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Abstract— The generalized sheet transition conditions (GSTCs)
are incorporated into a discontinuous Galerkin time-domain
(DGTD) method to efficiently simulate metasurfaces. The numer-
ical flux for GSTCs is derived for the first time using the
Rankine–Hugoniot jump conditions. This numerical flux includes
the time derivatives of fields, and therefore, explicit time integra-
tion schemes, which are traditionally used with DGTD, do not
yield a stable time marching method. To alleviate this bottleneck,
a new time marching scheme, which solves a local matrix system
for the unknowns of the elements touching the same GSTC
face, is developed. This locally implicit method maintains its
high-parallel efficiency just like the traditional explicit DGTD
schemes. Numerical results, which validate the accuracy of the
proposed method against analytical solutions and demonstrate its
applicability to the simulation of curved and space/time-varying
metasurfaces, are presented.

Index Terms— Discontinuous Galerkin time-domain method
(DGTD), finite-element method (FEM), generalized sheet tran-
sition conditions (GSTCs), metasurface, numerical flux, time
integration, time-domain analysis.

I. INTRODUCTION

IN RECENT years, metasurfaces have attracted significant
attention due to their unprecedented ability to manipu-

late electromagnetic fields [1], [2], [3]. Building blocks of
metasurfaces are subwavelength meta-atoms that can introduce
amplitude and phase changes in electromagnetic fields. These
meta-atoms are arranged into a 2-D array, and depending on
the shape of this array and the meta-atoms’ phase and ampli-
tude profiles, the resulting metasurface is capable of reshaping
wavefronts at scales beyond the operation wavelength [1], [2],
[3]. Metasurfaces have found a diverse range of applications,
such as anomalous reflection and refraction, beam steering and
focusing, and cloaking [1], [2], [3], [4], [5], [6], [7], [8], [9].
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In more recent years, curved [10], [11], [12], [13], space/time-
varying [14], tunable and active [15], [16], and nonlinear [17]
metasurfaces have also been explored and shown to have many
benefits in various real-life applications.

Numerical modeling has played a vital role in the devel-
opment of metasurfaces and their widespread use. While
full-wave methods are commonly used to simulate a single
meta-atom [often under periodic boundary conditions (PBCs)],
the simulation of a whole metasurface, which often consists
of hundreds of meta-atoms with subwavelength and detailed
geometries, is computationally challenging [1], [18], [19].
To circumvent this bottleneck, the generalized sheet transition
conditions (GSTCs) [1], [11], [20], [21], [22], which model
a metasurface as a zero-thickness sheet and account for the
field discontinuities across its sides using surface suscep-
tibility functions, have been successfully incorporated into
several full-wave electromagnetic solvers. These include finite-
difference frequency-domain (FDFD) method [23], finite-
element method (FEM) [24], finite-difference time-domain
(FDTD) method [25], [26], [27], [28], and surface integral
equation (SIE) solvers [29], [30], [31]. With the inclusion of
GSTCs, these methods can efficiently account for metasurfaces
in full-wave simulations since they do not need to discretize
the meta-atoms with fine meshes anymore. Having said that,
electromagnetic solvers with GSTCs retain the strengths and
the weaknesses of their original versions without GSTCs.
For example, the frequency-domain FEM and SIE solvers are
well-equipped to model arbitrarily shaped metasurfaces, but
they cannot be directly used if the metasurface is time-varying,
active, or nonlinear. FDTD can be used in such cases [25],
[26], [27], [28], but since it uses orthogonal grids for spatial
discretization, it loses its efficiency and/or accuracy when
the computation domain includes complex geometries with
details, curved surfaces, and so on. The finite-element time-
domain (FETD) method can easily model arbitrarily shaped
metasurfaces and account for time variation and nonlinearities.
However, it calls for the solution of a global (but sparse) matrix
system at each time step. This increases FETD’s computational
cost and makes its parallelization on distributed memory
computer clusters a nontrivial task [32]. In this context, the
discontinuous Galerkin time-domain (DGTD) method com-
bines advantages of FDTD and FEM [33], [34], [35], [36],
[37], [38], [39]. Like FDTD, it can account for nonlinearities
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and has a very high-parallel efficiency; meanwhile, like FEM,
it can model arbitrarily shaped geometries using unstructured
meshes. These properties render DGTD an ideal candidate
for simulating space/time-varying and nonlinear metasurfaces
with complex shapes. Even for planar metasurfaces, DGTD
might be preferred if other arbitrarily shaped scatterers are
present in the computation domain. It is worth mentioning
here that a 2-D or 3-D FETD method that can account for
GSTCs has not been reported in the literature, and FDTD
implementations have only been limited to 2-D problems [25],
[26], [27], [28].

In this work, GSTCs are incorporated into a DGTD scheme
to efficiently simulate metasurfaces in 3-D electromagnetic
problems. The numerical flux for GSTCs is derived for the
first time using the Rankine–Hugoniot jump conditions. The
resulting expression includes the time derivatives of the elec-
tromagnetic fields averaged across the discontinuity introduced
by the metasurface. This makes the explicit time integration
schemes, such as leap-frog [40], multistep [41], and Runge–
Kutta [34], [39], which are often used with the traditional
DGTD scheme, unstable in the presence of a metasurface
mathematically modeled using GSTCs. To overcome this
problem, a new time marching scheme, which solves a local
matrix system for the unknowns of the elements touching the
same GSTC face, is developed. The accuracy of the resulting
locally implicit DGTD method is validated against analytical
solutions. Numerical examples involving space/time-varying
and curved metasurfaces are provided to demonstrate the
applicability of the proposed method. Examples also show that
even with the inclusion of the locally implicit time updates,
the proposed method maintains the high-parallel efficiency of
the traditional explicit DGTD schemes.

It should be noted here that the idea of representing
physical structures using boundary conditions enforced on a
zero-thickness sheet has been explored before. For example,
impedance boundary conditions (IBCs) have been incorpo-
rated into DGTD to permit computationally efficient modeling
of thin conductive layers [42], [43]. Having said that, thin
conductive layers and metasurfaces have different physical
properties, and IBCs are quite different from GSTCs. As a
result, the numerical flux expressions for GSTCs are also
different from those of IBCs [42], [43]. As briefly explained
above, the numerical flux for GSTCs includes time derivatives
of the fields averaged across the GSTC surface. Therefore, the
time integration schemes developed in [42] and [43] cannot be
directly used for a DGTD scheme that implements GSTCs.

