], [74]. This
remains true even when the radiating current is always taken as
a surface (hence 2-D) distribution as per (15) [75]. Therefore,
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the above multidimensional structure is general enough to deal
with both near- and far-field information capacity scenarios.

In order to compute the capacity of the entire St → So

configuration, it is required to assemble all point-to-point
interactions of the form (22). First, we build global input and
output arrays by a process of concatenating the elementary
forms given in (24) as follows:

J̄ (ω) :=

⎡
⎢⎢⎣

J̄1(ω)

...

J̄Nt (ω)

⎤
⎥⎥⎦

2Nt×1

, O(ω) :=

⎡
⎢⎢⎣

O1(ω)

...

O No(ω)

⎤
⎥⎥⎦

3No×1

. (25)

The complete input-to-output relation of the transmitting sur-
face measurement process can be put into the following matrix
form:

O(ω) = ��H (ω) · J̄ (ω) (26)

where the St → S0 channel matrix is identified as

��H (ω) :=

⎡
⎢⎢⎢⎣

��H11(ω) · · · ��H1Nt(ω)

...
. . .

...

��HNo1(ω) · · · ��HNo Nt (ω)

⎤
⎥⎥⎥⎦

3No×2Nt

. (27)

It will be seen in Section IV that the matrix ��H in (27)
contains an adequate amount of the critical EM data needed
for the determination of the information capacity of the generic
transmitting surface St when the standard random channel
model of AWGN is assumed. The key to this result is to note
that (26) possesses the same mathematical structure of a typi-
cal multi-input–multioutput (MIMO) wireless communication
system [40], [76], [77]. The details of such analysis will be
presented next.

IV. INFORMATION CAPACITY OF RADIATING SURFACES

A. Information-Theoretic Background

It can be seen that in our model, information is injected
into the generic continuous transmitting surface St at Nt

points xi through the transmitting surface current distribution
value J(xi ), where each point is associated with two possible
independent degrees of freedom labeled by s = 1, 2, giving
rise to the array J̄i [see (24)]. The latter can be discrete,
continuous, or mixed random vector. For definiteness and to
simplify the presentation, we only consider continuous random
variables in this article, but the discrete and mixed cases
are similar. Overall, this implies that the information content
of J̄(ω), see (25), which is the differential entropy for the
continuous random variable case, can be expressed through
the formula [53]

H ( J̄) = −
∫

J̄∈CN

N∏
n=1

dN Jn p(J1, . . . , JN ) log p(J1, . . . , JN )

(28)

where N and p(J1, . . . , JN ) are the length and pdf of J̄ ,
respectively, while log is the binary logarithm.5 Standard

5For complex random vectors, the integrals in (28) are to be understood as
integrals in the complex plane.

quantities in information theory, such as the joint entropy
H (X, Y ), the conditional entropy H (X |Y ), and mutual infor-
mation H (X : Y ), may all be defined in a manner analogous to
(28) for generic complex random vectors X and Y [40], [53].

Let the mean value of J̄ be m J̄ := E{ J̄}, where E is the
expected value operator. The covariance matrix of the input
information vector J̄ is the N × N matrix

��CJ̄ := E{( J̄ − m J̄ ) · ( J̄ − m J̄ )
†} (29)

where † is the Hermitian operation (complex conjugatation
and transpose operations). Note that here, N = 2Nt . For
the noise part, we consider a complex normal noise vector
(circularly symmetric Gaussian) consisting of an N × 1 array
n(t) := [n1(t) . . . nN (t)]T , where each element’s sample is
a zero-mean complex normal random variable, i.e., n j (t) ∈
CN (0, σn j ), j = 1, . . . , 3No, and all these components
are statistically independent [see [40], [78] for details on
the mathematical background]. Hence, we have an uncorre-
lated noise model, which may be put in the form n(t) ∈
CN (0, diag[σn1 , . . . , σnN ]). In the AWGN flat-frequency nar-
rowband MIMO model (31), the noise vector has the same
length as O , so here, N = 3No, while the length of the input
(transmitted information) vector J̄ is 2Nt . The power spectral
density (PSD) of each Gaussian noise component is flat over
its bandwidth with value N /2. The covariance matrix of the
noise vector n is the 3No × 3No matrix

��Cn := E{(n − mn) · (n − mn)
†} = E{n · n †} (30)

where mn is the noise mean vector and is assumed zero.
The AWGN model can be summarized by the following

relation:

O(ω) = ��H (ω) · J̄(ω) + n (31)

where n is a sample of the noise vector process introduced
above, while O , ��H , and J̄ are given in (26). In this model,
the noise is also assumed to be independent of the information
signal J̄ . We work in a frequency-domain (passband) regime
where the carrier (center) frequency is ω, so all these arrays
are generally complex.6 The bandwidth B := 	ω/2π around
the frequency ω is assumed to be small enough such that
the flat-channel approximation can be applied to the noisy
MIMO system model (31). Note that there is no loss of
generality here since, for wideband channels, one can still
use the same model (31) by deploying a suitable orthogonal
frequency-division modulation (OFDM) technique [40], [76],
[77]. In particular, it was shown recently that specialized EM
OFDM schemes can be devised to decouple wideband antenna
models where each frequency becomes essentially independent
of others [23], [79].

