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Deep Spatial Interpolation of Rain Field
for U.K. Satellite Networks
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David C. Paul, Zhikui Duan, and Jun Chen

Abstract— This article presents two new state-of-the-art spa-
tial rain field interpolation convolutional neural networks
(SRFICNNs), referred to as learned deviation (LD) and learned
interpolation (LI) models, for predicting the point rain rate
at finer spatial scales. The main contribution is the success-
ful introduction of the prior-art deep learning technique into
high-resolution (HR) rainfall rate prediction with significant
improvement in accuracy. This is very important for the effective
implementation of fade mitigation techniques for both terrestrial
and satellite networks. The comparison of the models’ perfor-
mances with ground truth (radar measurements) shows that the
proposed models give an excellent mean square error (MSE) and
structural SIMilarity (SSIM) in rainfall field reconstruction if the
network depth falls in the range of 15–25 weight layers. The final
model uses 20 layers for HR point rain rate prediction. Further
study shows that the LD model offers a faster convergence
and yields a more accurate rain rate prediction. In particular,
this article compares the rain rate exceedance distribution and
Log-Normality property from the model estimates with values
calculated from measured data. Results show that the LD model
gives a highly accurate estimate of these two indices with the
corresponding root mean square (rms) error of 5.1709 × 10−4

and 0.0013, respectively.
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I. INTRODUCTION

RAIN absorbs and scatters microwave signals at frequen-
cies above 10 GHz leading to signal attenuation and

reduction of terrestrial and satellite communication systems
availability [1], [2].

The planning and design of next-generation satellite network
systems require high space-resolution rain data to accurately
predict the attenuation statistics. This is particularly true for
the effective implementation of some applications, i.e., fade
mitigation techniques (FMTs), site diversity techniques, and
the prediction of instantaneous joint fade experienced by all
the links in an arbitrary microwave network [3], [4]. However,
high-space-resolution rain data are often unavailable for wide
areas, and the cost of such measurements is prohibitive [5].
This fundamental issue has stymied progress in rain modeling
for a long time. To address this problem, many interpolation
algorithms have been proposed over the last few decades.
For example, the Random Midpoint Displacement algorithm
(RMD) developed by Voss [6] is one of the widely used
interpolation techniques. It improves the space resolution by
introducing new rain rate samples at new locations without
changing the underlying distribution. The fractal theory [7] has
also attracted a significant amount of attention and has been
applied to the study of rain since the mid-1980s [8]. Many
studies have demonstrated that rain inherits fractal properties
over a range of scales, and this is strongly favored for rain
modeling [9], [10], [11]. For example, the multi-fractal model
developed by Xu et al. [12] can interpolate the Tropical
Rainfall Measurement Mission (TRMM) rain products to finer
space scales with reasonable accuracy. The averaging theory-
based downscaling model is an alternative technique that has
attracted significant attention from researchers. For exam-
ple, Luini and Capsoni [13] investigated the effect of space
and/or time integration on the spatial correlation functions
of rain. Also, the authors’ previous work proposed a new
interpolation approach with a comprehensive study of four key
rain characteristics using the averaging theory as well [14].
It provides a wide range of space and/or time resolution rain
field simulations for Northwest Europe with high levels of
accuracy.