The rest of this article is organized as follows. Section II
provides the formulation underlying the proposed method,
which includes the derivation of the numerical flux for
GSTC and description of the locally implicit time marching
scheme. In Section III, first, the accuracy of the proposed
method is validated against analytical solutions, and then,
its applicability to the simulation of space/time-varying and
curved metasurfaces is demonstrated with several examples.
Section III also presents an example that shows that the
proposed method maintains its high-parallel efficiency. Finally,
Section IV concludes this article and provides some remarks
on future research directions.

II. FORMULATION

A. Generalized Sheet Transition Conditions

GSTCs describe the “jumps” in the electromagnetic fields
across the two sides of an arbitrarily shaped metasurface
as [20]

n̂(r) × [[H(r, t)]] = −∂t P‖(r, t) + n̂(r) × ∇‖M⊥(r, t)

n̂(r) × [[E(r, t)]] = μ0∂t M‖(r, t) + 1

ε0
n̂(r) × ∇‖P⊥(r, t).

(1)

Here, E(r, t) and H(r, t) are the electric and the magnetic field
intensities, respectively, ε0 and μ0 are the permittivity and the
permeability in free space, respectively, the jump operator is
defined as [[ f ]] = f − − f +, superscript “+” or “−” attached
to a variable means that the variable is on the exterior (+) or
the interior (−) side of the metasurface, n̂(r) is the normal
unit vector pointing from the interior side to the exterior side,
subscript “⊥” or “‖” attached to a variable means that only
the normal [along n̂(r)] or the tangential [transverse to n̂(r)]
component of that variable is considered, and finally, P(r, t)
and M(r, t) are the electric and the magnetic polarization
densities. Hereinafter, to simplify the notation, the explicit
space (r) and time (t) dependencies of the variables are
dropped unless they are needed for clarification.

The electric and the magnetic polarization densities are
expressed in terms of electric and magnetic field intensities
using the constitutive relations [20]

P = ε0χ ee{{E}} + √
ε0μ0χ eh{{H}}

M = χhh{{H}} +√
ε0/μ0χhe{{E}} (2)

where χ ab, a, b ∈ {e, h}, are susceptibility and the average
operator is defined as {{ f }} = ( f − + f +)/2.

For the sake of simplicity and without loss of generality,
it is assumed that the metasurface is mono-anisotropic (χ eh =
χhe = 0) and uniaxial (χ aa, a ∈ {e, h}, are diagonal matrices
with entries χ xx

aa , χ
yy
aa , and χ zz

aa ), and M⊥ = 0 and P⊥ =
0 [20], [27]. With these simplifications, inserting the tangential
components of the polarization densities from (2) into (1)
yields [27]

n̂ × [[H]] = ε0∂t(χ ee{{E}})‖
n̂ × [[E]] = −μ0∂t(χhh{{H}})‖. (3)

It is assumed here that χ ab are time-varying but not dis-
persive [25], [26], [27], [44], [45]. The proposed method
can easily be extended to simulate dispersive metasurfaces
using the well-known auxiliary differential equation method
that accounts for susceptibility dispersion models in the time
domain [39], [42], [46], [47], [48].

B. Numerical Flux for GSTCs

The derivation of the numerical flux for GSTCs starts with
the conservation form of the Maxwell equations [34]

Q∂tU + ∇ · F(U) = 0 (4)
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Fig. 1. Schematic of the Rankine–Hugoniot jump condition on a discontinu-
ity/interface. The normal vector of the interface is along the x-direction. For
the discontinuity across a metasurface described by GSTCs, U∗ and U∗∗ are
given by (11).

where

U =
[

H
E

]
, Q =

[
μ

ε

]
, F ν(U) =

[
ν̂ × E

−ν̂ × H

]
. (5)

Here, ε and μ are the material permittivity and permeability,
respectively, and F ν is the component of F along the direction
ν̂ ∈ {x̂, ŷ, ẑ}. Consider the Riemann problem and let Q+ and
Q− represent the material properties on the exterior (+) and
the interior (−) sides of a discontinuity. Then, the conservation
of U across this discontinuity yields the Rankine–Hugoniot
jump conditions [34], [49]

−�−Q−(U− − U∗)+ AU− − AU∗ = 0

−�+Q+(U∗∗ − U+)+ AU∗∗ − AU+ = 0 (6)

where A is the flux operator defined by

n̂ · F(U) = A U =
[

n̂ × E
−n̂ × H

]
(7)

n̂ is the unit normal vector of the interface and points from
“−” side to “+” side, �± = diag{λ±

1 , . . . , λ±
6 }, λ±

1,4 = −c±,
λ±

2,5 = c±, and λ±
3,6 = 0 are the eigenvalues of (Q±)−1A, c± =

1/(ε±μ±)1/2 are characteristics mode speeds, and U∗ and U∗∗
are intermediate modes connecting the characteristic modes
U− and U+ (see Fig. 1) [34], [49]. Inserting the expressions
of the operators defined in (5) and (7) and the eigenvalues
defined above into (6) yields

n̂ × (
Z−H∗ + Z+H∗∗)− n̂ × (

Z−H− + Z+H+)
+ n̂ × n̂ × (

E∗ − E∗∗ − E− + E+) = 0

n̂ × (
Y −E∗ + Y +E∗∗)− n̂ × (

Y −E− + Y +E+)
− n̂ × n̂ × (

H∗ − H∗∗ − H− + H+) = 0 (8)

where Z± = (μ±/ε±)1/2 and Y ± = (ε±/μ±)1/2.
For a simple material interface (i.e., μ or ε or both are

discontinuous across the interface), the tangential continuity
of the fields yields

n̂ × H∗ = n̂ × H∗∗

n̂ × E∗ = n̂ × E∗∗ (9)

which provides the well-known expressions of the upwind flux
as [34]

FH-up = n̂ × (
E− − E∗)

= n̂ × Y +[[E]] + (n̂ · [[H]])n̂ − [[H]]

2{{Y }}

FE-up = −n̂ × (
H− − H∗)

