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Abstract— The angular sweep of electromagnetic wave scatter-
ing is formulated as a matrix equation with multiple right-hand
sides (RHSs). Although the low-rank approximation of an RHS
matrix is a popular choice for reducing the computational costs
of multiple RHSs, only a small amount of research has been
conducted to explore how this approximation impacts the solution
quality. Furthermore, there has not been sufficient research on
the quality of the solution as a function of the accuracy of the
iterative solver. We present an error analysis of the approximated
solution considering both the reduced number of RHSs and the
tolerance of the iterative solver. Based on the error analysis, a new
angular sweep algorithm is proposed with fine-tuned tolerances of
the iterative solver for individual singular vectors. The different
tolerances for each singular vector increase the efficiency of the
proposed algorithm. Another benefit of the proposed algorithm is
that the error can be bounded by a user-defined global tolerance.
In addition, a variant of the generalized conjugate residual
method for multiple RHSs is introduced to accelerate iterative
solvers. Finally, numerical validation is conducted with three
examples in which the discontinuous Galerkin surface integral
equation method is applied. The experiments support two conclu-
sions: tight upper and lower bounds of the solution error exist,
and fine-tuning the tolerances reduces the computational costs.

Index Terms— Angular response, discontinuous Galerkin sur-
face integral (SIE) equation, electromagnetic wave scatter-
ing, error analysis, Krylov space method, multiple right-hand
sides (RHSs).

I. INTRODUCTION

FULL-WAVE electromagnetic simulation has been used
in a variety of applications [1], [2], [3] due to the

development of successful algorithms and the expansion of
processing capability over the past few decades. For these
simulation methods, multiple angular responses of electro-
magnetic wave scattering are a classic challenge in the area
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of computational electromagnetics. A right-hand side (RHS)
matrix can be used to construct multiple incident fields, with
each column vector representing an excitation vector for a
particular incident angle. Standard direct solvers, such as
lower–upper (LU) decomposition [4], are favored for solving
multiple RHSs; in general, however, because of their complex-
ity, advanced methods are necessary. The hierarchical matrices
approach [5] is one of the direct solvers for addressing the
abovementioned problems, even for electrically large targets.
Zhou and Jiao [6] and Guo et al. [7] applied hierarchical matrix
methods in combination with the finite-element method (FEM)
and integral equation, respectively, although the computational
complexity of the work in the latter article is expected
to be O(N1.5 log N). Alternatively, block Krylov subspace
methods are a viable option because several RHSs can be
solved simultaneously. Various examples are introduced, such
as the block generalized minimal residual (BGMRES) [8]
and the block generalized conjugate residual with optimal
truncation [BGCROT(m,k)] [9]. Another effort to speed up
iterative solvers for multiple RHSs is the generalized conju-
gate residual with inner orthogonality and deflation restarting
[GCRO-DR(m,k)] [10], [11].

In addition to block iterative solvers, other efforts are under-
way, which reduce the dimension of multiple RHSs itself.
Low-rank approximation with singular value decomposition
(SVD) [12], asymptotic waveform evaluation (AWE) [13],
[14], and model-based parameter estimation (MBPE) [15],
[16] are well-known methods. In addition, Peng et al. [11]
introduced a novel method that uses Fourier harmonics to
construct excitation matrices. This method has two advantages:
the accuracy of the excitation matrix can be estimated and
the sampling size can be adaptively increased. However, this
approach is limited because the tolerance of SVD is not
systematically chosen, and also, the SVD is computationally
expensive. Adaptive cross approximation (ACA) is one of
the remedies in [17] and [18]. In particular, Kazempour and
Gürel [17] applied a recompressed ACA (RACA) to further
compress the suboptimal factorization of ACA, although this
can be criticized because of the necessity of the a priori choice
of both tolerances of ACA and iterative solver. In [19], inter-
polative decomposition (ID) was used to shrink the dimension
of incident vectors with a given tolerance. It is important
for this article to discuss the error control of the algorithm
considering both the accuracy of ID and indirect analysis of the
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relationship between surface currents and radar cross sections.
Nonetheless, the error analysis was not rigorous because the
numerical error of the iterative solver for each skeleton vector
was overlooked. Recently, experimental approaches [20], [21]
have been proposed with compressive sensing [22]. These
articles show that compressive sensing methods can reduce
the dimensionality of multiple incident field vectors, although
the practical advantages of these methods are debatable due
to a lack of both error analysis and systematic selection of the
initial number of incident angles.

Based on the proper selection of angular samples and
the low-rank approximation of the RHS matrix, this article
introduces an optimal and error-controllable algorithm for fast
angular sweeps. To minimize the computational costs, distinct
tolerances are chosen automatically by the algorithm for the
reduced RHS vectors rather than using the same tolerance for
all vectors. One major benefit of the algorithm is that the
error of the recovered solution is bounded by the user-defined
tolerance, as demonstrated later. Also, the proposed algorithm
can be applied to both dense and sparse matrices, although
surface integral (SIE) methods are used as an example in this
article. In addition, a simple variant of the block generalized
conjugate residual (GCR) is also introduced to speed up the
iterative solution procedure.