Despite progress in rain study over the last few decades,
there are severe limits to what can be accurately simulated.
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This mainly stems from the extremely high variability of
rainfall, causing difficulty in explicitly grasping the underly-
ing properties of rain distribution. Therefore, artificial neural
networks (ANNs) have been used to assist in rain modeling.
For example, Sharifi et al use three downscaling algorithms,
including ANNs, to predict the high space resolution rain rate
in Northeast Australia [11]. Also, based on ANNs, a model
proposed by Ayo et al. [15] can forecast real-time rain atten-
uation and serve as a good tool for satellite-based digital
transmission systems in South Africa. In recent advances,
deep learning, particularly the convolutional neural networks
(CNNs), is proving to be a major breakthrough and a highly
powerful tool to automatically discover the features needed for
detection or classification with a very little engineering. Deep
learning has been extensively applied in multidisciplinary
fields, including image processing [16], object detection [17],
and precipitation forecasting [18]. Results show that CNNs
are highly effective in extracting feature representations from
raw data by interleaving convolutional and pooling layers.
In the wake of this success in many other fields and thanks
to the increased data availability and computational resources,
the use of deep learning is now finally being applied to rain
study as well. Knowing that rain is highly variable in both
space and time leading to non-linear or chaotic spatio-temporal
variations, it is logical to claim that no single interpolation
or downscaling method can be considered efficient enough
for fine-scale rain rate prediction. In data with complex
topographies, quasi-periodicities, and non-linearities, such as
rain, deep learning-based methods provide a potential solution
in interpolating apparatus-derived observation into higher reso-
lutions. This is because such a method is capable of exploiting
the underlying distribution of rain learned exclusively from
historical radar measurements, instead of handcrafting the rain
characteristics that are designed based mainly on mathematical
models, such as those in [12], [19], and [20]. Therefore, deep
learning is highly suitable for the study of rain. However, only
a few studies that have applied the CNNs technique to rain
modeling have been reported in the open literature. A repre-
sentative model developed by Polz et al. [21] has proved that
CNNs are a robust and promising tool in detecting both rain
events and rain-induced attenuation patterns in commercial
microwave links covering all of Germany on an hourly basis.
Another example is the study presented in [22] for which
the authors employed three deep learning-based algorithms to
produce 4× times higher resolution rainfall data during the
summer monsoon season. It shows that deep learning-based
methods provide an efficient solution in downscaling rainfall
data to high spatial resolution.

The lack of high-resolution (HR) rain rate data has long
been a challenging issue for accurate performance prediction
of satellite and terrestrial high-frequency network links over
wide areas. This is primarily due to the high variability of
rain which impacts the accuracy of rain attenuation modeling.
From open literature, there are very limited studies of rain
that employ the strength of deep learning, although these new
techniques can potentially be more accurate than traditional
ones. Inspiringly, the recent developments, i.e., [23], [24],
in the super-resolution (SR) of a single image have pointed out

a new direction in interpolating rain estimates into high space
resolution. In this article, we have proposed two new deep
learning-based models. These are the learned interpolation (LI)
model and the learned deviation (LD) model, with the help
of the CNNs technique. The key objective is to develop a
new method for predicting rain rate at finer spatial scales and
provide a new approach to studying rain-induced attenuation
for radio-wave propagation and wireless communication.

The rest of this article is organized as follows. Section II
describes the data used in this study, and Section III
presents the methodology proposed. We also describe the data
pre-processing in detail and introduce the general architec-
ture of the proposed spatial rain field interpolation CNNs
(SRFICNNs) technique. The experimental results achieved
from the proposed models are presented in Section IV.
Here, we analyze the model prediction from a computer
vision perspective and provide simulated rainfall fields for
visualization. Section V validates the models’ performance
from three aspects; error percentage, rain rate exceedance,
and log-Normality property, to show the accuracy of the
proposed models. The advantages and disadvantages of
deep learning-based rain modeling are further discussed in
Section VI. Conclusions are drawn in Section VII.

II. DATA DESCRIPTION

The experimental data used in this study is provided by
the Centre for Environmental Data Analysis (CEDA). One of
its databases is provided by the U.K. Meteorological Office
NIMROD radar system which has 15 C-band rainfall weather
radar installations covering the whole of the British Isles.
NIMROD data is continuously updated and CEDA ensures
the long-term integrity of the data. Four to five radars repeat
the scan at different elevations to build 3-D scans of the area
from which the best estimates of rain rates on the ground
are established (details about the NIMROD radar system are
given in [25]). The U.K. rainfall rate estimates are recorded
on a grid matrix of 1725 × 2175 km. The rain field maps
are continuously generated at a sampling interval of 5 min
while the coverage of each grid point varies from 1 × 1 km
to 5 × 5 km depending on the distance to the nearest radar.
In addition, the NIMROD data has been validated using rain
gauge measurements, and a range of data is used to calibrate
the radars. Although there are some differences between radar
estimates and rain gauge data due to spatial averaging, this
does not affect the accuracy significantly. For example, the
1 km NIMROD data has been shown to yield unbiased
estimates of annual 0.01% exceed rain rates [26].

Fig. 1 shows a typical composite rain rate image of the
U.K. The gray color is the area outside the range of the
radar network where no rain data is available, and the black
color represents the scanned area where data can be obtained.
Each image ranges from 46.7343◦ to 60.4010◦ in latitude and
−14.0766◦ to 8.4178◦ in longitude.