6Since the passband and the complex baseband representations are equiva-
lent for the same bandwidth [40], they both yield identical capacity calcula-
tions. Note that the EM theory of Section III was developed in the frequency
domain with the help of the complex phasor representation of the fields,
making it naturally suited for use in conjunction with the complex baseband
representation in information theory.



2562 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 3, MARCH 2023

B. Concept of Relative Capacity of a Surface

Throughout the rest of this article, we will be interested in
the channel capacity associated with the information transfer
process St → So, which we define in a way similar to the
capacity concept based on reliable communications [35].

Definition 1 (Relative Capacity): If the prior probability of
sending a given vector sample of symbols into the Nt radi-
ating point ports J̄ is denoted by p( J̄), then we define the
information capacity of St relative to So by the formula

Cs(St,So) := max
p( J̄ )

I ( J̄ : O) bits/vector-sample (32)

where maximization is performed over all possible vector
symbol probability distributions p( J̄).

Remark 5: The rigorous and exact definition of relative
capacity is given in Definition 1. It is completely determined
by the use of a series of well-defined mathematical objects
carefully constructed throughout the previous passages of this
article, which includes the radiating surface system St and
the measurement apparatus St . The relative capacity measures
the information capacity of St relative to So in the sense that
this capacity depends on the geometry of St and not on the
signal processing details of how the surface was excited. This
geometry enters the picture through the channel or coupling
matrix ��H in (21). The geometry of St enters through the local
tangential vectors α̂s

i . These local vectors are equivalent to the
local Riemannian metric tensor. On the other hand, the relative
capacity does not depend on how you code the input signals
nor on what the information sent is and so on. This relative
capacity is now a property of the surface St itself, its radiated
fields, and the choice of So.

Recall that mutual information can be expressed as I ( J̄ :
O) = H (O)− H (O| J̄). Using (31), this becomes I ( J̄ : O) =
H (O)− H ( ��H · J̄ +n| J̄). The origin of information loss is the
presence of the noise process n. Without noise, the capacity
is equal to the maximum possible information content of the
transmitting surface, which is H ( J̄). Therefore, knowledge of��H allows the determination of the mutual information and
hence capacity. Since the channel matrix (27) is completely
determined by the geometry of the transmitting surface and
the medium’s Green’s function, we can then use EM theory
to compute approximations of the information capacity of the
process St → So as will be shown next. For an AWGN MIMO
model such as (31), it has been shown that the capacity per
sample is [78]

Cs(ω) = log det
[
1N + ��H (ω) · ��CJ̄ (ω) · ��H †(ω) · ��C−1

n

]
. (33)

Here, det is the matrix determinant operation. The array 1N

is a unit matrix of dimension N , where in the case of (33),
we have N = 3No.

If the bandwidth of the equivalent baseband channel is
B , then the corresponding band-limited signal can be com-
pletely recovered with the use of a Nyquist sampling rate
of 1/2B [80]. Since we assume that the noise PSD is flat
over B , i.e., Sn( f �) = N /2 for f � ∈ [ f − B, f + B], where
Sn( f �) is the PSD of the noise signal n(t) around the passband
(center) frequency f = ω/2π , then the Nyquist samples

are uncorrelated [81], which for Gaussian random variables,
implies stochastic independence.7 Therefore, the capacity of
the data stream is simply the outcome of the multiplication
of the capacity per sample by the data rate, leading to bit/s
capacity formula

C(ω) = 2B log det
[
13No + ��H (ω) · ��CJ̄ (ω) · ��H †(ω) · ��C−1

n

]
.

(34)

Expression (34) provides the most general form of the infor-
mation capacity in a Gaussian channel setting.

In the following, we examine two possible fundamental
scenarios: the first corresponds to the situation when there is
no mutual coupling (MC; EM interaction) between the various
point sources; the second is the complementary case in which
such interactions are present in the transmitting system.

C. No-MC Capacity Formulas

Here, it is assumed that both the signal J̄ and the noise n,
when modeled as random vectors, are self-uncorrelated, i.e.,
their respective covariance matrices take the diagonal form

��CJ̄ (ω) = σ 2
J (ω)12Nt ,

��Cn(ω) = σ 2
n 13No . (35)

This is the most basic scenario in information theory, often
referred to in the literature as transmission with no knowledge
of the channel state information [76].8 Substituting (35) into
(34) and using a matrix identity,9 we arrive at

C(ω) = 2B log det

[
12Nt + σ 2

J (ω)

σ 2
n

��H †(ω) · ��H (ω)

]
, bit/s.