There are three major contributions of this article:
1) the various tolerances for the iterative solver;
2) the theoretical error bound due to the compression;
3) the precise error controllability according to the error

analysis.
The following is a breakdown of how this article is struc-

tured. In Section II, the preliminaries are presented, followed
by extensive explanations of the algorithm. Also, the main
results are presented in Section II-D (Theorem 1) with error
analysis. In Section III, we present the numerical validation of
error bounds as well as the efficiency of our method with three
different targets, one of which is electrically large. Finally, the
conclusions are presented in Section IV.

II. MAIN IDEA

A. Preliminaries

In this article, a boldface capital letter and a boldface small
letter denote a matrix and a vector, respectively. I j is an index
set defined by I j := {1, . . . , j}. In addition, a matrix norm can
be defined by the vector norm [23], [24], i.e., for an arbitrary
matrix W ∈ C

N×M

�W� = sup
x �=0,x∈CM

�Wx�
�x� . (1)

Unless otherwise specified, the matrix norm refers to this
vector-induced matrix norm.

B. Problem Statements

To begin, consider the following definition.
Definition 1: A (preconditioned) matrix equation with

M normalized RHSs (�bi� = 1, ∀i ∈ IM )

AX = B (2)

is said to be solved with a given tolerance δ if

�r := �E��B� =
∥∥B− AX

∥∥
�B� ≤ δ. (3)

X is a numerical solution of X.
In Definition 1, A ∈ CN×N is a system matrix expanded

with N basis functions. An excitation matrix B is defined by
B = [b1, . . . , bM ] ∈ CN×M , and each bi is an N-dimensional
column vector of the plane wave excitation at a particular
incident angle. Both A and B can be regarded as matrices after
applying preconditioners. In addition, X = [x1, . . . , xM ] ∈
CN×M is an unknown solution matrix whose column vectors,
xi , are an N-dimensional unknown surface current vector for
the corresponding incident vector, bi . �r is a relative error
used to evaluate the accuracy of the solution, and δ is a
predetermined global tolerance. The iterative solver uses (3)
as the convergence criteria.

The objective of our proposed algorithm is to find a numer-
ical solution X = [x1, . . . , xM ] ∈ CN×M such that (3) is
satisfied. Ideally, the best choice for estimating the error of the
solution (E) is that every iteration computes the vector-induced
matrix norm; nevertheless, the computational cost is excessive
because it requires SVD. As a result, we later propose a
method for estimating the matrix norm with respect to the
tolerances of the iterative solver for each singular vector.

C. Proposed Algorithm

The algorithm is made up of the following four steps.
1) Computation of Incident Vectors: For a given target, the

number of samples shall be appropriately determined to ensure
to capture the desired angular responses and to minimize the
computation. According to various articles [19], [25], [26], the
angular steps can be limited by

�ϕ,�θ ≤ π

k0 D + 1.8(d0)
2
3 (k0 D)

1
3

(4)

where d0 is the number of digits of the accuracy, k0 is the free-
space wavenumber, and D is the length of a cube that encloses
the target. Also, the unit of both �ϕ and �θ is radians. Then,
we can determine the number of incident vectors by

M =
(⌈ |ϕend − ϕstart |

�ϕ

⌉
+ 1

)(⌈ |θend − θstart |
�θ

⌉
+ 1

)
(5)

where �·� is the ceiling function and ϕstart and ϕend are the
start and stop azimuthal angles, respectively. Similarly, θstart

and θend are denoted as the start and stop elevation angles,
respectively. We assume that all incident vectors shall be
normalized by its vector norm; therefore, �bi� = 1,∀i ∈ IM .

2) Low-Rank Approximation: Even with the optimal sam-
pling number, the incident vectors can be easily rank-deficient,
as shown in Section III-A. Therefore, the second step is the
compression of the given RHS matrix to check the linear
dependencies. The proposed algorithm can be used with var-
ious low-rank approximations. One common approach is the
SVD to produce a low-rank approximation of the excitation
matrix. Namely, B is represented by

B = U�VH . (6)
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Here, U = [u1, . . . , uM ] ∈ CN×M is a matrix with left singular
vectors and � is a diagonal matrix with descending order
singular values, � = diag{σ1, . . . , σM } ∈ RM×M . In addition,
V = [v1, . . . , vM ] ∈ CM×M is a matrix with right singular
vectors. The superscript “H ” denotes the conjugate transpose.
When determining appropriate k values, one can compress
the original excitation matrix into a rank k matrix having k
singular vectors with a preferred accuracy. In the proposed
algorithm, a relative singular value is used to choose k.
Namely, a numerical rank k [27] is identified such that

k = min

{
r : σr+1

σ1
< δ

}
. (7)

As shown later in Theorem 1, the relative singular value,
σk+1/σ1, is a lower bound of �r in (3).