The NIMROD system uses data collected from range/height
indicator (RHI) scans at several elevations to estimate the
rain rates at different altitudes and combines these datasets
to predict the rain rate at ground level. However, the ground
rain rates are not quantized because complex spatial-temporal
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Fig. 1. NIMROD composite images of precipitation rates for the British
Isles with 1 km sampling.

processing is always involved, see [27]. Given that applications
in radio propagation require knowledge of rain variation over
much shorter spatial scales, i.e., a typical Fresnel zone of a
few tens of meters, the majority of meteorological data cannot
meet this requirement. So a new approach that can address
this problem is required to predict rain rates at finer scales.
In this study, we computed 8436 (one month) continuous 5 km
NIMROD radar data to develop deep learning-based models
for predicting the up-scaled rain fields. We contrasted and
validated the models’ performance by comparing the results
with the measurements achieved from 1 km U.K. rain rate
data.

III. METHODOLOGY

A. Rainfall Rate

Accurate prediction of rain attenuation statistics requires a
good understanding of rain, particularly those at finer scales.
According to Rec. ITU-R P. 838-3 [28], the relationship
between specific attenuation γ (dB/km) and rainfall rate R
(mm/h) along the links can be approximately defined as a
power-law model

γ ∼= αRβ (1)

where α and β are the parameters related to frequency, wave
polarization, and link elevation angle.

The accuracy and resolution of attenuation γ (dB/km)
strongly depend on the rainfall rate, R, since α and β are
only frequency-related [29]. Knowing that the rainfall rate at
a given location x = [x1, x2] refers to the amount of rain that
falls over an interval of time assuming that the rainfall intensity
over that time period was constant. The NIMROD composite
rain maps are represented on a Cartesian grid and each point
contains the area-time averaged rain intensity. Therefore, the
instantaneous averaged rainfall rate centered on a grid point
with an area of A = L2 over time T can be expressed as
in [30]

R(L, T ) = 1

AT

∫ T
2

− T
2

dt
∫ L

2

− L
2

∫ L
2

− L
2

r(x, t)da (2)

where r(x, t) represents the point rainfall rate at location x
and time t on a 2-D Cartesian grid. The intervals T and L are
the temporal and spatial integration lengths, respectively.

If interval T is fixed, then (2) can be simplified to
describe the instantaneous area-averaged rainfall rate at time t ,
that is,

R(t) = 1

A

∫ L
2

− L
2

∫ L
2

− L
2

r(x, t)da. (3)

The key objective of the designed SRFICNNs is to obtain
the rate estimates at L � (L � < L).

B. Pre-Processing of NIMROD Radar Data

The raw NIMROD radar data must be pre-processed before
training and testing the designed CNNs. The main processing
includes partitioning, cropping, and augmentation, see details
as follows.

1) Partitioning: As aforementioned in the literature, deep
learning generally benefits from big data training. Following
the proportion division that is widely used in the CNNs design,
i.e., [23], we split the NIMROD data into three independent
subsets. The first is the training dataset, which is used to fit
the model parameters, so-called weights. This subset includes
7592 radar images, so the network has sufficient data to learn.
CNN requires the input and output to be of the same size
and hence this part of the data is up-scaled to the desired
size—the one held by 1 km data, using some technique
(i.e., bicubic interpolation [24]). The second is the validation
dataset. It provides an unbiased evaluation of a model fit to
the training dataset while tuning the model’s hyperparameters
(i.e., the number of hidden units—layer depths and channel
widths). This subset is used for regularization by stopping
early and the optimization of model parameters. It efficiently
prevents the model from overfitting the training data. The rest
of the data is the testing dataset (reference label), which is
used as ground truth for assessing the final model selected
during the validation process. In particular, it should be
highlighted that the division follows the random sampling
principle and no repeated sampling is allowed. The random
sampling principle ensures the fairness of the experiment and
avoids the occasionality caused by human intervention, while
the non-repeatability guarantees that the three sub-datasets are
mutual-exclusive and independent so no adverse effect on the
outcome will happen.