(36)

The relation (36) is the main capacity formula of the informa-
tion transmission system St → So when the radiating surface
does not possess knowledge of the communication channel.
We will, however, work with the following slightly modified
version:

C(St, So) = 2 log det
[
12Nt + 3Noρ

��H � † · ��H �
]
, (bit/s/Hz).

(37)

The derivation of (37) and the definitions of the normalized
channel matrix ��H � and the signal-to-noise-ratio ρ can be
found in Appendix B. The relation (37) is more convenient
for numerical capacity calculations as will be illustrated with
several examples in Section V.

7The PSD level N itself may depend on f , i.e., the carrier frequency, but
is still required to be constant over the small passband span 2B [76], [77].

8Since the noise is by assumption a white random process, an explicit
dependence of the induced narrowband noise on frequency is not needed
here [40], [81], but our model allows for possible variation in σJ (ω) with
respect to the center frequency ω.

9Namely, the identity det(1n + ��A · ��B) = det(1m + ��B · ��A) for n × m and
m × n matrices ��A and ��B , respectively.
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D. EM Coupling and Interactions

MC can affect the achievable data rate and other perfor-
mance measures in communication systems [8], [24], [49],
[82], [83]. This subject will be reexamined here from the
fundamental perspective introduced by using an EM approach
to information theory. A detailed mathematical analysis of
the effect of MC on capacity calculations is outlined in
Appendix C using the mathematical apparatus developed in
Sections II–IV. We give here the following basic definition
and theorem followed by a brief theoretical discussion of the
role of EM interactions in information capacity.

Definition 2 (MC in Capacity Calculations): An EM cou-
pling entails that two current source degrees of freedom Ji and
Ji � , i 
= i �, are no longer uncorrelated even if the excitation
fields applied at their respective point ports, i.e., Eex

i and Eex
i �

in (52), are uncorrelated.
Remark 6: It is possible to reformulate Definition 2 in

terms of statistically independent/dependent signals instead of
uncorrelated/correlated ones. However, for the EM theory of
capacity in Gaussian systems, the correlation approach is suf-
ficient. For other types of channels going beyond the additive
Gaussian noise model, stronger versions of Definition 2 might
be needed.

Theorem 1 (Condition of No MC): Assume an EM infor-
mation transmission system St(Nt) → So(No). There is no
MC (as defined by Definition 2) in an EM surface St with
current Green’s function F(x, x�, ω) if and only the following
conditions holds.

1) Distinct Ports:

i 
= i � �⇒ Fss �
i,i � = 0. (38)

2) Identical Ports:

i = i �, s 
= s� �⇒ Fss �
i,i � = 0 (39)

for all s, s� = 1, 2 and i, i � = 1, . . . , Nt . Here, Fss �
i,i � is defined

by (59).
Proof: See Appendix C. �

Remark 7: The condition (39) is included in order to
consider the less familiar but perfectly legitimate scenario
when two signals are applied at the same point xi ∈ St but
with MC taking place between the two locally orthogonal
current components labeled by s = 1, 2. Such coupling may
happen not necessarily due to electrical conduction but to
slight irregularities in the physical layout leading to NF-to-NF
coupling between the two current filaments.

E. EM MC and Mutual Information

In all cases (with or without MC), the joint information
content of the transmitting surface St satisfies

H ( J̄) = H ( J̄, E
ex

) (40)

which is due to the functional relation between the excitation
point-port array and the induced current as specified by (58),
see Appendix C. Note that this implies H ( J̄ |Eex

) = 0, so the
mutual information satisfies

I ( J̄ : E
ex

) := H ( J̄) − H ( J̄ |Eex
) = H ( J̄) (41)

which is consistent with the fact that in our model noise, the
only source of information loss is due to thermal noise added
at the very end of the observation process as per (31). Hence,
no information loss is experienced as we transition from
the point-port signal excitation field array E

ex
to the actual

physical radiating current J̄ . Nevertheless, from the basic
information theory, we know that joint information is maximal
when all the random variables involved are stochastically
independent, where in the latter case, entropy becomes the
direct sum of the individual processes [35], [53], that is,
we have

H ( J̄) ≤
2Nt∑
n=1

H (Jn). (42)

However, the theory presented in Appendix C proves the
following theorem.

Theorem 2: For an arbitrary spatiotemporal excitation field
Eex(x, ω), however, we sample the radiating current distrib-
ution, the obtained current samples Ji(ω) in (58) are always
correlated if there is MC between the current values obtained
at the same sample positions.