To minimize the computational cost, a randomized algo-
rithm, e.g., principal component analysis (PCA) [28], [29],
[30], can be utilized. Although the conventional SVD sub-
routine is used to validate the theoretical error bounds in
Section III-C, the PCA process is applied in Section III-E
using the subsampled randomized Fourier transform (SRFT)
presented in [30] due to its favorable complexity, with
O(N M log L). As mentioned before, the ACA-related
approach [17], [18] is an alternative choice.

3) Solve With Singular Vectors: The next step is to solve
for Z1:k = [z1, . . . , zk] ∈ CN×k with k singular vectors and
zero-out all other solution vectors. Namely, zi with ui is solved
as follows:

Azi = ui , ∀i ∈ Ik (8)

and set

zi = 0, ∀i ∈ IM − Ik . (9)

There is nothing to do with (9) when implementing the
algorithm because solving only (8) implies that (9) has already
been satisfied. A critical parameter for solving (8) is the
stopping criteria if an iterative solver is chosen. This toler-
ance is essential because it is directly related to the desired
solution quality without paying excessive computational cost.
To solve (8), we set the tolerance of each singular vector as

δi := 1

σi

√
k
(σ1δ − σk+1) (10)

for i ∈ Ik . The most important idea for the proposed algorithm
is that each singular vector is solved with “different tolerance”
δi in (10). The convergence criteria can be relaxed, instead
of having the same tolerance for all singular vectors [11],
by assigning the larger tolerance to the vectors with smaller
singular values. In other words, the computational costs can
be reduced compared to solving the same tolerance for all sin-
gular vectors. The advantage of choosing different tolerances
is shown in Section III-D.

4) Recover Original Solution: Finally, the solution can be
recovered with

X ≈ X = Z1:k�1:kVH
1:k (11)

where Z1:k = [z1, . . . , zk] ∈ CN×k is a numerical solution
matrix of Z1:k , �1:k is a k × k diagonal matrix with the

first k singular values of �, and V1:k is an M × k matrix
with the first k right singular vectors of V . The numerical
solution (11) guarantees (3) according to the error bound
derivation in Section II-D.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Efficient and Error-Controllable Algorithm

Given: AN×N and δ
Result: X

Step 1: Determine M with (5)
Step 2: B← Normalized incident vectors
Step 3: [U,�, VH ] ← Apply SVD or PCA to B
Step 4: Determine k with (7)
Step 5: Solve with k singular vectors

for i ← 1 to k do
Solve Azi = ui for zi with a tolerance δi in (10)

end for
Step 6: X← Z1:k�1:kVH

1:k

D. Error Bounds

In this section, the analysis of the error bounds of �r is
presented. With Lemma 1, the error bounds are stated and
proved in Theorem 1 that the maximum relative error is
between the predetermined tolerance δ and the truncation
criteria in (7). In addition, Corollary 1 provides an insight
into the numerical error for individual incident vectors with
the given tolerance. The derivation starts from the following
two notations for i ∈ IM :

Bi := uiσi vH
i (12)

and

Xi := ziσi vH
i . (13)

Note that Bi ∈ CN×M and Xi ∈ CN×M are rank-one matrices.
Also, ∑

i∈IM

Bi = B and
∑
i∈IM

Xi = X. (14)

Lemma 1: Let (8) be solved with δi defined in (10). Then,∥∥∥∥∥∥
∑
i∈Ik

(Bi − AXi )

∥∥∥∥∥∥ ≤ σ1δ − σk+1. (15)

Proof: For any index i ∈ Ik , let

ξ i := ui − Azi . (16)

Consider solving the matrix equation Azi = ui with the toler-
ance δi defined in (10). When any iterative solver converges
to target tolerance δi , it is trivial that∥∥ξ i

∥∥ = �ui − Azi� ≤ δi . (17)

With (16), one can write∑
i∈Ik

(Bi − AXi) =
[
ξ 1 · · · ξ k

]
�1:kVH

1:k (18)
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where �1:k and V1:k are defined in (11). Then, the norm of (18)
is bounded by∥∥∥∥∥∥
∑
i∈Ik

(Bi − AXi)

∥∥∥∥∥∥ ≤
∥∥∥∥[

ξ1�ξ1� · · ·
ξ k�ξ k�

]∥∥∥∥
×

∥∥∥∥ diag
(
σ1

∥∥ξ 1

∥∥, · · · , σk

∥∥ξ k

∥∥)∥∥∥∥∥∥VH
1:k

∥∥
≤

∥∥∥∥[
ξ1�ξ1� · · ·

ξ k�ξ k�
]∥∥∥∥

F

max
i∈Ik

(
σi

∥∥ξ i

∥∥)∥∥VH
1:k

∥∥
= √k max

i∈Ik

(
σi

∥∥ξ i

∥∥)
≤ √k max

i∈Ik

(σiδi) = σ1δ − σk+1 (19)

where � · �F is the Frobenius norm. The second inequality
is valid due to the fact that �W� ≤ �W�F , for an arbitrary
matrix W ∈ CN×M [23], [24]. Finally, the last equality of (19)
can be proven by replacing δi in (10). �

