
ARTist: The Android Runtime Instrumentation and Security Toolkit

Michael Backes∗†, Sven Bugiel∗, Oliver Schranz∗, Philipp von Styp-Rekowsky∗, Sebastian Weisgerber∗

∗CISPA, Saarland University †Max Planck Institute for Software Systems
Saarland Informatics Campus Saarland Informatics Campus
Email: {backes, bugiel, schranz, styp-rekowsky, weisgerber}@cs.uni-saarland.de

Abstract—With the introduction of Android 5 Lollipop, the
Android Runtime (ART) superseded the Dalvik Virtual Ma-
chine (DVM) by introducing ahead-of-time compilation and
native execution of applications, effectively deprecating sem-
inal works such as TaintDroid that hitherto depend on the
DVM. In this paper, we discuss alternatives to overcome
those restrictions and highlight advantages for the security
community that can be derived from ART’s novel on-device
compiler dex2oat and its accompanying runtime components.
To this end, we introduce ARTist, a compiler-based application
instrumentation solution for Android that does not depend
on operating system modifications and solely operates on the
application layer. Since dex2oat is yet uncharted, our approach
required first and foremost a thorough study of the compiler
suite’s internals and in particular of the new default compiler
backend called Optimizing. We document the results of this
study in this paper to facilitate independent research on this
topic and exemplify the viability of ARTist by realizing two
use cases. In particular, we conduct a case study on whether
taint tracking can be re-instantiated using a compiler-based
app instrumentation framework. Overall, our results provide
compelling arguments for the community to choose compiler-
based approaches over alternative bytecode or binary rewriting
approaches for security solutions on Android.

1. Introduction

Google’s Android OS has become a popular subject of
the security research community over the last few years.
Among the different directions of research on improving
Android’s security, a dedicated line of work has success-
fully investigated how instrumentation of the interpreter
(i.e., Dalvik virtual machine) can be leveraged for security
purposes. This line of work comprises influencing works
such as TaintDroid [1] for analyzing privacy-relevant data
flows within applications, AppFence [2] for protecting the
end-users’ privacy, Moses [3] for domain isolation, or Span-
dex [4] for password tracking, just to name a few.

However, with the release of Android 5 Lollipop, Google
made a large technological leap by replacing the interpreter-
based runtime with an on-device, ahead-of-time compilation
of apps to platform-specific native code that is executed in
the new Android runtime (short ART). While this leap did
not affect the app developers, it broke legacy compliance

of the previously mentioned security solutions that rely on
instrumentation of the DVM and restricts them to Android
versions prior to Lollipop. In fact, it has left the security
research community with two choices for carrying on work
that relies on instrumented runtimes: resorting to binary or
bytecode rewriting techniques [5], [6] or adapting to the
novel but uncharted on-device compiler infrastructure.

Our contributions. In this paper, we present a compiler-
based solution that can be used to study the feasibility of
re-instantiating previous solutions such as dynamic, intra-
application taint tracking and dynamic permission enforce-
ment and that provides a more robust, reliable, and inte-
grated application-layer instrumentation approach than pre-
viously possible. Concretely, we make the following contri-
butions in this paper.

Uncovering the uncharted ART compiler suite. Since
the novel ART compiler suite, dex2oat, is still uncharted,
we uncover its applicability for compiler-based security
solutions to form expert knowledge that facilitates inde-
pendent research on the topic. In particular, we deep-dive
into its most recent backend called Optimizing that became
the default with Android 6 Marshmallow, and expose its
relevance for ARTist as well as future work in this area.