= −n̂ × Z+[[H]] + (n̂ · [[E]])n̂ − [[E]]

2{{Z}} . (10)

The jumps in the fields due to GSTCs [as described in (3)]
are enforced as

n̂ × H∗∗ = n̂ × H∗ + ε0∂t
(
χ ee{{E}})‖

n̂ × E∗∗ = n̂ × E∗ − μ0∂t
(
χhh{{H}})‖. (11)

Inserting the expressions of the jumps in (11) into (8) yields

n̂ × 2{{Z}}H∗ = n̂ × 2{{ZH}} + n̂ × n̂ × [[E]]

−Z+ε0∂t
(
χ ee{{E}})‖ − n̂ × μ0∂t

(
χhh{{H}})‖

n̂ × 2{{Y }}E∗ = n̂ × 2{{Y E}} − n̂ × n̂ × [[H]]

+ Y +μ0∂t
(
χhh{{H}})‖ − n̂ × ε0∂t

(
χ ee{{E}})‖.

(12)

Then, the expressions of the numerical flux for GSTCs are
obtained from the expressions of E∗ and H∗ as

FH = n̂ × (
E− − E∗) = FH-up + ∂t FH-GS

FE = −n̂ × (
H− − H∗) = FE-up + ∂t FE-GS. (13)

Here, FH-up and FE-up are the upwind flux given by (10) and
∂t FH-GS and ∂t FE-GS are the new numerical flux terms due to
GSTCs. Their expressions are given as

FH-GS = γ HH{{H}} − (
n̂ · γ HH{{H}})n̂ + n̂ × γ HE{{E}}

FE-GS = γ EE{{E}} − (
n̂ · γ EE{{E}})n̂ + n̂ × γ EH{{H}} (14)

where γ EE = −Z+ε0χ ee/(2{{Z}}), γ EH = −μ0χ hh/(2{{Z}}),
γ HH = −Y +μ0χhh/(2{{Y }}), and γ HE = ε0χ ee/(2{{Y }})
are tensor-valued coefficients. Note that while deriving (14),
(γ HHH)‖ and n̂×(γ HEE)‖ are replaced by γ HHH−(n̂·γ HHH)n̂
and n̂ ×γ HEE, respectively, and ( f E

χe
E)‖ and n̂ × (γ EHH)‖ are

replaced by γ EEE − (n̂ · γ EEE)n̂ and n̂ × γ EHH, respectively.
Unlike the numerical flux expressions for simple interfaces

[e.g., those of upwind flux as shown in (10)], the numerical
flux for GSTCs as shown in (13) includes time derivatives of
the fields averaged across the sides of the metasurface. These
derivatives should be accounted for by the time marching
scheme that integrates Maxwell equations (4) in time. This
time marching scheme is described next.

C. Time Marching Scheme

To facilitate the numerical solution, the computation domain
is discretized into K tetrahedral elements with volumetric
support 	k and boundary surface ∂	k, k = 1, . . . , K [34],
[50]. It is assumed that the permittivity and the permeability
in element k are constant and represented by εk and μk .
In element k, testing (4) using the Lagrange polynomials
�i(r) [34] and applying the divergence theorem twice yield
the strong form

μk∂t

∫
	k

H(r, t)�i (r)dv = −
∫

	k

∇ × E(r, t)�i(r)dv

+
∮

∂	k

FH(r, t)�i(r)ds
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εk∂t

∫
	k

E(r, t)�i(r)dv =
∫

	k

∇ × H(r, t)�i (r)dv

+
∮

∂	k

FE(r, t)�i(r)ds. (15)

Here, i = 1, . . . , Np, Np = (p + 1)(p + 2)(p + 3)/6 is
the number of interpolation nodes, and p is the order of
the Lagrange polynomials. Let Eν and H ν represent the
components of the fields in element k along the direction
ν̂ ∈ {x̂, ŷ, ẑ}. These six field components are expanded using
the Lagrange polynomials �i(r) as

Eν(r, t) =
Np∑

i=1

Eν
k (ri , t)�i (r) =

Np∑
i=1

{
Ēν

k (t)
}

i
�i(r)

H ν(r, t) =
Np∑

i=1

H ν
k (ri , t)�i(r) =

Np∑
i=1

{
H̄ ν

k (t)
}

i
�i(r) (16)

where ri , i = 1, . . . , Np, are the interpolation nodes and
vectors Ēν

k (t) and H̄ ν
k (t) store the unknown time-dependent

expansion coefficients to be solved for.
Inserting the expansion in (16) into (15) yields the

semi-discrete system as

μk∂t H̄k = −DkĒk +
4∑

f =1

Fk, f F̄H
k, f

εk∂t Ēk = DkH̄k +
4∑

f =1

Fk, f F̄E
k, f (17)

where vectors H̄k = [H̄ x
k , H̄ y

k , H̄ z
k ]T and Ēk = [Ē x

k , Ē y
k , Ēz

k]T

store the unknown coefficients and F̄H
k, f and F̄E

k, f represent the
vectors of the numerical flux on face f of element k. In (17),
Dk = M

−1
k Ck and Fk, f = M

−1
k M

2−D
k, f , where Mk is the mass

matrix

{Mk}i, j =
∫

	k

�i (r)� j (r)dv.

Ck is the curl operator, C
u
k = S

v
k −S

w
k , where (u, v,w) follows

the permutation (x, y, z) → (y, z, x) → (z, x, y), and Sk

and M
2−D
k, f are the stiffness and the face mass matrices with

entries [51] {
S

u
k

}
i, j =

∫
	k

∂u�i(r)� j (r)dv

{
M

2−D
k, f

}
i, j

=
∮

∂	k, f

�i(r)� j (r)ds.