Corollary 1: MC (as defined by Definition 2) always leads
to a signal correlation matrix ��CJ̄ (ω) that is nondiagonal.

Proof: This follows immediately from Theorems 1 and 2
and formula (62) in Appendix C. �

It then follows from the above that the information content
of the transmitting surface before radiation satisfies the relation

H ( J̄) ≤
2Nt∑
n=1

H (Jn; σJn) (43)

where H (Jn; σJn) is the entropy computed using a generaliza-
tion of assumption (35), namely

��CJ̄ (ω) = diag
[
σ 2

J1
(ω), . . . , σ 2

J2Nt
(ω)

]
. (44)

We thus obtain the following corollary.
Corollary 2: A no-mutual-coupling scenario yields an

upper bound on the essential amount of information that can
be delivered by the transmitting surface’s source point-port
system before radiation.

This is one reason why the uncoupled diagonal matrix
form (44) is considered particularly important in our formu-
lation. On the other hand, after the onset of EM radiation,
we move from the radiating current J̄ to the radiated field
followed by noisy observation O as per (31). In contrast to
the previous E

ex → J̄ process, in the process J̄ → O,
a Gaussian nondeterministic channel model, information loss
does take place, and the capacity must be computed using the
mutual information expression (32). Thus, even while H ( J̄)
is reduced with MC due to the onset of electromagnetically
mediated port-to-port statistical correlation (Theorem 2), the
conditional entropy H ( J̄ |O) is also reduced due to the general
information-theoretic inequality H (X |Y ) ≤ H (X) valid for
any two random variables X and Y [53]. Therefore, mutual
information (and consequently capacity) may increase or
decrease with EM MC. Nevertheless, in general, we expect
a degradation of the system performance in rich random
scattering environment when MC is present since it introduces
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Fig. 2. General configuration of the linear (left) and rectangular (right)
radiating systems, both accessed by a measuring apparatus So.

new correlations.10 Due to the importance of correlations
induced by EM MC, an explicit expression of the correlation
matrix in the presence of arbitrary MC was derived, see (62).

V. NUMERICAL EXAMPLES AND DISCUSSION

In the following examples, the surrounding medium is
assumed to be vacuum with no ground plane or scattering
objects. In other words, we focus on idealized but funda-
mental line-of-sight information transmission scenario. The
information capacity of a generic surface, however, is strongly
dependent in general on the scattering richness of the prop-
agation medium [11], [76]. In this section, our main interest
is investigating the impact of the geometry (size and shape)
of the radiating surface and the dependence of capacity on
the structure of the radiation field, e.g., as per the impact of
the distance of the observation apparatus from the radiating
current.11 For definiteness, the following examples are con-
ducted at f = 2.4 GHz but the algorithm can be used at any
frequency. Finally, in all examples, we set br

j(ω) in (19) to
unity for all values r = 1, 2, 3, j = 1, . . . , No. For further
details on the validity of the EM dipole model based on (10),
see Remark 3 and the references cited therein.

Example 1 (Far-Field Information Capacity of Dual-
Polarized Linear Continuous Source System): Consider a
1-D “surface” St consisting of a line oriented along the
x̂3-direction, as shown in Fig. 2 (left and center). A set of
uncoupled Nt point sources are arranged along the vertical
direction with total spatial extension of L. We here exam-
ine two possible orthogonal source polarizations physically
implemented as two perpendicular small dipoles (cross dipole
antenna) based at xi , with i = 1, . . . , Nt . Each point dipole
source’s degree of freedom is excited at the same frequency
f = 2.4 GHz. The capacity results of a dual-polarization
λ/2-linear radiator as described above are shown in Fig. 3,
which illustrates the convergence behavior of the relative
capacity taken with respect to an observation sphere with
radius d = 6λ (far-field condition) and No = 36 equally
spaced spherical angles (θ, ϕ) samples. The Nt point sources

10If such additional correlations are accounted for, we anticipate that it is
still possible to optimize the system performance even in the presence of MC.
An investigation of this rather elaborate design problem is outside the scope
of the present work.

11Since including scattering objects requires extensive side treatment of the
physical random scattering models to be used, yet without falling within the
stated scope of our article, we relegate scattering effects to future treatments.