2) Cropping: The original radar maps span irregular-shaped
areas covered by the radars, and contain large gray areas
where data is unavailable, see Fig. 2(a). Such areas do not
contribute to network training and are excluded from train-
ing. Note that the radar estimates are mainly available for
the continental areas, so data beyond the radar scan range,
typically the oceanic areas, are not involved in the model
development. In addition, using the data from regularly shaped
areas can significantly reduce network complexity. Therefore,
we cropped the original radar maps Fig. 2(a) to be Fig. 2(b),
making the observed rain events to be concentrated on the
majority continental part of the British Isles. This allows
the extraction and modeling of the rain characteristics of
each region in a better way. The size of the cropped area
is 1460 × 740 km, ranging from 48.8780◦ to 49.0147◦ in
latitude and −4.5507◦ to −3.2615◦ in longitude. It should
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Fig. 2. Rain field plotting of NIMROD products. (a) Original radar-derived
rain map. (b) Cropped map focus on British continent.

Fig. 3. Example of data augmentation. (a) Cropped image and (b) image
patch randomly extracted from (a) with grid size of 41 × 41. (c) Rotation
transformation for which (b) is rotated 90◦ clockwise. (d) Mirror-symmetric
image for (b).

be highlighted that locations with no data will be assigned
0 by default to guarantee the following processing works
normally.

3) Augmentation: Using a common strategy in image
processing, see [31], augmentation needs to be applied to
expand the amount of data in the training set. To be specific,
eight overlapping patches from the input radar map are ran-
domly extracted and pre-processed before training. Note that
the grid is 41 × 41 with the size of each patch representing
an area of 205 × 205 km because the statistical distribution
of rain will become stable and converge to constant values
when the map size is greater than 200 × 200 km, see [32].
In particular, the sample amount is expanded via rotation
transformation and horizontal flip, so the diversity of input
data can be largely enhanced. Fig. 3 presents an example of
data augmentation. Here, Fig. 3(b) shows one of the eight
randomly extracted patches from Fig. 3(a), and each patch
undergo the processing steps in Fig. 3(c) and (d) to achieve
the data augmentation. This is helpful for the improvement of
the models’ robustness.

C. Convolutional Neural Network

1) Training Setup: CNN, as a feed-forward neural network,
is trained by a supervised learning method [33]. Batches of
samples are passed through the network and the outputs are
compared to the reference labels. In this article, the batch

size used is 64. After each batch, a loss function is computed
and the parameters are updated according to a learning rule.
From the experiment, it was found that indicators used for
model assessment will converge to a stable value of around
80 epochs. Hence, in this study, the default epoch amount is set
as 100, and each epoch will experience 949 iterations. Also,
the scale factor (SF), the number of times that the resolution is
expected to be improved, was set as 5 for validation purposes
since 1 km data is available. Other SF values have also been
studied although the results are not presented in this article.
In particular, the Adam optimizer has been introduced to
reduce the computation time. Following the study in [34],
the initial learning rate was set as 0.001 and is halved every
10 epochs.

Extensive studies have demonstrated that a large receptive
field can adequately capture the local correlation between
the central pixel and surroundings in a wider range [35].
This is because the information contained in a small patch
is insufficient for detail recovery if a large SF is applied in
the model. In practice, this center-surround relation is widely
used in SR image processing (i.e., [23]) since the surrounding
region provides more constraints to the SR issue. With regard
to the rain study, if the rain events are entirely contained in a
receptive field, it is possible for the network to adequately
recognize the underlying properties of rain (i.e., horizontal
structure of rain field) and recover the details (rain rate at finer
spatial scales) of interest. Therefore the fundamental task of
CNNs is to improve the receptive field based on cascading a
sequence of 3 × 3 convolution filters which operate on 3 × 3
spatial regions across 64 channels. For the depth D network,
the size of the receptive field is (2D + 1) × (2D + 1) and
proportional to the depth. In this study, the final D has been
found to be 20 layers, so the size of the receptive field is
205 × 205 km, enabling the statistical distribution of rain to
be properly captured.

2) Network Structure: The networks contain D + 2 layers
including the input layer and the output layer, see Fig. 4.
The first layer serves to receive the input data [up-scaled
low-resolution (ULR) radar data with the desired size] and
extracts patches for the subsequent layers. The last layer is
used for the HR rain field reconstruction. D successive layers
hidden in-between have two main functions; first to extract
features, including the horizontal structure of rain fields, rain
pattern, and distribution, from the raw model input. Early
convolution layers identify simple patterns in the data, which
are used to identify more complex patterns in subsequent
layers. Second, very deep CNNs layers are used to determine
the non-linear mapping between the low-resolution (LR) radar
data and HR ones based on the rain features extracted in
advance. These two functions serve the output layer to obtain
the final reconstructed rainfall fields.