Compiler-based app instrumentation. We design and
implement a novel approach, called ARTist (ART Instrumen-
tation and Security Toolkit), for application instrumentation
based on an extended version of ART’s on-device compiler
dex2oat. Our system leverages the compiler’s rich optimiza-
tion framework to safely optimize the newly instrumented
application code. The instrumentation process is guided
by static analysis that utilizes the compiler’s intermediate
representation of the app’s code as well as its static program
information in order to efficiently determine instrumentation
targets. A particular benefit of our solution, in contrast to al-
ternative application layer solutions (i.e., bytecode or binary
rewriting), is that the application signature is unchanged
and therefore Android’s signature-based same origin model
and its central update utility remain intact. We thoroughly
discuss further benefits and drawbacks of security-extended
compilers on Android in comparison to bytecode and binary
rewriting. Our results provide compelling arguments for
preferring compiler-based instrumentation over alternative
bytecode or binary rewriting approaches.

2017 IEEE European Symposium on Security and Privacy

© 2017, Michael Backes. Under license to IEEE.

DOI 10.1109/EuroSP.2017.43

481

Feasibility study for compiler-based taint tracking. To
demonstrate the benefits of a solution such as our ARTist,
we conduct a case study on whether compiler-assisted in-
strumentation can be utilized to realize a dynamic intra-
application taint tracking solution. Our resulting prototype
is evaluated using microbenchmarks and its operational ca-
pability is shown using an open source test suite with known
ground truth.

Infrastructure for large-scale on-device evaluations. In
order to prove the robustness of our approach, we created an
evaluation infrastructure that allows to scale our on-device
dynamic app testing to thousands of apps from the Google
play store. It is easily extendable and can be used to not only
evaluate ARTist-based approaches but in general dynamic
on-device security solutions.

Publication of results. To allow researchers to utilize and
extend the results of this paper, we open-sourced the code of
ARTist and our evaluation framework called monkey-troop at
https://artist.cispa.saarland.

Outline. The remainder of this paper is structured as fol-
lows. In Section 2, we present the results of our study of the
dex2oat compiler and its Optimizing backend. We analyze
the requirements for an application-layer instrumentation
solution in Section 3 and compare bytecode and binary
rewriting with compiler-based approaches. We present our
ARTist design in Section 4. Section 5 illustrates use cases for
ARTist, followed by a more detailed case study on compiler-
assisted taint tracking. We discuss limitations and future
work of our solution in Section 6 and conclude this paper
in Section 7.

2. Background

We provide general background information on An-
droid’s managed runtime to set the context of our compiler
extensions (Section 2.1), and subsequently present techni-
cal background information on the compiler suite dex2oat
(Section 2.2) and in particular on its Optimizing backend
(Section 2.3).

2.1. Android Runtime

Android is essentially a Linux-based operating system
with an extensive middleware software-stack on top of the
kernel. The middleware provides native libraries, a feature-
rich application framework that implements the Android
SDK, and a managed runtime on top of which system
as well as third-party applications and a small number
of framework services are executed. The runtime executes
bytecode generated from Java-based applications and An-
droid’s SDK components. The runtime provides the code
executed within its environment with the necessary hooks
to interact with the rest of the system, such as the operating
system, the application framework services, or the native
Android user space (i.e., components running outside the
managed runtime). Every process executing an application
runtime environment is usually forked from a warmed-up

process, called Zygote, which has all the necessary libraries
and a skeleton runtime for the app code preloaded.

Runtime prior to Android 5. On Android devices prior
to version 5, the runtime consisted of the DEX byte-
code interpreter (or Dalvik virtual machine), which was
specifically designed for devices with constrained resources
(e.g., register-based execution model instead of stack-
based). It executes Dalvik executable bytecode (short dex),
which is created from the Java bytecode of applications
at application-build time. Thus, every application package
ships the dex bytecode compiled from the application Java
sources. Additionally, since Android version 2.2, Dalvik
uses just-in-time compilation of hotspot code segments in
order to improve the runtime performance of applications.