Fig. 3. Capacity convergence results for Example 1.

are uniformly distributed throughout the line extending from
−λ/4 to λ/4. It can be seen that the relative capacity
C(Nt, No) saturates with Nt → ∞ and fixed No. In particular,
no further significant change in capacity was observed to take
place for Nt > 70, indicating attaining effective convergence
of the continuous capacity approximation hierarchy. This sug-
gests the existence of a limit on the information capacity of a
λ/2-continuous source with dual polarization for uncorrelated
information point ports (MC-based correlations between the
current samples can be always decoupled using proper pre-
coders). In the inset of Fig. 3, we also show the eigenchannels’
weights obtained by computing the eigenvalues of the system
matrix ��T := ��H �† ��H � for the Nt = 70 approximation hierarchy.
We can see that only a few effectively independent pathways
for transmitting information are available (about 4 or 5).
The number of eigenchannels can be increased (and hence
the capacity) by inserting random scatterers [76], [78] or
reconfigurable intelligent surfaces [32], [34], [84], [85], [86]
in order to modify the channel environment.

The impact of polarization, an EM degree of freedom, is one
of the oldest and most well-studied aspects in the EM theory
of information [11], [87], [88], [89]. In the following example,
we use our method to provide a deterministic approach to esti-
mating how this geometrical-physical parameter may influence
the information capacity of a continuous source distribution.

Example 2 (Far-Field Capacity Enhancement in Dual-
Polarized Continuous Linear Systems): The well-known result
about the enhancement of capacity in dual-polarized systems
can also be established as a limit of continuous sources by
carrying out a convergence analysis similar to Example 1 but
with one polarization only allowed. Indeed, Fig. 4 shows the
capacity results for Nt = 75, whose eigenchannels are shown
in the inset of Fig. 3, but this time with the horizontal polar-
ization along the x̂2-direction manually set to zero, while the
vertical polarization along the x̂3-direction is left unaffected.
It can be seen that the dual-polarization scenario exhibits
higher capacity than the single-polarization case. This limit is
obtained with infinite number of uncoupled point sources cov-
ering the full spatial extension of the λ/2-radiator, and hence,
the difference in capacity shown there is mainly geometrical
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Fig. 4. Capacity convergence results for Example 2.

in origin.12 This reduction in capacity in single-polarization
systems can be explained by referring to the eigenchannels
weights for the single-polarization case shown in the inset
of Fig. 4 and compare it with the corresponding distribution
in the inset of Fig. 3. It is clear that the former exhibits a
smaller number of independent information pathway transmis-
sion compared with the two-polarization configuration, hence
the reduction in capacity. The importance of these results stems
from the fact they are obtained by a fundamental analysis of
the capacity limit of arbitrary linear half-wavelength source
distribution, and hence, relative to the current So(No = 36)
observation system, no further improvement is possible for
generic AWGN channels (no knowledge of the exact channel
model is available) unless a specialized precoder is used at
the excitation point ports [76], [77], [81]. In other words,
these limits have their origin in the geometric structure of
this problem, i.e., the half-wavelength line source system with
spherical field observation in the far-field zone.

Example 3 (Linear Source Far-Field Capacity Enhance-
ment With Respect to Size): At a single frequency, even if we
set the MC between point sources to zero, the capacity cannot
increase with Nt unless the physical dimensions of the continu-
ous source are increased. In other words, increasing the density
of the transmitting point ports does not improve information
capacity even when no MC between the point ports takes place
with such increase in density. A demonstration of this is shown
in Fig. 5 for the case of the linear source of Example 1, where
the far-field capacity is varied with the linear source size L.
It is clear that higher capacity is obtained for larger electrical
size since we kept the same frequency (hence the wavelength)
as before. Moreover, to ensure accurate prediction, the number
of sources Nt was increased with increasing the radiator
size to guarantee that the obtained relative capacity results
reasonably approximate continuous source data with respect
to the spherical far-field measurement system So(No = 36).

Next, we consider the NF analysis of the source system
treated in the previous examples. The ability to improve
the performance of a communication system by working in

12However, it should always be recalled that by increasing the number of
observation points No, one may modify the Nt → ∞ far-field capacity limit.
This is why what we are computing here is really the relative capacity as
defined in Section IV-B, i.e., the capacity limit taken with respect to a given
observation system So.

Fig. 5. Linear source far-field capacity results for Example 3. Here, L is the
size of the linear source as shown in Fig. 2 (left).

Fig. 6. Linear source NF capacity results for Example 4. Here, d is the
radius of the observation sphere So(No = 144) and the source system has
size L = 0.5λ.

the NF zone has already been investigated from multiple
viewpoints [90], [91], [92], [93], [94]. Understanding how
the information capacity behaves with the distance from the
transmitting surface is then important for several applications.