Theorem 1: Let (8) be solved with δi defined in (10) and
set (9). Then,

σk+1

σ1
≤

∥∥B− AX
∥∥

�B� ≤ δ. (20)

Proof: Multiplying a normalization factor �B� = σ1 to
both sides, (20) can be rewritten as

σk+1 ≤
∥∥B− AX

∥∥ ≤ σ1δ. (21)

For the upper bound, the following equation provides a
starting point:

∥∥B− AX
∥∥ =

∥∥∥∥∥∥
∑
i∈IM

(Bi − AXi)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
i∈Ik

(Bi − AXi)

∥∥∥∥∥∥︸ ︷︷ ︸
Controllable with δi

+
∥∥∥∥∥∥

∑
i∈IM−Ik

(Bi − AXi)

∥∥∥∥∥∥︸ ︷︷ ︸
Fixed with k

.

(22)

In addition, Xi for i ∈ IM − Ik can be regarded as a zero
matrix with (9). Thus, the second term on the RHS of (22) is
simply σk+1 because∥∥∥∥∥∥

∑
i∈IM−Ik

(Bi − AXi )

∥∥∥∥∥∥ =
∥∥∥∥∥∥

∑
i∈IM−Ik

Bi

∥∥∥∥∥∥ = σk+1 . (23)

Then, with Lemma 1 and (23), (22) can be rewritten as∥∥B− AX
∥∥ ≤ σ1δ. (24)

The lower bound is a simple result of the Eckart–Young–
Mirsky theorem [31], [32]. According to the theorem,

σk+1 =
∥∥∥∥∥∥B−

∑
i∈Ik

Bi

∥∥∥∥∥∥ ≤
∥∥B− W̃

∥∥ (25)

where the summation of Bi can be regarded as a rank-k
approximation of B and W̃ ∈ CN×M is an arbitrary matrix

having with a rank of at most k. The lower bound is obviously
valid because AX has a rank of at most k. �

One thing to note is that the RHS of (22) can be divided
into two parts. The first part is controllable with tolerance δi .
The second term is fixed when k is determined in (7). With
this view, the lower bound (21) can also be justified. Also, the
relative error �r approaches the lower bounds whenever (8) is
solved more accurately. In other words, it should be empha-
sized that no matter how precisely the singular vectors are
solved, even direct solver, the accuracy of the solution is
limited by the lower bounds. Thus, for engineering applica-
tions, the tolerance is needed to be optimized. Consequently,
Algorithm 1 proposes an optimal error tolerance in (10) to
minimize the computational resources while also ensuring the
bounds of the relative error of the target.

Even if the error of the matrix equation �r is bounded, one
can argue that �r does not represent the error for each incident
vector. One possible upper bound for all incident vectors is

�bi − Axi� ≤ σ1δ, (∀i ∈ IM) (26)

due to the definition of (1). This fact can be easily
proven with (24) and a canonical basis vector, e.g., ê2 =
[0, 1, . . . , 0]T . Note that the i th column vector of any matrix
W ∈ CN×M can be extracted by multiplication of êi ∈ CM

to W. However, this approach is not tight enough for practical
usage, especially when the compression rate is high (in that,
k/M is small). Alternatively, the trend can be expected with
root-mean-square (rms) errors for all incident vectors. Here,
the upper and lower bounds of the rms errors are introduced
by Corollary 1.

Corollary 1: Let (8) be solved with δi defined in (10) and
set (9). Then,

σk+1√
M
≤ �rms ≤

√
k(σ1δ − σk+1)+

√∑
i∈IM−Ik

σ 2
i√

M
(27)

where �rms is a quadratic mean of relative errors defined by

�rms :=
√∑

i∈IM
�bi − Axi�2

M
. (28)

Proof: For an arbitrary matrix, W ∈ CN×M , it is easy
to prove that the rms of the norms of the column vectors
can be rewritten by the Frobenius norm divided by

√
M .

Namely,

�rms =
√∑

i∈IM
�bi − Axi�2

M
=

∥∥B− AX
∥∥

F√
M

. (29)

The lower bound is easy to prove according to the properties
of the matrix norm [23], [24]. Namely,∥∥B− AX

∥∥ ≤ ∥∥B− AX
∥∥

F
. (30)

Using the lower bound of (21), (30) can be rewritten as

σk+1√
M
≤

∥∥B− AX
∥∥

√
M

≤ �rms. (31)
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The upper bound can be derived with the similar idea of
the proof in Lemma 1

∥∥B− AX
∥∥

F
=

∥∥∥∥∥∥
∑
i∈IM

(Bi − AXi)

∥∥∥∥∥∥
F

≤
∥∥∥∥∥∥
∑
i∈Ik

(Bi − AXi)