Rectified linear units (ReLUs) are always set as the activa-
tion function and are usually placed behind each convolution
layer in CNNs for the improvement of the non-linear modeling
capability of the network [36]. Following this strategy, the
networks proposed in this study also adopt ReLU as the
activation function to assist high-space resolution rainfall field
reconstruction.
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Fig. 4. Overview of the proposed approach. The left part is the raw data provided by NIMROD radar. The middle part (dashed box) is the deep learning-based
rain model. As the soul of the whole model design, it uses the CNNs to grasp the underlying rain properties and the non-linear mapping relationship between
LR rain map and the high one, so the HR point rainfall rate can be accurately estimated. Note that the extent that resolution is improved is dependent on the
value of SF. For example, here we set the SF = 5 so the space resolution will be improved 5× times. The right part is the 1 km NIMROD data used for
model comparison and validation.

3) Model Design: This section examines the two proposed
deep learning-based rain models.

a) Learned interpolation model: Different from the tradi-
tional interpolation algorithms for which monotonous chang-
ing tendency is normally required to guarantee performance,
the LI model is a data-driven approach that automatically
learns the underlying distribution of rainfall rate and then
provides reasonable predictions at new locations. To achieve
this, we use CNNs to extract the changing properties of local
rain intensity, and then determine the interpolated parameters
to describe the local correlation amongst rain rates to improve
the spatial resolution of rainfall fields. The designed network
is outlined in Fig. 5(a). Dong et al. [23] have demonstrated that
CNN can be used to learn to map from LR to HR in an end-
to-end manner. It does not require any artificial features that
are typically demanded in other methods to show its superior
performance. In this study, this mapping can be described as

RH
∼= F(

R∗
L

)
(4)

where F(·) is an indescribable non-linear mapping relation
between the HR rain map (RH ) and ULR one (R∗

L). Therefore,
the main task of the LI model is the determination of the F(·)
function and parameter adjustments via end-to-end learning of
historical NIMROD radar records.

b) Learned deviation model: Following [24], we
designed the LD model, which focuses on learning the dif-
ference (referred to as residual) between the expected HR
rainfall rates and low ones, to achieve a higher learning rate
[configuration is outlined in Fig. 5(b)]. This is because LR
precipitation and HR one share the same information and are
highly correlated to a large extent, explicitly modeling the
residual is extremely advantageous. In addition, the center-
surround relation also has its drawback, that is, it fails to be

Fig. 5. Network structure. (a) LI model. (b) LD model. A series of
layers (convolutional and non-linear) have been cascaded repeatedly in the
network. The input (ULR NIMROD radar data) goes through layer-by-layer
and transforms into a high-resolution point rainfall rate. The 64 filters for
each convolutional layers and sample feature maps have been presented for
visualization.

exploited to the full extent for points near the grid matrix
boundary, so models will be invalid if the required surrounding
region is too large. To address this problem, zero padding
is used before any convolutions to keep all feature maps
(channels) the same size. The details are added back to the
input ULR radar data to produce the final HR rain rate once
they are predicted. In general, the key point of this design
is to reduce the absolute error between the LR and HR rain
estimates based on the modeling of residuals. The general
procedure can be mathematically described as

F∗(R∗
L

) ≡ RH − R∗
L (5)

where F∗(RL) is the residual.
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Fig. 6. Plotting of the MSE and SSIM with changing epochs for the LI
model and LD model.

IV. EXPERIMENTAL RESULTS

A. Convergence Analysis

In this study, we use two indicators; the mean square
error (MSE) and the structural SIMilarity (SSIM) [38] to
quantitatively evaluate the proposed models. In theory, the
mathematical expression of SSIM for two images x and y
is given as follows:

SSIM(x, y) =
(
2μxμy + c1

) + (
2σxy + c2

)
(
μ2

x + μ2
y + c1

)(
σ 2

x + σ 2
y + c2

) . (6)

Here, {μx , μy} and {σ 2
x , σ 2

y } are the mean and variance of x
and y, respectively, and σxy stands for the covariance between
x and y. c1 and c2 are constants used for maintaining stability.