Example 4 (Linear Source NF Capacity): For L = 0.5λ,
the minimum radius of the observation sphere sphere So

is 0.25λ. We show the far-field results corresponding to
d = 6λ as well as intermediate and deep NF results in
Fig. 6. The number of observation points No is increased
from 36 in the previous examples to 144. It is clear that
NF capacities consistently increase with decreasing receiver
distance d , suggesting that NF communication systems enjoy
higher information capacity than their far-field counterparts.
Theoretically speaking, such increase can be accounted for
as being, at least in part, due to the availability of more
complex field structure in the NF scenario compared with the
FF, where in the latter case, the radial component of the field
is zero [93]. Moreover, NF processes possess latent but richer
(often evanescent) subwavelength components that can be
utilized for encoding extra bits of information [73], [74]. The
present method then provides a way to systematically quantify
how the geometrical and EM design of the communication
system can be modified to maximize the utilization of such
latent NF capabilities.

Example 5 (Square Patch NF Relative Capacity Conver-
gence Analysis With Respect to Nt ): We consider here a square
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Fig. 7. Square source far-field capacity results for Example 5.

patch with L = W = 0.5λ and point sources distributed
in the horizontal x̂1- and vertical x̂2-directions of St with
variable Nt . In the most generic case, there would be two
surface polarizations α̂1

i = x̂1 and α̂2
i = x̂2 (horizontal and

vertical polarizations). The point sources are confined to the
x̂1 x̂2 plane. In the following results, we choose the point
source locations and the associated two polarization directions
at each position randomly (using a uniform random variable
distribution.) When Nt grows very large, the square patch
becomes densely covered with most directions of excitations
considered. Our objective here is to investigate the conver-
gence behavior of relative capacity with respect to the fixed
observation system So when the number of source points Nt

increases, while the physical dimensions of the patch are the
same. The spherical observation (receive) system is set in the
NF zone with radius d = 1.0λ and No = 400. The capacity
results are shown in Fig. 7, where it can be clearly seen that
capacity converges to the geometrical limit of a continuous
square patch of this electrical size after around 5000 radiating
points.

Example 6 (Square Patch Far-Field Relative Capacity Con-
vergence Analysis With Respect to No): For a square patch with
L = W = 0.5λ and 5 × 5 point sources uniformly distributed
in the horizontal and vertical directions of St (Nt = 25),
we construct a spherical observation (receive) system with
radius d = 50144λ in order to test the impact of the size of
So on the convergence of the capacity relative to So. We use
only one source polarization with α̂2

i = x̂3, while the locations
xi of all point sources are confined to the x̂1x̂2 plane (vertical
polarization). The capacity results are shown in Fig. 8. For
such very large sphere, even though the angular span of
the spherical observation angles can be well covered with
high resolution using few hundreds angular point samples, the
minimum physical distance between nearby point receivers on
So is proportional to dd�, which is significant for very large d
even when the angle d� between two points is very small. This
implies that the underlying MIMO system can still improve
the information capacity as the results clearly shown in Fig. 8.
Due to computer memory limitation, with such massive radius
d , it is not possible to simulate an arbitrarily large number
of receiver points in order to estimate the convergence of
Shannon capacity relative to So(No → ∞). With smaller

Fig. 8. Square source far-field capacity results for Example 6.

d , one can obtain convergent relative capacity when Nt and
No becomes large enough. It should be noted though that
while capacity was increasing with No, the rank of ��H and
the weights of the system eigenchannels converge rapidly.
This suggests that the information channel quickly stabilizes
with increasing No and approaches the far-field transmission
capabilities of the radiating array under consideration. All
extra gains in capacity observed in Fig. 8 with increasing
No are due to the high minimum critical density of receive
points needed on a sphere with very large radius d in order to
approximate a continuous receiver. Again, these observations
can be confirmed by rerunning this example with observation
spheres with small radius.

Examples 5 and 6 also suggest taking extra care in calcu-
lating the NF capacity using the IDM approach based on the
MIMO system capacity. The reason is that it is known that if
the number of dipoles is small (between 5 and 10), then the
validity of the NF formula is restricted to a distance about λ
from the radiating surface [61]. For accurate predictions of the
NF capacity, it is required that one takes the Nt → ∞ limit
before the distance limit. In other words, if C(Nt, No, d) is the
capacity of a radiating St(Nt) measured by spherical So(No)
system with radius d , then we note that the following situation
holds:

lim
d→0

lim
Nt→∞

C(Nt, No, d) 
= lim
Nt→∞

lim
d→0

C(Nt, No, d). (45)

Stated differently, due to the discrete nature of our origi-
nal EM model, limit operations should be approached very
carefully since the underlying process involves continuous
quantities. However, we define the deep NF capacity relative
to a shrinking spherical surface with No observation points by
an expression of the form

CNF(No) := lim
d→0

lim
Nt→∞

C(Nt, No, d). (46)

In this way, the shortcoming of the dipole model can be
avoided since it is known that a large enough number of
dipoles can capture very well the structure of the NF even
with strong MC [66]. A complete rigorous theory bypassing
restrictions such as (45) is outside the scope of the present
work.