∥∥∥∥∥∥
F

+
∥∥∥∥∥∥

∑
i∈IM−Ik

(Bi − AXi )

∥∥∥∥∥∥
F

=
∥∥∥[

ξ 1 · · · ξ k

]
�1:k

∥∥∥
F
+

∥∥∥�k+1:M
∥∥∥

F

≤
∥∥∥∥[

ξ 1�ξ 1� · · ·
ξ k�ξ k�

]∥∥∥∥
F

√∑
i∈Ik

σ 2
i

∥∥ξ i

∥∥2

+
√∑

i∈IM−Ik

σ 2
i

≤ √k(σ1δ − σk+1)+
√∑

i∈IM−Ik

σ 2
i . (32)

The second equality is valid because the Frobenius norm is
invariant under unitary operation. For example,∥∥∥∥∥∥

∑
i∈Ik

(Bi − AXi)

∥∥∥∥∥∥
F

=
∥∥∥�VH

1:k
∥∥∥

F

= trace
((

�VH
1:k

)H
�VH

1:k
)

= trace
(
V1:k�H �VH

1:k
)

= trace
(
VH

1:kV1:k�H�
)

= trace
(
�H �

) = ���F

=
∥∥∥[

ξ 1 · · · ξ k

]
�1:k

∥∥∥
F

(33)

where � := [
ξ 1 · · · ξ k

]
�1:k . The last inequality is from

�ξ i� ≤ δi in (17). Finally, the upper bounds of (27) can be
proven by dividing (32) by

√
M . �

E. Acceleration With a Variant of GCR for Multiple RHSs

Even with the optimal choice of the number of RHSs,
further speedup can be achieved with the block version of
the Krylov subspace methods. A simple variant block GCR
for multiple RHSs is suggested to validate the extra speedup,
as shown in Algorithm 2. In the algorithm, α, β, and γ ∈ C.
In addition, all vectors z, r, and s ∈ CN . The superscripts
and subscripts represent the indices for singular vectors and
iterations, respectively. The notation < x, y > represent the
inner products. Basically, Algorithm 2 constructs the search
vectors (s j and v j ) to update the numerical solutions (zi

j )
and residual vectors (ri

j ). A common choice [33], [34] for
the initial guesses and initial search vectors is zero vectors
(ri

0 = ui
0) and s j = r j−1, respectively. One difference is that

one residual vector having the largest norm becomes the next
search vector. Thus, the algorithm is allowed to conduct only
one matrix–vector multiplication (MVM) for every iteration
(v j ← As j ). Because all solution and residual vectors are
updated with the same Krylov subspace, the proposed block
GCR can reduce the number of required MVMs.

The truncation of Krylov subspace is needed for the block
GCR due to limited computational resources. We propose

Algorithm 2 Variant Block GCR for Multiple RHSs

Given: AN×N , ui , and δi , ∀i ∈ Ik , in (8) and (10)
Result: zi , ∀i ∈ Ik

Initialize zi
0 = 0 and ri

0 = ui , ∀i ∈ Ik

Initialize v j = 0 and s j = 0, ∀ j ∈ I jmax

Set s1 = r p
0 , where p = argmax

i∈Ik

∥∥ri
0

∥∥
flagi ← false, ∀i ∈ Ik

for j ← 1 to jmax do
v j ← As j % Only one MVM
for q ← 1 to j − 1 do

α←< v j , vq >
v j ← v j − αvq

s j ← s j − αsq

end for
β ← ∥∥v j

∥∥
v j ← v j/β
s j ← s j/β
for i ← 1 to k do % for all singular vectors

if (flagi == true) cycle
γ ←< ri

j−1, v j >

zi
j ← zi

j−1 + γ r j

ri
j ← ri

j−1 − γ v j

if (
∥∥∥ri

j

∥∥∥ ≤ δi ) flagi ← true
end for
if (flagi == true, ∀i ∈ Ik) exit
s j+1 = r p

j , where p = argmax
i

∥∥∥ri
j

∥∥∥
end for
zi ← zi

j

that one search vector can be abandoned and replaced with a
new search vector every iteration after reaching the maximum
number of stored Krylov vectors. The replacement vector is
chosen with the following index:

q = argmin
l

< vl, v j > (34)

where v j is the current search vector and vl are the stored
previous search vectors. The vector vq is the most similar
to the new search vector. The effect of the block GCR with
truncation is shown in Section III-D.

III. NUMERICAL VALIDATION

This section gives the numerical evidence used to validate
Theorem 1 and Corollary 1. We computed and compared
the upper and lower bounds and the actual relative error �r

with different tolerances. In addition, the numerical examples
indicate the efficiency of the computation of angular responses
with the proposed algorithm. Throughout the experiments,
we applied the algorithm to the discontinuous Galerkin integral
equation (IEDG) method [35] with the multilevel fast mul-
tipole method (MLFMM) [36]. The targets were discretized
by nonconformal and mixed triangles and quadrilaterals.
All computations were conducted using workstations in the
Owens Cluster at the Ohio Supercomputer Center (OSC) [37].
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Fig. 1. PEC cuboid cavity.