The MSE is used to measure the difference between model
predictions and NIMROD estimates with better resolution.
In addition, we use the square of the difference as a loss
function (L M SE), that is,

L M SE = �RH − RM�2 (7)

where RH and RM are the predicted high-resolution rain rate
from the proposed models and NIMROD radar measurement,
respectively.

The SSIM is widely used in image processing to measure
the SSIM between two images [38]. In theory, the maximum
value of SSIM is 1, so the larger the SSIM, the better the
reconstruction quality. For this study, a large SSIM value
means that the rainfall fields, particularly for rain events that
happened at the boundary of rain fields, can be smoothly
reconstructed.

Fig. 6 presents the plot of the calculated MSE and SSIM
against epochs. It can be noted that the variation of the
indicators of the LD model is generally smaller than those

TABLE I

CALCULATED MSE AND SSIM VALUES FOR THE PROPOSED MODELS

Fig. 7. Calculated MSE and SSIM of the LD model at different layers.

of the LI model throughout the whole range of epochs. The
MSE of the LD model starts to converge and becomes stable
after 10 epochs while it is from 20 epochs for the LI model.
The same is true for the SSIM, indicating a faster convergence
speed for the LD model. This is because the LD model is
based on the residual data for which most values are likely to
be 0 or very small. The sparse results distribution significantly
reduces the computation time. The final MSE and SSIM values
are given in Table I. In general, smaller MSE and larger SSIM
shows that the LD model gives superior performance.

In theory, the deeper the network, the larger the receptive
fields. Therefore, it is possible to obtain knowledge of how
the receptive field size affects the reconstruction quality by
studying the changing network depths (D). Given that a
large perimeter zone helps to boost network performance and
robustness to predict rainfall rate at the central point of the
receptive field, the spatial resolution of the rainfall field can
be improved if rain intensity in the local area has been taken
into account. Fig. 7 presents the general tendency of MSE and
SSIM with increasing network layers (depth D). Both MSE
and SSIM improve with an increasing number of layers until
their reach optimum values in the 15–25 range. It is worth
noting that both indicators get worse for numbers of layers
greater than 25. It is important to balance the network depth
and cost since the larger the number of layers the greater the
computational power required. As a compromise, the default
depth was set to 20 layers. One reason is that the calculated
size of the receptive field for D = 20 is 41 × 41 (205 ×
205 km). This enables the statistics of rain to stabilize so the
models’ performance can be further enhanced.

B. Rain Field Simulation

Fig. 8 presents a visual comparison of rainfall fields yielded
by the proposed models and the one produced by NIMROD
radar. Since the details on a large scale [see Fig. 8(a)] are very
difficult to see, a zoomed-in image of a size of 100 × 100 km
with heavy rain events is shown in Fig. 8(b). The rainfall fields
produced by the LD model [Fig. 8(d)] are very similar to
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Fig. 8. Sample results of simulated rainfall fields. (a) Real NIMROD radar-derived image, (b) zoomed-in view of radar image, (c) simulated rainfall fields
from LI model, and (d) simulated rainfall fields from LD model. Here, the model depth is 20 layers (D = 20).

the radar-derived image [Fig. 8(b)] in both rain intensity and
horizontal rain field structure. However, a small difference can
be observed in the high rain intensity area, see the middle left
of Fig. 8(b) and (d). On the contrary, the rain rate estimates
provided by the LI model show significant differences from the
real measurements although the horizontal rain field structure
is similar. The color area (yellow and orange) in Fig. 8(c) is
much larger than the one in Fig. 8(b), indicating that the LI
model tends to overestimate the point rain rate. This finding is
in accordance with the rain rate exceedance distribution, see
Section V.

V. VALIDATION

Comparing a model’s predictions with the measured data
is commonly performed to validate the model’s performance.
In this study, the model assessments are conducted using the
error function, rain rate exceedance, and the underlying rain
distribution.

A. Error Function

The error function can be defined as [38]

Error =
∣∣∣∣ln

(
Rmeasured

Rpredicted

)∣∣∣∣ (8)

where Rmeasured and Rpredicted are measured and the model
predicted rainfall rate, respectively.