Runtime since Android 5. With Android 5, Google moved
over from an interpreter-based app execution to an on-
device, ahead-of-time compilation of apps’ dex bytecode to
native code that is executed in a newly introduced managed
runtime called ART. This shift in the runtime model was
intended to address the app performance needs of Android’s
user and developer base. The new compiler suite was de-
signed from scratch to allow for compile time optimizations
that improve application performance, startup time, battery
lifespan, and also to solve some well-known limitations
of the previous interpreter-based runtime, such as the 65k
method limit1. In particular, Google made the Optimizing
compiler backend, which was introduced as an opt-in feature
in Android 5, the default backend in Android 6. In the
following Sections 2.2 and 2.3, we will elaborate in more
technical detail on this new compiler suite and in particular
on the Optimizing backend.

Prior documentation of ART. Even though the Android
source code is publicly available as part of the Android
Open Source Project (AOSP), little attention has yet been
given to ART from a security researcher’s perspective. Paul
Sabanal had an early look [7] at the Android Runtime
right after its silent introduction as a developer option on
Android 4.4 KitKat. Beside providing information on the
ART executable file formats, the paper discusses the idea
of hiding rootkits in framework or app code, assuming root
access has already been granted. However, especially in its
early phase, the Android Runtime has undergone frequent
changes, which, unfortunately, has made this documentation
outdated by now.2

Another work [8] focuses on fuzzing the new runtime
with automatically generated input files in order to detect
bugs and vulnerabilities. While providing some high-level
overview on the compiler structure and its backends, it, un-
fortunately, omits any deeper information on the Optimizing
backend.

Thus, this background Section also serves the purpose
of filling a gap in the technical documentation of those new
Android features.

1. http://developer.android.com/tools/building/multidex.html

2. E.g., there is a large version gap between the documented oat version
45 and the current version 79 at the time of this writing (February 2017).

482

APK
dex code

OATdex2oat
Verify Write ELF

Optimizing Backend

Compile Install

Input Output

dex
code IR native

code
Transform Code

Generation

Optimization

dex code

Figure 1: A high-level overview of the dex2oat compiler using
Optimizing backend including the transformation to the IR, opti-
mizations, and native code generation.

2.2. DEX2OAT Compiler Suite

Android’s on-device compiler dex2oat is responsible for
the validation of applications and their compilation to native
code. It was designed from scratch to be highly flexible
and of modular structure, providing numerous configuration
possibilities, multiple compiler backends, and native code
generators for supported Android platforms. The general
workflow of the compiler suite is depicted in Figure 1 and
its steps will be explained in the remainder of this Section.
Providing a full technical documentation of the entire com-
piler suite and all its intricacies would unfortunately exceed
the space limitations of this paper. Therefore, in this Section,
we only focus on those parts relevant to this paper.

2.2.1. Input File Format. As an input format, dex2oat
expects the very same dex files that DVM used to interpret.
This strategical decision ensured that neither developers nor
app store operators needed to adapt their code to ART.
Developers still upload their apps as Android Application
Package (APK) files that bundle the app’s code with its
resources. When a new app is installed on the device,
dex2oat compiles the app’s dex bytecode and the ART
runtime executes it, which is completely transparent for the
end user. Using this strategy, ART is still compatible with
the old Android app base without enforcing a fallback to
interpretation, which would loose all benefits that the new
compiler provides.

2.2.2. Compilation. Before the actual compilation is per-
formed, each input dex file is checked for validity. Those
checks are more extensive and stricter than those imple-
mented in the DVM in order to allow for state-of-the-art
code optimizations. The compilation itself is done on a
per-method base and can be parallelized. dex2oat delegates
the actual compilation completely to the backend and only
writes the results of the compilation to an oat file along with
the original dex code. There are three compilation phases
shared between all backends:

Transformation: A graph-based intermediate representation
(IR) is created from the dex code. Depending on the actual
backend, multiple IRs are possible.
Optimization: Given a populated IR graph, the code is op-
timized. Each backend provides its own set of optimization

measures, ranging from very basic techniques to state-of-
the-art algorithms.
Native code generation: The IR nodes are transformed to
native code using a code generator for the specific CPU
architecture of the current platform. The level of sophistica-
tion of the register allocation algorithm and implementation
of the code generator depend on the backend.