The first two targets were computed with nodes with two
14-core Intel Xeon E5-2680 v4 (2.40 GHz) processors and
128 GB memory. The last fighter jet example was com-
puted with nodes with four 12-core Intel Xeon E5-4830
v3 (2.10 GHz) processors and 1536 GB memory. The three
targets defined in this section have different electrical sizes,
geometrical complexities, and materials.

A. Target

1) Perfect Electric Conductor Cuboid Cavity: In Fig. 1,
the first example is plotted. The target is a perfect electric
conductor (PEC) cuboid cavity with an open left side. The
frequency is 600 MHz, and the size of the cube that surrounds
the cavity is 6λ0, where λ0 is the free-space wavelength. The
mesh is prepared with size λ0/6, and the number of unknowns
is 30 704. The desired angular responses are −180◦ ≤ ϕ ≤
180◦ and θ = 90◦, with fixed polarization angles 0◦. We set
the number of incident angles M as 181 with �ϕ = 2◦ and
�θ = 0, whose values meet (4). The tolerance �r is set to the
values ranging from 10−7 to 10−3.

2) Finite-Conductivity Cylindrical Cavity: The next exam-
ple is more difficult to solve; it is a cylindrical cavity
made of real metal, as described in Fig. 2. This target is a
high-resonance structure with thin-aperture slots located on
the front of the cylinder (0.508 × 50.8 mm). The height is
609.6 mm, and the inner radius is 101.6 mm. The thickness
of the metal is 6.35 mm. The metal has a finite conductivity,
σ = 2.6 × 107 [S/m], so we apply the impedance boundary
condition (IBC) [38], [39], [40], [41], [42] to approximate
the imperfect electric conductivity. The first theoretical reso-
nance frequency is at 1129.391 MHz for transverse magnetic
(TM) mode. In this experiment, the operating frequency is
1132.4207 MHz, which is the experimental resonance fre-
quency with the given mesh and simulation setup. The cylinder
is discretized with a maximum mesh size of approximately
λ0/15, and the number of unknowns is 28 944. In addition,
the size of the cube enclosing the cylinder in wavelengths
is approximately 2.35λ0. For this example, the 2-D angular
responses are computed. The interesting angular sector is
−60◦ ≤ ϕ ≤ 60◦ and 70◦ ≤ θ ≤ 110◦ with a 0◦ polarization
angle. With (4), we set �ϕ = 4◦ and �θ = 4◦ for the
azimuthal and elevation angles, respectively. Thus, the total
number is M = 341. The tolerance �r also ranges from 10−7

Fig. 2. Finite-conductivity cylindrical cavity.

Fig. 3. Problem domain of the PEC F-16 fighter jet and examples of
nonconformal meshes.

to 10−3. With this target, we can show the effectiveness of
the proposed method in the case of a 2-D angular sweep and
targets made from a realistic material.

3) PEC F-16 Fighter Jet: To show the robustness of the
error control of the proposed algorithm, we choose an electri-
cally large target, the PEC F-16 fighter jet (Figs. 3 and 4),
which has a large electrical size and a complicated geometry.
Taking advantage of IEDG, all targets can be divided into
45 parts and meshed independently. As a result, a nonconfor-
mal mesh is prepared, and the total number of unknowns is
7 700 888, with an average mesh size of λ0/5.

Note that the intake is closed with the flat surface in this
example. In this study, the operating frequency is 5 GHz;
accordingly, the longest dimension of the target is approxi-
mately 250.33λ0. In addition, the desired angle of the incident
fields is fixed at θ = 90◦, and −10◦ ≤ ϕ ≤ 10◦ is swept, with
a 0◦ polarization angle. The optimal angular step we choose
is 0.1◦ according to (4); therefore, a total of 201 incident
vectors are used. The tolerance �r varies from 10−4 to 10−2.

B. Singular Values

Fig. 5 shows the singular values for the numerical exam-
ples on a semilogarithmic scale. The singular values for
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Fig. 4. Surface electric current distribution of the PEC F-16 fighter jet at a
head-on incident angle (ϕ = 0◦ and θ = 90◦).

TABLE I

NUMBER OF SINGULAR VECTORS, k , AS A FUNCTION OF TOLERANCE δ

the excitation matrix B are plotted with solid lines. The
other lines represent the singular values of the error matrices
(E := B−AX) with respect to the target tolerance δ. It should
be noted that the computation of σ(E) is just for debugging
purposes, to verify the error bounds. The maximum singular
values of incident matrices B and E are the normalization fac-
tor and the actual error in Theorem 1, respectively. In addition,
Table I presents the number of singular vectors k, which is
determined by (7), in terms of the given tolerance δ.