The mean Error is calculated by

Error = 1

n

n∑
i=1

Errori (9)

where Errori is the error for individual location and n is the
number of locations. The calculated Error for the LI model
is 0.0852, which is roughly 2.7 times that of the LD model
for which the Error is 0.0317.

B. Rain Rate Exceedance

According to ITU Rec. P.837-7, the rain rate exceedance
distribution required for propagation studies must correspond
to an average year, and the percentage of exceeded rain rate
between R0.001 and R0.01 is of particular importance [39]. Rain
rates exceedance distribution can be obtained by

Pr {R > r |r > 0} = Nr

NT
× 100% (10)

where Pr is the percentage of rain rate exceedance, Nr is the
occurrence of any specific rainfall rate r (r > 0), and NT is
the total samples (including rain and no rain) over the studied
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Fig. 9. CCDF of rainfall rate at Portsmouth for one month period.

period, with the value of 8436 × 41 × 41, where 8436 is the
number of 5 min rain maps available in the month and 41 × 41
is the number of points in the 205 × 205 km area. It has been
demonstrated in [32] that the statistical distribution of rain will
become stable and converge to constant values when the map
size is greater than 200 × 200 km.

Taking the Portsmouth vicinity as an example, the comple-
mentary cumulative distribution function (CCDF) is plotted
to test the exceeded rainfall rate using (10). The rain rate
exceedance distributions estimates from the proposed models
and radar measurements are presented in Fig. 9. The plot
shows that the rainfall rate exceedance distributions estimates
by the LD model are very close to the real measurements
from radar data with relative root mean square (rms) error
of 3.9371 × 10−4. The rms error between distributions from
the LI model estimates and measured data is slightly larger
at 5.1709 × 10−4. Taking R0.001 as an example, the values
from the LD model and radar data are 20 and 20.3 mm/h,
respectively. However, R0.001 from the LI model is 30.5 mm/h,
almost 1.5 times the real measurements. This demonstrates that
the LD model is more accurate than the LI model although
both have small rms errors in general distribution. In addition,
the probability of heavy rain events is extremely low, par-
ticularly for R > 90 mm/h, however large variation and the
difference between model predictions and real measurements
can be observed.

C. Rainfall Rate Distribution

It is widely accepted that the cumulative rain distribution
exhibits log-Normality [3]. To test if the model predictions
preserve the underlying properties of rain, the statistics of
rainfall rate over the studied area using the histogram of
rainfall rate conditioned on the actual occurrence of rain
was calculated. Using the technique described in [40], the
transformed CCDF can be achieved. If the data is log-
normal, then the transformed CCDF shows up as a straight
line.

Fig. 10 presents the test for the log-Normality of rainfall rate
distribution. The straight lines demonstrate that the rainfall rate
predicted by LI and LD models is log-normally distributed.
It is salient to notice that the LD model gives almost the same
result as the one from the radar estimates, implying that it is
highly accurate. The calculated relative rms error is 0.0013.
On the other hand, the accuracy of the LI model is quite

Fig. 10. Test for log-Normality of rainfall rate distribution for the predicted
rain field from the proposed models.

poor and there is a gap between the real measurements and
model predictions. The calculated rms error is 0.473, almost
364 times of LD model.

VI. DISCUSSION

Based on the description in Sections IV and V, we note that
the accuracy of deep learning-based rain models is quite high.
In particular, compared to the traditional rain models proposed
in the last decades, i.e., the stochastic model [41], NWP
model [42], and multifractal model [43], the deep learning-
based rain model is more concise in form. In addition to that,
the existing classical models always involve a lot of hand-
crafted rain characteristics, complicated equations, and several
preset assumptions for simplicity matter, such as the Taylor
hypothesis in [44]. By contrast, the designed CNNs in deep
learning-based models can determine and accurately grasp the
underlying rain properties by themselves after learning a great
deal of historical data.

However, the deep learning-based model also has its limi-
tations, includes the following.

1) Limited applicability: Deep learning-based models are
only applicable to the data available area and will
be paralyzed for areas beyond the radar scan range,
i.e., the gray areas in Fig. 1. This is because the
network requires non-zero data with variations to train
and learn, otherwise, it will lose its “prediction”
ability.