Example 7 (Spherical Far-Field and NF Relative Capacity
Performance Analysis With MC): In this example, we study
a nonplanner radiating surface, a sphere with radius a, and



MIKKI: SHANNON INFORMATION CAPACITY OF AN ARBITRARY RADIATING SURFACE 2567

Fig. 9. Spherical far-field and NF capacity performance analysis for
Example 7. The inset provides the eigenchannel weights for the MC case
of correlated (with random MC) point sources when the observation sphere
is in the far zone (d = 20λ).

compute both its far-field and NF capacities using a spherical
observation system (see Fig. 1). The far-field capacity of a
transmitting spherical surface with a = 0.1λ is shown in
Fig. 9, where the observation sphere is located at distance
d and we choose Nt = No = 360. In order to illustrate how
capacity in such basic system depends on distance, several
simulations were conducted with variable d , where the far-field
case corresponds to the largest distance d = 20λ. Again,
we notice the overall pattern of increasing capacity when
the distance of the receiver to the transmitter is reduced.
For the case of MC, we assume a real random correlation
matrix ��CJ̄ of the form ��CJ̄ = σ 2

J̄
A, where A is a 2Nt ×

2Nt random matrix whose entries are uniformly distributed
random variables between 0 and 1. We give two examples
with MC, one for the far-field (d = 20λ) and the other for the
deep NF (d = 0.5λ). The results labeled “with MC” in Fig. 9
correspond to two different instantiations of such MC/source
correlation scenario. In these numerical experiments, it is
found that the capacity with MC is less than the corresponding
capacity without MC.

VI. CONCLUSION

We introduced a general method to define and compute
useful information capacity measures for generic radiating
surfaces, with possible applications as transmitters or recon-
figurable reflecting surfaces that might be deployed in wire-
less communication systems. Various computational examples
were provided, including 1-D and 2-D transmitting systems
with various polarization degrees of freedom. The far-field
capacity was computed and it was found that the capacity
relative to a given observation surface converges with increas-
ing Nt . Moreover, we computed the capacity as a function
of the distance from the source and found that NF capacity
consistently outperforms the far-field capacity. Some examples
were given where the stochastic correlation between induced
radiating current elements, caused by EM MC, influenced the
capacity of a spherical transmitting surface. The proposed
method works for both planer and curved structures and
can be used in future research on how to design optimized
capacity-driven EM communication systems. Moreover, our

approach can be integrated with existing full-wave EM CAD
tools in order to supply the Shannon information capacity data
for familiar antenna array systems used in prototyping and
designing current or future wireless communication systems.

The theory developed here and its computational algorithm
can be further developed and expanded in future works. For
example, it may be interesting to generalize the observation
process So to real-life measurement scenarios by allowing for
some correlation between measurement probes and, hence,
measurement noise. One may also consider the impact of
corners (diffraction effects), scattering clusters, nearby objects,
and so on on the communication channel. The detailed opti-
mization results may be provided to design a high-capacity
driven communication link exploiting the presence of EM MC
and related correlation processes.

APPENDIX A
ON MATHEMATICAL NOTATION

This article uses a formalism that combines methods and
notations often deployed in two distinct fields, EM theory, and
information theory. For that reason, some tensions in our use of
various notations may naturally arise. To avoid any confusion,
we attempted to explain the meaning of the notation within the
main text. For ease of reference, the Nomenclature provides
a complete list of all notations utilized in writing this article.
In particular, we consistently distinguish between a dyad and
a matrix array. In addition, throughout this article, we drop
explicit frequency dependence whenever no confusion may
arise.

APPENDIX B
CHANNEL MATRIX NORMALIZATION AND THE DEFINITION

OF SIGNAL-TO-NOISE RATIO

The physical channel matrix ��H in (31) can be renormalized
by rewriting the field observable vector in the following
slightly different form:

O(ω) = α
��H �(ω) · J̄ (ω) + n,

��H � := 1

α
��H (47)

where α ∈ R+ is a normalization factor and ��H � is the
normalized channel matrix. In terms of this model, the total
received power can be computed, yielding

P rx,tot = E

{
O · O

†
}

= α2σ 2
J Tr ��H � · ��H �† + σ 2

n Tr{13N o}
= α2σ 2

J

∥∥ ��H �∥∥2
F

+ 3Noσ
2
n (48)

where � �F stands for the Frobenius norm and Tr stands for the
matrix trace operation. Thus, the ratio of total measured power
relative to the total noise power at the observation surface So

can be estimated as

ρ = α2σ 2
J

∥∥ ��H �∥∥2
F

3Noσ 2
n

. (49)

We impose the following normalization conditions:
α = √

ρ,
∥∥ ��H �∥∥2

F
= 1. (50)
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Using (47) in (36) leads to the following spectral efficiency
expression:

C = 2 log det

[
12Nt + α2 σ 2

J

σ 2
n

��H � † · ��H �
]
. (51)

Applying (49) and (50) to (51), formula (37) is obtained.