Backends. On an Android stock device running version
5 (Lollipop) or higher, dex2oat can choose between two
different backends, Quick and Optimizing. Although Quick
was dex2oat’s default backend until Android 6, we focus,
in the remainder of this Section and paper, on the newer
Optimizing backend. This choice is not only motivated by
the fact that Optimizing is the default backend since Android
6, but also by the fact that Quick is essentially derived
from Dalvik and lacks a sophisticated IR that can support
state-of-the-art compiler optimizations—including sophisti-
cated security-oriented algorithms. However, Optimizing is
designed completely from scratch and little is yet known
about its internal structure and design. In Figure 1 the
compilation steps of Optimizing are depicted. More insights
on the inner workings of the new default compiler backend
will be provided in Section 2.3.

2.2.3. Oat File Format. Oat files are Androids new file
format for apps that are ready to be loaded and executed
by the ART runtime. Even though the format was newly
created for the Android platform, technically speaking oat
files are specialized ELF shared objects that are loaded into
processes, i.e., loading a compiled app into an application
process is comparable to loading an (ELF) shared library
into the process space of a dynamically linked executable.
Besides the native code generated with dex2oat, oat files
contain the complete original dex code, which is required
to hold up consistency between the code that the developer
wrote in Java, the dex code that used to be interpreted, and
the compiled code, or to allow falling back to interpretation
mode during app debugging.

2.3. Optimizing Intermediate Representation

We introduce insights into dex2oat’s Optimizing backend
that we derived mainly from the AOSP source code of
the ART project. Optimizing’s intermediate representation is
essentially a control flow graph on the method level, which
the Android developers denote as HGraph. It is further en-
riched with structural data about the program and populated
with instruction nodes, denoted as HInstructions. Figure 2
presents an example Java code and Figure 3 presents the
resulting3 HGraph of the getID function in the Optimizing
IR. We will come back to this example in our case study in
Section 5.2.

3. Presented code is simplified and limited to relevant instructions for
the sake of readability.

483

public String getID() {

 TelephonyManager tm =
 getSystemService(TELEPHONY_SERVICE);

 String id = tm.getDeviceId();

 if(id != null) {
 id = prefixID(id);
 } else {
 id = "N/A";
 }

 return id;
}

public String prefixID(String id) {
 String prefix = "ID: ";
 String result = prefix + id;
 Log.d(TAG, prefix + id); // leak id!
 return result;
}

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Figure 2: An example code snippet containing a leak of the
device’s phone number to the logging facility.

4: ParameterValue: this
44: NullConstant

getID: Basic Block 0

6: LoadString: 'phone'
12: InvokeVirtual: Activity.getSystemService, args:(4, 6)
15: LoadClass: Landroid/telephony/TelephonyManager
17: CheckCast args:(12, 15)
21: InvokeVirtual: TelephonyManager.getDeviceId, args:(12)
25: Equal, args:(21, 44)
26: If, args:(25)

getID: Basic Block 1

31: InvokeVirtual: prefixID, args:(4, 21)

getID: Basic Block 2

36: LoadString: 'N/A'

getID: Basic Block 4

43: Phi, args:(31, 36)
35: Return, args:(43)

getID: Basic Block 3

Figure 3: Generated IR in SSA form for the getID() method
in Figure 2.

2.3.1. HGraph. The HGraph serves as the single inter-
mediate representation of the app code. When the graph is
created, dex instructions of the app’s bytecode are scanned
one by one and the corresponding HInstructions are created
and interlinked with the current basic block and the graph.
In order to allow for complex optimizations, the graph is
transformed into single static assignment form (SSA). While
this is done immediately beginning from Android 7 Nougat,
Lollipop and Marshmallow devices first build up an alterna-
tive graph structure and subsequently transform it to the SSA
graph we have now. Pairs of value definitions and usage, so-
called def-use-pairs, are created during a liveness analysis

and explicitly interlinked afterwards. At this point, phi nodes
are introduced where static analysis cannot reliably decide
which value will be assigned at a given position.