2) Low Flexibility: The rainfall fields yielded by the deep
learning-based models are not scaled continuously, but
with a single (or multiple but discrete) and fixed space
resolution in each training. If we need rain estimates
at other space resolutions, readjustment of network
parameters and retaining of input data will be required
although the designed network could be unchanged. This
certainly limits the models’ flexibility and increases the
computation load.

3) Poor Accuracy at Super-High Resolution: To further
clarify the performance of the two proposed SRFICNNs,
we adjusted the network parameters and studied the
predictions at different spatial scales (for brevity, results
are not presented in this article). Results show that our
models can only improve the spatial resolution from
5 km to 500 m with reasonable accuracy. In other words,
the maximum SF of the designed CNNs is 10. Beyond
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that, the model will crash down as the accuracy is
significantly reduced.

There might be two possible solutions for the above issues:
1) new CNNs design with better performance is required and
2) as the ability of the deep learning-based rain model is
limited, external assistance might be needed to improve the
model performance. The authors believe that an approach that
combines better-performing CNNs with traditional numerical
methods could be a potentially promising solution.

VII. CONCLUSION

This article has proposed two deep learning-based models
(SRFICNNs) for predicting and simulating the rainfall fields
across the U.K. at scales finer than are currently available from
NIMROD rain radar. One of them is the LI model with its key
task of determining the non-linear mapping relationship F(·)
between an LR rain rate and a higher one through studying a
series of input data. The other is the LD model, which focuses
on the study of the residual between the original and up-scaled
rain maps.

The model predictions have been analyzed by looking
into the MSE and SSIM. The small MSE and large SSIM
are self-evident for the high accuracy and SSIM between
model-predicted rainfall fields and radar-derived images. The
particular strength of the deep learning-based model is that for-
mulated rain characteristics, complicated mathematical equa-
tions, and preset assumptions can be avoided because the
network can automatically exploit and explicitly grasp the
underlying rain properties more accurately. This offers great
convenience, although the potential physical principle hidden
in the neural networks is not apparent.

From the experimental results, we have found that the
LD model has a faster convergence speed and gives better
performance than the LI model. We have also investigated how
the network depth affects the models’ performance. Results
show that both MSE and SSIM are good insofar as we push
the depth to 15–25 weight layers. However, further increases
(particularly for layer No > 25) result in worse performance.
Given that a large layer depth increases computational load
significantly but achieves no additional contribution to network
performance, the default depth value was set as 20 layers in
the final networks as a trade-off between model accuracy and
cost. The visual comparison shows that rainfall fields yielded
by the LD model are very close to the radar-derived image in
both rain intensity and horizontal rain field structure while
the LI model tends to overestimate the point rainfall rate
to a large extent. Quantitative analysis shows that the mean
error function for LD and LI models are 0.0317 and 0.0852,
respectively.

In addition, we have also validated these two models using
another two important indexes, rain rate exceedance distrib-
ution and log-Normality property. The LD model gives very
accurate estimates of these two important indexes with cor-
responding rms errors of 5.1709 × 10−4 and 0.0013, respec-
tively. In comparison, overestimation can still be observed in
the results from the LI model. So in general, modeling the
residual is proven to be very pragmatic since the difference

between ULR data and that of HR measured data is very
small. The extremely high accuracy and fast convergence
speed of the LD model are evidence of its high applicability
in applications relating to satellite networks. It can be used in
many applications, i.e., allocating additional satellite resources
to sites with the worst conditions, site diversity techniques,
and instantaneous joint fade experienced by all the links
in an arbitrary microwave network. This is particularly true
for satellite network systems where the optimization of an
adaptive onboard common resource-sharing system and FMT
requires detailed knowledge of the rain-induced attenuation
statistics.

However, the proposed models are only valid for areas with
available radar data and cannot produce rainfall rates with
continuous spatial scales. Extra computation is required if
data is required at other resolutions and this is the congenital
problem of CNNs. In addition, the limitation of the proposed
models is up-scaling to 500 m as further up-scaling causes
poorer accuracy and this also reduces the models’ applicability.

In conclusion, this article proposes a new approach that can
be used to interpolate meteorological data into finer resolutions
by taking advantage of deep learning techniques. This can
be used to design an improved network to produce a better
resolution rain rate with continuous resolution. This could be
additionally exploited to predict rain rates at finer spatial and
temporal scales simultaneously.
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