Here, ∂	k, f represents the surface of face f of element k.
Using the expressions of the numerical flux from (13)

in (17) yields

μk∂t H̄k = −DkĒk +
4∑

f =1

Fk, f

{
F̄H-up

k, f + ∂t F̄H-GS
k, f

}

εk∂t Ēk = DkH̄k +
4∑

f =1

Fk, f

{
F̄E-up

k, f + ∂t F̄E-GS
k, f

}
. (18)

Here, F̄H-up
k, f and F̄E-up

k, f are vectors of the upwind flux and their
treatment in time marching is the same as that in traditional
DGTD schemes and is not described in detail here. Also, note

Fig. 2. Schematic of the locally implicit time integration scheme. The fields
of the paired elements (marked with the same color) are updated together by
solving the matrix systems in (26). The arrows indicate that the fields from
these elements are used for updating the fields in the element pair k and k ′
via the numerical flux.

that if element k does not “touch” the metasurface, i.e., if none
of ∂	k, f , f = 1, . . . , 4, overlaps the metasurface, F̄H-GS

k, f = 0

and F̄E-GS
k, f = 0, and therefore, F̄H-up

k, f and F̄E-up
k, f are the only flux

terms to be considered.
Assume that face g of element k overlaps the metasurface.

This face coincides with face g′ of element k ′, which neighbors
element k via the metasurface (see Fig. 2). In this scenario,
using (14), one can express the numerical flux vectors associ-
ated with GSTCs, F̄H-GS

k,g and F̄E-GS
k,g , as

F̄H-GS
k,g = γ HH

k,g
˜̄Hkk′ −

(
n̂k,g · γ HH

k,g
˜̄Hkk′

)
n̂k,g

+ n̂k,g × γ HE
k,g

˜̄Ekk′

F̄E-GS
k,g = γ EE

k,g
˜̄Ekk′ −

(
n̂k,g · γ EE

k,g
˜̄Ekk′
)

n̂k,g

+ n̂k,g × γ EH
k,g

˜̄Hkk′ . (19)

Here, vectors ˜̄Ekk′ = (Ēk,g + Ēk′ ,g′)/2 and ˜̄Hkk′ = (H̄k,g +
H̄k′,g′)/2 store the average of the coefficients on face g of
element k and face g′ of element k ′, n̂k,g is the unit normal
vector of face g pointing from element k to element k ′,
and γ ab

k,g , a, b ∈ {E, H}, represent the values of the (time-
dependent) tensor coefficients γ ab [see (14)] on face g.

Approximating the time derivatives in (18) using forward
finite differences and inserting (19) in the resulting expressions
yield the time-update equations as

μk
H̄n+1

k − H̄n
k

�t

= −DkĒn
k +

4∑
f =1

Fk, f F̄H-up,n
k, f

+ Fk,g

{
γ HH,n+1

k,g
˜̄Hn+1

kk′ − γ HH,n
k,g

˜̄Hn
kk′

�t

−
(

n̂k,g · γ HH,n+1
k,g

˜̄Hn+1
kk′ − γ HH,n

k,g
˜̄Hn

kk′

�t

)
n̂k,g

+ n̂k,g × γ HE,n+1
k,g

˜̄En+1
kk′ − γ HE,n

k,g
˜̄En

kk′

�t

}
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εk
Ēn+1

k − Ēn
k

�t

= DkH̄n
k +

4∑
f =1

Fk, f F̄E-up,n
k, f

+ Fk,g

{
γ EE,n+1

k,g
˜̄En+1

kk′ − γ EE,n
k,g

˜̄En
kk′

�t

−
(

n̂k,g · γ EE,n+1
k,g

˜̄En+1
kk′ − γ EE,n

k,g
˜̄En

kk′

�t

)
n̂

+ n̂k,g × γ EH,n+1
k,g

˜̄Hn+1
kk′ − γ EH,n

k,g
˜̄Hn

kk′

�t

}
. (20)

In (20) and the rest of the text, superscript n attached to a
variable means that the variable is sampled at time step n,
i.e., f n = f (n�t), where �t is the time step size.

Note that ˜̄En+1
kk′ and ˜̄Hn+1

kk′ store unknowns that are associated
with elements k and k ′ and sampled at time (n + 1)�t .
Re-arranging the terms that involve Ēn+1

k , H̄n+1
k , Ēn+1

k′ , and
H̄n+1

k′ in (20) yields a matrix system that is written in a compact
form as

A
n+1
k Ūn+1

k = B
n+1
k Ūn+1

k′ + C̄n
k (21)

where

A
n
k =

[
A

HH,n
k A

HE,n
k

A
EH,n
k A

EE,n
k

]
, B

n
k =

[
B

HH,n
k B

HE,n
k

B
EH,n
k B

EE,n
k

]
(22)

Ūn+1
k =

[
Ēn+1

k

H̄n+1
k

]
, Ūn+1

k′ =
[

Ēn+1
k′

H̄n+1
k′

]

C̄n
k =

[
C̄H,n

k

C̄E,n
k

]
. (23)

The expressions for the blocks of A
n
k and B

n
k are given

by (30) in the Appendix and the expressions of the column
vectors of C̄n

k are given as

C̄H,n
k = H̄n

k + �t

μk

⎛
⎝−DkĒn

k +
4∑

f =1

Fk, f F̄H-up,n
k, f

⎞
⎠

+ Fk,g

{
1

μk

[
−γ HH,n

k,g
˜̄H

n

kk′ +
(

n̂k,g · γ HH,n
k,g

˜̄H
n

kk′

)
n̂k,g

]

− n̂k,g × γ HE,n
k,g

μk

˜̄E
n

kk′

}

C̄E,n
k = Ēn

k + �t

εk

⎛
⎝DkH̄n

k +
4∑

f =1

Fk, f F̄E-up,n
k, f

⎞
⎠

+ Fk,g

{
1

εk

[
−γ EE,n

k,g
˜̄E

n

kk′ +
(

n̂k,g · γ EE,n
k,g

˜̄E
n

kk′

)
n̂k,g

]

− n̂k,g × γ EH,n
k,g

εk

˜̄H
n

kk′

}
. (24)

Similarly, a matrix system is obtained for the field expansion
coefficients in element k ′ (Fig. 2) as

A
n+1
k′ Ūn+1

k′ = B
n+1
k′ Ūn+1

k + C̄n
k′ (25)

where the expressions of the matrices and the vectors are the
same as those in (30) and (24) except that the indices k and
g are replaced with k ′ and g′, respectively.