C. Error Bounds

As shown in Fig. 6, the error bounds of Theorem 1 are
numerically validated. In Fig. 6, the actual error �r and the
theoretical bounds are provided with the given tolerances on

Fig. 5. Singular value distribution (σ ) for various targets. (a) PEC cuboid
cavity. (b) IBC cylinder cavity. (c) PEC F-16 fighter jet.

logarithmic scales. As mentioned above, the actual relative
errors are computed with the singular values of E, which are
shown by the red line with the diamond marker. The black
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Fig. 6. Actual relative error (�r ) and its bounds with respect to the given
tolerance δ. (a) PEC cuboid cavity. (b) IBC cylinder cavity. (c) PEC F-16
fighter jet.

solid line represents the upper bound, which is identical to
the predetermined tolerance δ. The blue lines with asterisk
markers represent the lower bounds. The magnified subfigures
are depicted at the bottom left of the figures. According to

Fig. 7. Individual error (�bi −Axi�) for all incident angles. (a) PEC cuboid
cavity. (b) IBC cylinder cavity. (c) PEC F-16 fighter jet.

the results, it is numerically confirmed that the actual errors
reside between the error bounds.

In addition, in Fig. 7, the semilogarithmic plots provide the
individual errors of all incident vectors and their rms values
in terms of the global tolerance δ. Fig. 8 shows the rms values
with the theoretical upper and lower bounds as a function of
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the global tolerance δ on logarithmic scales. All errors and
rms values are obtained by actual computation of E from the
recovered solution X. The actual rms error, the upper bounds,
and the lower bounds are shown in a similar way to that of
Fig. 6. As shown in Fig. 8, the numerical examples satisfy
Corollary 1.

As shown in this section, both the actual �r and �rms are
bounded, as proven in Theorem 1 and Corollary 1. Hence,
our suggested approach can readily estimate and control the
error of the solutions with a predetermined global tolerance.
Section III-D numerically validates the benefit of the proposed
algorithm, i.e., different tolerances for different singular vec-
tors, as well as the block version of the GCR.

D. Computational Costs

In this section, the computational costs are provided by
comparing the wall time, the number of MVMs, and the
required memory for the iterative solver. The experiment is
designed with the following four cases. The first case (Case 1)
is regarded as a baseline with the conventional way to solve
with multiple RHSs. Namely, after assembling the system
matrix, each incident vector is solved individually. To make
a fair comparison, the tolerances for each incident vector are
taken from the actual data of �bi−Axi� in Fig. 7. For the PEC
F-16 target, we estimate the number of MVMs and the wall
time for the solution process using the 20 angles data samples
due to the observation that the number of iterations is nearly
identical for all incident angles. The next case (Case 2) uses
a rank-k approximation of B in (7), but the tolerance of each
singular vector is set to

δi = 1√
k

(
δ − σk+1

σ1

)
(35)

for i ∈ Ik . This is a reasonable choice to ensure that the
accuracy between the second and third cases is similar because∥∥B− AX

∥∥ ≤ √k max
i∈Ik

(σiδi)+ σk+1 = σ1δ (36)

from (19) and (22). In addition, we use Algorithm 1 for the
third (Case 3) and the last cases (Case 4). The conventional
GCR and the modified block GCR introduced in Algorithm 2
are used for the third and fourth cases, respectively. Note
that the data discussed in Sections III-B and III-C were
collected from the third case. Also, the number of truncations
of the Krylov subspace for both the conventional GCR and
the modified block GCR for MRHSs ( jmax) is fixed 100.
Fig. 9 shows the number of MVMs with respect to the
target tolerances for each case. By comparing Cases 1 and 2
in Fig. 9, we can observe a significant reduction of the
number of RHSs with a low-rank approximation as expected.
According to Case 3, the recommended tolerance (δi ) for
each singular vector in (10) improves the number of MVMs
compared to Case 2. In addition, the results from comparing
Cases 3 and 4 further show the meaningful reduction in the
number of MVMs. Table II shows the wall time statistics of
the above experiment. As expected, the solution time for all
examples tends to be proportional to the number of MVMs
because the majority of the time-consuming portion is MVM

Fig. 8. Actual rms of the individual error (�rms ) and its bounds with respect to
the given tolerance δ. (a) PEC cuboid cavity. (b) IBC cylinder cavity. (c) PEC
F-16 fighter jet.

during the iterative solution process. Note that the wall time
in Table II does not include the SVD times that are 20.3 s,
27.8 s, and 39.3 min for targets 1, 2, and 3, respectively.

Table III shows the summary of the memory requirements
during the solution process. The memory for the 100 search
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TABLE II

SOLUTION TIME (WALL TIME) AS A FUNCTION OF TOLERANCE δ

TABLE III

PEAK MEMORY FOR SOLUTION PROCESS

AS A FUNCTION OF TOLERANCE δ

vectors (95.71 MB, 91.38 MB, and 23.95 GB for targets 1, 2,
and 3, respectively) is embedded in the numbers in Table III.
It requires for Case 1 to store fixed 181, 341, and 201 RHS
vectors for different tolerances. On the other hand, Cases 2–4
need the different memories depending on the number of
singular vectors, as shown in Table I. Also, Cases 2 and 3
have identical values since both cases use exactly the same
procedure except for the tolerance of the iterative solver (δi ).
Case 4 requires the additional memory for the solution and
residual vectors (zi and ri ) in Algorithm 2 for all singular
vectors. Note that the values in Table III are minor compared
to the memory requirements of the system matrices (A), which
are 3.823, 7.293, and 478.5 GB for each target.