APPENDIX C
ON THE RELATIONSHIP BETWEEN THE EXCITATION FIELD

CORRELATION MATRIX, EM MC, AND MUTUAL

INFORMATION

Consider a transmitting system St with Nt excitation points
distributed at xi , i = 1, . . . , Nt . Ultimate information source
excitations can be traced back to the external field column
array

E
ex :=

[
E

ex
i

]Nt

i=1
, E

ex
i := [

Eex
i,1 Eex

i,2

]T
(52)

where

E
ex
i = α̂1

i Eex
i,1 + α̂2

i Eex
i,2, Eex

is := Eex
s (xi), s = 1, 2 (53)

is the i th component (point port) excitation field tangential to
the surface St at xi , while we recall that α̂s

i := α̂s(xi), s = 1, 2.
The excitation field point-port array E

ex
generates the corre-

sponding array of currents J̄ defined by (25). Our goal is to
investigate the relation between MC and the statistics of these
two arrays in light of the information-theoretic framework of
the capacity formula (34).

We first note that in the frequency domain, the spatiotem-
poral relation (5) reduces into [19], [95]

J(x, ω) =
∫

St

ds�F(x, x�, ω) · Eex(x�, ω) (54)

with

F(x, x�, ω) =
2∑

s=1

2∑
s �=1

α̂s(x) ⊗ α̂s �
(x�)F(x, x�; ω). (55)

The excitation field corresponding to (16) can be written as

E(x�, ω;S t) =
N t∑

i �=1

2∑
s �=1

α̂s �
i � Eex

i �s �(ω)δS(x� − xi �) (56)

where δS is a surface Dirac delta function as defined in [19]
and [60]. Substituting (56) into (54), using (55), we find

J(x, ω) =
2∑

s=1

N t∑
i �=1

2∑
s �=1

α̂s(x)Fss �
(x, xi � ; ω)Eex

i �s �(ω). (57)

If we choose to sample the radiating current at the same
locations as xi � , i � = 1, . . . , Nt , then the obtained current
samples Ji := J(xi , ω) may be expressed as

Ji(ω) =
2∑

s=1

N t∑
i �=1

2∑
s �=1

α̂s
i Fss �

ii � (ω)Eex
i �s �(ω) (58)

where

Fss �
i i � (ω) := Fss �

(xi , xi � ; ω), i, i � = 1, . . . , Nt . (59)

Therefore, the i th current sample is a linear combination of the
excitation signals at all other point ports indexed by i �. This

is the most general form of the Nt -point-port approximation
of the continuous transmitting surface St .

The radiating current on the transmitting surface possesses
a correlation matrix ��CJ̄ of the form (29). Let the average
values of the excitation signals all be zero, i.e., assume
E[Eex

is ] = 0 for all i and s. It then follows from (58) that
E[Ji ] = 0 as well. It is not difficult to see that through
suitable matrix partitioning operations, ��CJ̄ can be put into the
following general structure:

��CJ̄ (ω) =

⎡
⎢⎢⎢⎣

��C11
J̄

(ω) · · · ��C1Nt

J̄
(ω)

...
. . .

...

��C Nt 1
J̄

(ω) · · · ��C Nt Nt

J̄
(ω)

⎤
⎥⎥⎥⎦

Nt×Nt

(60)

where

��Ci1i2

J̄
:=

[
Ci1i2,11

J̄
(ω) Ci1i2,12

J̄
(ω)

Ci1i2,21
J̄

(ω) Ci1i2,22
J̄

(ω)

]
2×2

. (61)

In order to find an explicit formula for the matrix entries,
we substitute (58) into (29), performing some straightforward
manipulations, arriving at

Ci1i2s1s2

J̄
=

Nt∑
i �
1,i

�
2

2∑
s �

1,s
�
2=1

F
s1s �

1

i1i �
1

(
F

s2s �
2

i2 i �
2

)∗
E

[
Eex

i �
1s �

1

(
Eex

i �
2s �

2

)∗]
(62)

where i1, i2 = 1, . . . , Nt and s1, s2 = 1, 2. Expression (62)
relates the correlation between the radiating current samples
to cross correlation phenomena as seen at the point-port
excitation field locations. In particular, Theorems 1 and 2
immediately follow from (62).

Furthermore, note the nonlocal nature of the relation where
the correlation between any pair of current samples depends on
cross correlation between the field values samples at all other
corresponding excitation field position pairs. Most importantly
though, even when the field excitations are uncorrelated,
relation (62) shows that the current samples remain correlated
as long as the EM coupling Green’s functions coefficients,
here the array (59), are not negligible.
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