Matrix equations (21) and (25) are a coupled system in
unknowns Ūn+1

k and Ūn+1
k′ . Inverting (25) for Ūn+1

k′ and insert-
ing the result in (21) and inverting (21) for Ūn+1

k and inserting
the result in (25) “decouple” (21) and (25) as

Ā
n
k Ūn+1

k = B̄n
k

Ā
n
k′ Ūn+1

k′ = B̄n
k′ . (26)

Here, Ā
n
k = A

n
k − B

n
k [An

k′ ]−1Bn
k′ , B̄n

k = B
n
k [An

k′ ]−1C̄n
k′ + C̄n

k ,

Ā
n
k′ = A

n
k′ − B

n
k′ [An

k ]−1Bn
k , and B̄n

k′ = B
n
k′ [An

k ]−1C̄n
k + C̄n

k′ .
During time marching, at time step n, first, A

n
k and A

n
k′ are

computed using (22) and (30) (in the Appendix), respectively,
and C̄n

k and C̄n
k′ are computed using (23) and (24), respectively.

Then, Ā
n
k , Ā

n
k′ , B̄n

k , and B̄n
k′ are constructed and the matrix

equations in (26) are solved for unknowns Ūn+1
k and Ūn+1

k′ .
The dimension of these matrix equations is only 6Np × 6Np,
where Np is the number of interpolation nodes and six comes
from the six field components, and therefore, the cost of
matrix solution is not significant. Note that if Ā

n
k and Ā

n
k′

do not change during time marching, i.e., coefficients γ ab,
a, b ∈ {E, H}, do not depend on time; they are computed,
factorized, and stored before the time marching starts. This
reduces the computational cost of matrix solution even more.

For elements, which do not have a face overlapping the
metasurface, the time marching does not require solving a
matrix equation and the unknown Ūn+1

k is updated using (20)
without the terms in the curly brackets (terms corresponding to
the numerical flux for GSTCs). Consequently, the time march-
ing becomes locally implicit where only the unknowns asso-
ciated with elements that touch the metasurface are obtained
by solving element-level matrix systems. Also, note that the
time step size �t of this time marching scheme is restricted
by the Courant–Friedrichs–Lewy (CFL) condition just like the
traditional explicit DGTD methods [34], [39], [40].

Again just like these traditional schemes, the locally implicit
time marching algorithm can be parallelized efficiently. A

n
k ,

B
n
k , and C̄n

k and A
n
k′ , B

n
k′ , and C̄n

k′ are computed locally by
the message passing interface (MPI) processes assigned to
elements k and k ′, respectively. If these processes are different
(i.e., reside on different processors), then A

n
k , B

n
k , and C̄n

k and
A

n
k′ , B

n
k′ , and C̄n

k′ are communicated between these processors to
enable the computation of Ā

n
k and B̄n

k and Ā
n
k′ and B̄n

k′ . Then,
each processor locally solves the matrix equations in (26).
The MPI communications associated with the explicit part of
time marching (for elements that do not touch the metasur-
face) remain the same as those in traditional explicit DGTD
schemes without GSTCs. As shown by the numerical results
presented in Section III, for a 3-D computation domain, the
number of elements that touch the metasurface is usually small
compared to the total number of elements, and therefore, the
computational cost of locally implicit part of time marching
is relatively low.

Note that, approximating the time derivative terms ∂t FH-GS

and ∂t FE-GS on the right-hand side of (18) using backward
finite differences and approximating the time derivative terms
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∂t Ek and ∂t Hk on the left-hand side of (18) yield an explicit
time marching scheme. However, numerical experiments pre-
sented in Section III-A show that this scheme is not stable.

The locally implicit scheme described in this section is
a first-order scheme (in time). One can easily modify this
scheme to yield a leap-frog-type time integration method.
However, further generalizations to higher order schemes, such
as Runge–Kutta methods [34], are not trivial and are subjects
for future research.

One last remark about the formulation described in this
section is in order. The nodal basis functions used to discretize
the fields in space can be replaced by the vector basis functions
used in [32], [42], [43], [52], and [53], but the numerical flux
expressions and the resulting locally implicit time marching
scheme would essentially stay the same.

III. NUMERICAL EXAMPLES

A. Planar Metasurfaces

First, the proposed method is validated against analyt-
ical solutions. Consider a mono-anisotropic, uniaxial, and
time-independent planar metasurface located on the z =
0 plane in free space. A plane wave with electric field
Einc(r, t) = x̂ E0 cos [ωt − k0(z − z0)] is normally incident on
the metasurface. Here, E0 is the amplitude of the electric field,
ω = 2π f , f is the frequency of excitation, and k0 = ω/c0 and
c0 = 1/(μ0ε0)

1/2 are the wavenumber and the speed of light in
free space, respectively. Note that the phase of the plane wave
is zero at z = z0. In the following examples, the (synthesized)
susceptibilities are given as [20], [21]:

χ xx
ee = 2 j

k0

T + R − 1

T + R + 1
χ yy

ee = χ zz
ee = 0

χ xx
hh = χ zz

hh = 0

χ
yy
hh = 2 j

k0

T − R − 1

T − R + 1
(27)

where R and T are the reflection and the transmission coef-
ficients of the electric field on the metasurface, respectively.
Solving (27) for T and R yields

T = k2
0χ

xx
ee χ

yy
hh + 4(

2 + jk0χ xx
ee

)(
2 + jk0χ

yy
hh

)
R = 2 jk0

(
χ

yy
hh − χ xx

ee

)
(
2 + jk0χ xx

ee

)(
2 + jk0χ

yy
hh

) . (28)

Let χ xx
ee = χ

yy
hh = χ , and then, R = 0, i.e., the metasurface

becomes reflectionless. Furthermore, let χ = αc0/( jω), and
then, T = (2 − α)/(2 + α) (in addition to R = 0). For α = 2,
T = 0, i.e., the metasurface becomes reflectionless and fully
absorbing. For α = 2/3, T = 0.5, i.e., the metasurface is
reflectionless and partially absorbing.