E. Application: Monostatic Radar Cross Section of F-16

In this section, a practical but challenging example is
considered, the computation of the 2-D monostatic radar cross

Fig. 9. Number of MVM for each case. (a) PEC cuboid cavity. (b) IBC
cylinder cavity. (c) PEC F-16 jet fighter.

section (RCS) of an F-16 with a deep cavity intake. Basically,
the problem geometry is similar to that of the PEC F-16 in
Section III-A3; however, there are three differences. First, the
operating frequency is 8 GHz, which is the typical starting
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Fig. 10. PEC F-16 model with a deep cavity intake (blue parts). (a) Side
view. (b) Cross section at the intake of the F-16 jet fighter.

Fig. 11. Singular value distribution for the first block for the F-16 model
with a deep cavity intake (−2.0◦ ≤ ϕ ≤ −1.05◦ and 88.0◦ ≤ θ ≤ 89.0◦).

frequency of the X-band [43]. With the higher frequency,
the target size is approximately 400.53λ; hence, the number
of basis functions is 23 194 584 with λ/5 meshes. Second,
different from the closed intake in Section III-A3, the engine
intake is modeled as a deep concave structure, which is the
resonance structure shown in Fig. 10. One can expect that
the convergence behavior is deteriorated due to the resonance
structure. Finally, the required number of angular responses is
significantly larger according to (4). In our experiment, �ϕ
and �θ are both 0.05◦. The angular responses of interest are
−2◦ ≤ ϕ ≤ 2◦ and 88◦ ≤ θ ≤ 91◦ with a 0◦ polarization angle.
As a result, the total number of RHS is M = 5001. Because of
the batch limits at the OSC, the 5001 RHSs were divided into
12 blocks; hence, each block typically consisted of 420 RHSs.

Fig. 12. Monostatic RCS (unit: dBsm) of the F-16 model with a deep cavity
intake.

Since we observed that each block behaves similarly, the data
of the first block (a typical block) are presented as follows. The
incident angles for the first block are −2.0◦ ≤ ϕ ≤ −1.05◦
and 88.0◦ ≤ θ ≤ 89◦. Fig. 11 shows the distribution of the first
20 singular values of the block. According to Algorithm 1, the
first 18 singular vectors were retained to solve from 420 RHS
vectors in this block. In addition, the singular values obtained
by the conventional SVD (σi ) and PCA (σ i ) are plotted in this
figure. Furthermore, the relative difference, ei := (σi−σ i)/σi ,
is presented in Fig. 11 to validate that the PCA approach
is as accurate as the conventional SVD. Fig. 12 shows the
monostatic RCS of PEC F-16 with a deep cavity intake. As a
self-consistency, the RCS plot is symmetric with respect to
φ = 0◦. One interesting point is that the peak points are
not located at the head-on incident direction (ϕ = 0◦ and
θ = 90◦) but slightly lower and to the side of it (ϕ = 21.7◦
and θ = 90.75◦). Finally, Table IV summarizes the wall time
for the entire 12 blocks (5001 RHS vectors). In this table, the
“naive approach” is quite similar to case 1 in Section III-D, but
the tolerance is fixed to 10−2. In addition, the total solution
time is estimated by the solution time for the first 20 RHS
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TABLE IV

WALL TIME COMPARISON (HH)

vectors. On the other hand, the “approach in this article”
used Algorithms 1 and 2, which is the same as Case 4 in
Section III-D. As shown in Table IV, the speedup is almost
73.6 times if PCA is utilized. For both approaches, the peak
memory is the same, at 1110.35 GB, because the majority of
the memory required is for the system matrix (1041.22 GB)
and 100 Krylov vectors (69.13 GB). The comparison between
the proposed factorization using the conventional SVD and
using PCA is also included in Table IV. Wall time for PCA
for the entire 5001 RHSs is about 7.86 h, which is a significant
improvement compared to 98.4 h. Therefore, the speedup
of the factorization process is about 12.51. Note that the
factorization time for the entire 12 blocks with conventional
SVD is estimated based on 8.2 h of the first (typical) block
of 420 RHS vectors.

IV. CONCLUSION

In this article, an efficient and error-controllable algorithm
has been proposed. Also, it was proved and numerically
validated that the numerical error is bounded with the algo-
rithm. In addition, the block version of GCR can effectively
accelerate the solution time with a limited increase in memory.
Although the proposed method was applied to electromag-
netic scattering via the IEDG framework, the algorithm can
be extended to any other method with multiple RHSs, for
example, FEM-based algorithm [44], [45], [46], [47].
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