The proposed locally implicit DGTD scheme is used to
numerically investigate the above cases. The dimensions of
the computation domain are Lx = 6 m, L y = 1.5 m, and
Lz = 18 m along the x-, y-, and z-directions, respectively.
PBCs [54], [55] are used along the x- and y-directions
and perfectly matched layers (PMLs) [52], [56], [57] are

TABLE I

VALUE OF THE LARGEST TIME-STEP SIZE �tmax THAT ENSURES STABIL-
ITY FOR DIFFERENT SCHEMES AND DIFFERENT VALUES OF χ

used along the z-direction. The excitation parameters are
f = 100 MHz, E0 = 1 V/m, and z0 = −6 m. The average
edge length of the elements in the mesh used to discretize
the computation domain is 0.25 m (λ0/11.99, where λ0 is
the free-space wavelength at f = 100 MHz), p = 2, and
�t = 26.04 ps.

Fig. 3(a) and (b) shows Ex (the x-component of the electric
field) computed using the proposed locally implicit DGTD
scheme at t = 80 ns in the whole computation domain
for χ = 1 and χ = 5, respectively. One can observe
different phase jumps between the fields on both sides of
the metasurface when different susceptibility values are used.
Fig. 3(c) compares Ex computed using the locally implicit
DGTD scheme and the analytical expression from [20] and
[21] at (0, 0, 1.5 m). Excellent agreement is observed between
the analytical and numerical results.

Assume that ∂t FH-GS and ∂t FE-GS in (18) are approxi-
mated using backward finite differences. As briefly explained
in Section II-C, this yields an explicit DGTD scheme.
Fig. 3(d) and (e) shows Ex computed using the locally
implicit DGTD scheme, the explicit DGTD scheme, and the
analytical expression from [20] and [21] on the z = 0+ side of
the metasurface for χ = 0.0530 and χ = 0.0554, respectively.
For the larger value of χ , the solution obtained by the explicit
scheme becomes unstable even though it matches well with
the analytical solution at early times. This is because large
values of χ introduce large phase jumps between the fields on
both sides of the metasurface and the explicit scheme becomes
unstable no matter how small the time step size is. Further
tests show that, for this problem, the largest value of χ that the
explicit scheme can accommodate is 0.055, which corresponds
to a phase angle of 4.9◦ in T .

Table I shows the value of the largest time-step size �tmax

that ensures the stability of this explicit scheme with and
without GSTCs and the locally implicit scheme (with GSTCs)
for different values of χ . All other simulation parameters are
kept the same for all three schemes and are the same as those
described above. “Without GSTCs” refers to the simulation
where GSTCs are removed from the computation domain,
while everything else is kept the same. Table I also shows
that �tmax of the locally implicit scheme is the same as that
used by the explicit scheme without GSTCs and is independent
of χ .

Next, the case where χ = −αc0/( jω) is considered. For
this particular selection of χ xx

ee and χ
yy
hh , the time derivatives

in (3) are canceled [27] and ∂t FH-GS and ∂t FE-GS in (18) are
replaced by FH-GS and FE-GS, respectively. Note that in this
updated formulation, one should replace expressions of γ EE,
γ EH, γ HH, and γ HE by −Z+ε0αc0/(2{{Z}}), −μ0αc0/(2{{Z}}),
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Fig. 3. (a) Ex computed using the locally implicit DGTD scheme at t =
80 ns in the whole computation domain for (a) χ = 1 and (b) χ = 5. Note
that the computation domain is clipped from the middle xz-plane to enable
visualization of the fields and meshes inside the domain. The green surface
on the z = 0 plane is the metasurface. (c) Ex computed using the locally
implicit DGTD scheme and the analytical expression from [20] and [21] at
(0, 0, 1.5 m). Ex computed using the locally implicit DGTD scheme, the
explicit DGTD scheme, and the analytical expression from [20] and [21] on
the z = 0+ side of the metasurface for (d) χ = 0.0530 and (e) χ = 0.0554.

−Y +μ0αc0/(2{{Y }}), and ε0αc0/(2{{Y }}), respectively. Without
these time derivatives, the numerical flux terms associated
with GSTCs in (20) simply become FH-GS,n and FE-GS,n ,

Fig. 4. Ex computed by the explicit DGTD scheme at t = 80 ns in the
whole computation domain for (a) α = 2 and (b) α = 2/3. The green surface
on the z = 0 plane is the metasurface.

which involve only the averaged quantities from the previous
time step n. Consequently, the time-update equation in (20)
becomes explicit.

Fig. 4(a) and (b) shows Ex computed using this explicit
DGTD scheme at t = 80 ns in the whole computation for
α = 2 and α = 2/3, respectively. As expected, for α = 2,
there is no reflection or transmission at the metasurface, and
for α = 2/3, there is no reflection, but the amplitude of the
fields transmitted through the metasurface is halved.

B. Space/Time-Varying Metasurface

In this example, the nondispersive space/time-varying meta-
surface described in [27] is considered. It is assumed that
the response of this metasurface to electromagnetic fields is
instantaneous and the time dependence of χ ee and χhh reflects
the real-time control of the effective susceptibilities of the
metasurface [27], [44], [45], [58], [59]. Entries of χ ee and
χhh are expressed as

χνν
ee = χνν

hh = − c0

jω
[2 + W (x)S(t)], ν ∈ {x, y, z} (29)

where

W (x) = |(|x | − 0.5Wx)|
0.5 Wx

S(t) =

⎧⎪⎨
⎪⎩

8t̃

T
, 0 < t̃ ≤ T

2

8 − 8t̃

T
,

T

2
< t̃ ≤ T .

Wx = 3 m is the width of the metasurface along the
x-direction, t̃ = t−�(t/T )T , and T = 3.07 ns is the period in
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Fig. 5. (a) Ex computed using the proposed DGTD scheme at 28 ns in the
whole computation domain. The black line at z = 0 indicates the position
of the metasurface. (b) Ex computed by the proposed DGTD scheme at
(0, 0, 0−) and (0, 0, 0+).

time. At the beginning of each time period, the metasurface is
fully absorbing everywhere on its surface. As time approaches
to the middle of the period, the center of the metasurface
gradually becomes half-transmitting, while the two ends of
the metasurface (along the x-direction) stay fully absorbing.

The metasurface is located on the z = 0 plane. The
dimensions of the computation domain are Lx = 3.15 m,
L y = 0.04 m, and Lz = 6.15 m along the x-, y-, and
z-directions, respectively. PBCs [54], [55] are used along the
y-direction and PMLs [52], [56], [57] are used along the
x- and z-directions. The metasurface is excited by the fields
generated by an aperture source located on the z = 2.85 m
plane. The electric and magnetic current densities impressed
on this aperture are given by Js = x̂ J0 sin(2π f t)e−x2/0.02 and
Ms = ŷ J0 Z0 sin(2π f t)e−x2/0.02, where Z0 = (μ0/ε0)

1/2 is the
wave impedance in free space, J0 = 1 A/m2, and f = 2 GHz.
The average edge length of the elements in the mesh used to
discretize the computation domain is 0.0125 m (λ0/12, where
λ0 is the free-space wavelength at f = 2 GHz), p = 2, and
�t = 0.439 ps.

Fig. 5(a) shows Ex computed using the locally implicit
DGTD scheme at t = 28 ns in the whole computation
domain. One can observe that the fields transmitted to z < 0
region are stronger near the x = 0 plane, i.e., the center of
the metasurface. This agrees with the specified properties of

Fig. 6. Ex computed at 80 ns in the whole computation for (a) χ = 5 and
(b) χ = −2c0/( jω).

the metasurface: it switches between totally absorbing and
half-transmitting near its center, while it is more absorbing
toward the ends (along the x-direction). Even though the
source is monochromatic, the fields transmitted to z > 0 region
show pulsed patterns with wideband characteristics (modulated
with a lower frequency). This is because ∂t (χ ee{{E}}) and
∂t(χhh{{H}}) in (3) generate new frequency components when
χ ee and χhh are time-dependent [27]. Fig. 5(b) shows Ex

computed using the locally implicit DGTD at (0, 0, 0−) and
(0, 0, 0+). The modulation effect introduced by the metasur-
face is also visible in this figure. The results presented in Fig. 5
agree well with the results obtained using a 2-D FDTD method
as reported in [27].

C. Curved Metasurfaces

In this section, first, curved counterparts of the examples
presented in Section III-A are considered. Planar metasurfaces
are replaced with curved metasurfaces, while all other simula-
tion parameters are kept the same. In the examples considered
here, the curved surface is described by z = 0.75 sin(2πx/Lx).
This selection ensures that the surface curvature is larger than
the wavelength of the excitation frequency and the synthesis
technique used for normally incident plane waves (as done in
Section III-A) can still be used here [11], [20], [21].

Fig. 6(a) and (b) shows Ex computed at 80 ns in the whole
computation domain for χ = 5 (reflectionless metasurface)
and χ = −2 c0/( jω) (fully absorbing metasurface), respec-
tively. As expected, the curved metasurfaces perform similar
to their planar counterparts. In Fig. 6(a), one can see that
the fields are totally transmitted and they retain the wavefront
of a plane wave. In Fig. 6(b), it is clearly shown that the
fields are fully absorbed as soon as their wavefront touches
the metasurface.
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Fig. 7. Ey computed at 120 ns in the whole computation domain (a) with
metasurfaces surrounding the scatterers and (b) without metasurfaces.

Next, a more complex scattering scenario is considered.
The computation domain is shown in Fig. 7(a). It includes
two cylindrical dieclectric scatterers (with relative permittiv-
ity 3.0) and one cylindrical perfect electrically conducting
(PEC) scatterer. Each dielectric scatterer is surrounded by a
reflectionless and partially absorbing metasurface (similar to
the examples in Fig. 4). The transmittances corresponding to
the left-top and the right-bottom metasurfaces are 0.25 (with
α = 1.2) and 0.75 (with α = 2/7), respectively. The PEC
scatterer is surrounded by a reflectionless metasurface (similar
to the examples in Fig. 3) with χ = 5. The radii of the
scatterers and the metasurfaces are 6 and 9 m, respectively.
The centers of the scatterers and the metasurfaces on the
left top, the right top, and right bottom are (12 m, 0, 33 m),
(33 m, 0, 33 m), and (33 m, 0, 12 m), respectively. The
dimensions of the computation domain are Lx = 48 m,
L y = 1.5 m, and Lz = 48 m along the x-, y-, and
z-directions, respectively. PMLs [52], [56], [57] are used
along the x- and z-directions and PBCs [54], [55] are used
along the y-direction. The incident fields are generated by
an aperture source that is centered at (11.21 m, 0, 11.21 m)

and makes an angle of 45◦ with x- and z-axes. The elec-
tric and magnetic current densities impressed on this aper-
ture are given by Js = −ŷ J0 sin(2π f t)G(x, z) and Ms =
(−x̂ sin α + ẑ cos α)J0 Z0 sin(2π f t)G(x, z), where G(x, z) =
e−[(x−11.21)2+(z−11.21)2]/144, α = 45◦, J0 = 1 A/m2, and
f = 100 MHz. The average edge length of the elements
in the mesh used to discretize the computation domain is
0.375 m (λ0/8, where λ0 is the free-space wavelength at
f = 100 MHz), p = 2, and �t = 18.20 ps.

Fig. 7(a) shows Ey (the y-component of the electric field)
computed at 120 ns in the whole computation domain. For
comparison, the same scattering problem without the meta-
surfaces is simulated. All simulation parameters are kept the
same, only GSTCs are removed. The corresponding result is
shown in Fig. 7(b). These figures clearly show the properties
assigned to each metasurface. The incident fields are trans-
mitted through the two partially absorbing metasurfaces with
reduced amplitudes. The transmitted field is stronger on the
right-bottom scatterer as the transmittance on the surrounding
metasurface (T = 0.75) is larger than that of the left-top one
(T = 0.25). On the other hand, the field patterns on both
scatterers are almost the same (except the field amplitude) due
to the symmetry of the problem. On the right-top metasurface,
the incident field is fully transmitted but with a phase jump as
expected (see Section III-A). The fields scattered away from
the PEC cylinder also show the same phase jump while being
transmitted through the surrounding metasurface.

D. Computational Efficiency

As discussed in Section II-C, updating the unknown field
coefficients of the discretization elements that touch the meta-
surface calls for solving the element-level matrix systems
in (26). This operation is computationally more expensive than
doing explicit time updates for unknown coefficients of the
elements that do not touch the metasurface. However, since the
metasurface is a 2-D structure in a 3-D computation domain,
the number of elements that touch the metasurface is often
much smaller than the total number of elements. For instance,
in the last example in Section III-C, only 9 264 elements touch
the metasurface, while the total number of the elements in the
computation domain is 1 005 767.

On a shared-memory system, where the workload is allo-
cated to all processor cores, the additional computational
cost introduced by the metasurface does not significantly
change the computation time and memory requirement. For
the example in Fig. 7, the wall time and the peak memory
required to complete all the operations in one time step on
a single CPU core (Intel1 Xeon1 E5-2680 v4 processor) are
4.44 s and 4.05 GB, respectively. These numbers reduce to
3.47 s and 3.89 GB, respectively, when the metasurface is
removed.

On a distributed-memory system, if all elements are evenly
distributed between all processes, the processes with the
elements that touch the metasurface would have heavier work-
loads. Clearly, to balance the workload, one should assign a
smaller number of elements to these processes. This can be

1Registered trademark.
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Fig. 8. (a) MPI partitions of the example in Fig. 7(a) for 24 CPU cores,
wGSTC = 100, wPML = 2, and w = 1. (b) Wall time required to complete
all operations in one time step for different values of wGSTC. (c) Parallel
efficiency for different values of wGSTC.

achieved by simply assigning a larger partition weight to each
element that touches the metasurface [60]. For the example
shown in Fig. 7(a), let wGSTC denote the partition weight
for the elements touching the right-top metasurface. The
reflectionless and partially absorbing metasurfaces (the left-
top and right-bottom ones) are accounted for using an explicit
scheme (see Section III-A). The workload of updating the
elements touching these metasurfaces is smaller than that of
the elements touching the right-top metasurface. The partition
weight assigned to the elements touching the left-top and right-
bottom metasurfaces is the same as that of the elements in the
PML region and is denoted by wPML. The weight of all other
elements in the computation domain is denoted by w.

Fig. 8(a) shows the MPI partitions for the example in
Fig. 7(a) when 24 CPU cores are used and wGSTC = 100,

wPML = 2, and w = 1. One can see that the numbers
of elements in the partitions that touch the right-top meta-
surface are smaller. Fig. 8(b) and (c) shows the wall time
required to complete all operations in one time step and
the parallel efficiency for different values of wGSTC, respec-
tively. The label “Without GSTCs” in this figure refers to
the simulation where the metasurfaces are removed and the
time integration is fully explicit. All simulations required
to generate Fig. 8(b) and (c) are executed on Cray XC40
Shaheen-II (https://www.hpc.kaust.edu.sa). Each computing
node has 128 GB memory and two 16-core Intel Haswell
CPUs running at 2.3 GHz. The computing nodes are connected
with the Cray Aries High Speed Network. Note that the wall
time required by 32 cores (from a single computing node) is
used as the baseline to calculate the parallel efficiency.

For the locally implicit scheme, H̄n
k and Ēn

k are
communicated between MPI partitions, but A

n
k , B

n
k , and C̄n

k
are communicated only when metasurface coincides with the
MPI partition boundary. Therefore, the MPI communication
graph is more complicated than the traditional explicit DGTD
schemes without GSTCs. Fig. 8(b) shows that the overall com-
putation time for the simulations with GSTCs is slightly larger
than that of the simulation without GSTCs. Nevertheless, with
the locally implicit scheme, the computation time decreases
almost linearly with the increasing number of CPU cores. The
measured parallel efficiency is very high, which is around 94%
for wGSTC = 50 and around 97% for wGSTC = 100.

IV. CONCLUSION AND DISCUSSION

In this work, GSTCs are incorporated into DGTD to effi-
ciently simulate metasurfaces. The numerical flux for GSTCs
is derived for the first time using the Rankine–Hugoniot jump
conditions. This numerical flux includes the time derivatives of
the fields averaged across the sides of the metasurface. These
terms make the explicit times marching schemes used by the
traditional DGTD schemes unstable. To alleviate this bottle-
neck, a new marching scheme, which solves an element-level
matrix system for the unknowns of the elements that touch
the metasurface, is developed. The resulting locally implicit
DGTD scheme is stable and maintains the high-parallel effi-
ciency of the traditional explicit DGTD methods. The accuracy
of this new scheme is validated against analytical solutions
and its ability to simulate space/time-varying and arbitrarily
shaped metasurfaces is demonstrated by numerical results.

In many applications of metasurfaces, such as beam steering
and cloaking, the synthesized susceptibilities of GSTCs are
usually frequency-dependent. This strong dispersion usually
means that GSTC is also strongly dissipative in the relevant
frequency range. Extension of the DGTD scheme developed
in this work, which will efficiently and accurately account for
dispersive and dissipative metasurfaces, is underway.

APPENDIX

ENTRIES OF THE MATRICES IN (21) AND (22)

Entries of the matrix blocks A
HH,n
k , A

HE,n
k , A

EH,n
k , and A

EE,n
k

and B
HH,n
k , B

HE,n
k , B

EH,n
k , and B

EE,n
k in (21) and (22) are

given by (30), as shown at the top of the next page. Here,
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A
HH,n
k = 1

2μ

⎡
⎢⎢⎢⎢⎢⎢⎣

2μI − γ HH,x x,n
k,g

[
1 −

(
nx

k,g

)2
]
Fk,g γ HH,x x,n

k,g nx
k,gny

k,gFk,g γ HH,x x,n
k,g nx

k,gnz
k,gFk,g

γ
HH,yy,n
k,g ny

k,gnx
k,gFk,g 2μI − γ

HH,y y,n
k,g

[
1 −

(
ny

k,g

)2
]
Fk,g γ

HH,y y,n
k,g ny

k,gnz
k,gFk,g

γ HH,zz,n
k,g nz

k,g nx
k,gFk,g γ HH,zz,n
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⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

nν
k,g represents the component of n̂k,g along the direction

ν̂ ∈ {x̂, ŷ, ẑ}, γ
ab,νη
k,g , a, b ∈ {E, H}, μ, η ∈ {x, y, z} is the

νη component of the tensor γ ab
k,g , and I and O are identity and

zero matrices. Note that Fk,g′ has the same matrix entries as
Fk,g but with its columns reorganized such that it operates on
the unknowns of element k ′, i.e., if node j of element k is
connected to node j ′ element k ′, column j ′ of Fk,g′ is equal
to column j of Fk,g [61].
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