In this form, the graph is amenable to a multitude of
possible optimizations. The available optimizations include
algorithms such as BoundsCheckElimination to remove re-
dundant bounds checks, GVNOptimization to remove dupli-
cate code, dead code elimination, or loop invariant code
motion to optimize hotspot code in loops. In Section 4,
we will show how this form is also amenable to security-
oriented instrumentation, thus supporting compiler-based se-
curity solutions on Android, such as dynamic taint tracking
(see Section 5.2).

2.3.2. HInstructions. The HGraph nodes roughly corre-
spond to dex instructions. Beside this transformation, nodes
in the HGraph have additional attributes that have no equiv-
alent in dex bytecode (e.g., an SSA index). The HInstruc-
tions distinguish between arguments and inputs. While the
former correspond to the arguments given to an operator or
method, the latter encode additional dependencies that may
not be immediately observable given only the underlying
dex code, as in the case of static method invocations that
in addition to their arguments have an HLoadClass or
HClinit as their input. All HInstructions share a basic set
of information: Type, inputs, uses, id, and further data is
attached to each node in order to ease the creation of and
working with the HGraph. Each node is uniquely identified
within the graph by its id that is assigned and incremented
continuously during node creation. The type can be Void for
methods that have no return value, Not for strings and object
types of any kind, and additionally any of the Java primitive
types. In order to get the actual object type, a fallback to the
original dex file is required. This loose coupling between
HInstructions and dex instructions as well as the presence
of a method local dex program counter in each node show
that the IR nodes are not completely independent of the
original dex file.

Semantic consistency. In addition to the instructions that
represent the original application logic, the HGraph also
contains meta-instructions to preserve the semantic consis-
tency between the original Java code of the developer, the
dex bytecode shipped with APKs, and the native bytecode
actually executed in ART. First, additional instructions are
inlined into the graph to support meaningful debugging (e.g.,
to map from segmentation faults in ART to actual stack
traces) and to conduct various forms of runtime checks
(e.g., checking type casting, bounds checking, division-by-
zero checks, or null pointer exceptions). Second, instructions
to represent so-called suspension points are added, which
effectively subdivide the application code into multiple
chunks. Each suspension point between two chunks acts as
a synchronization point between native code and original
dex bytecode in the program execution and also serves as
an entry point for garbage collectors or debuggers.

484

APK
dex code

OAT
Write ELF

dex2oat
Verify

Optimizing Backend

Compile Install

dex
code IR native

code
Transform Code

Generation

Input Output

Optimization

dex
code*InstrDEX

IR*InstrOPT

native
code*InstrBIN

APK
dex code*

OAT*
dex code

InstrAPK InstrOAT

dex code

Figure 4: The code instrumentation points before, during, and
after the compilation for different representations of the app code.
Instrumented code is depicted in black boxes.

3. The Case for Compiler-Assisted Security on
Android

A dedicated line of work, including the TaintDroid
project and its derivatives (such as [2], [9]), relied on instru-
mentation of the now abandoned Dalvik virtual machine. As
a consequence, the research community faces the dilemma
on how to continue this line of work and is left with two
choices (see Figure 4): Either compensating the missing
runtime instrumentation through app rewriting techniques—
dex bytecode (InstrAPK) or binary (InstrOAT)—or by taking
advantage of Android’s new compiler suite (InstrDEX, In-
strOPT, and InstrBIN). Although dex bytecode rewriting is
well-established in contexts such as inline reference moni-
toring [10], [5], [11], [12] and taint analysis [13], [14], and
ART now supports porting binary rewriting techniques from
commodity systems, we build in this paper on compiler-
based instrumentation to not only re-instantiate previous
approaches that relied on Dalvik VM instrumentation, but
also to explore novel security solutions that leverage the
compiler features.

In the following, we analyze the concrete requirements
that an instrumentation solution should provide and discuss,
for each of the above approaches (i.e., bytecode rewriting
InstrAPK, binary rewriting InstrOAT, and compiler-based in-
strumentation), their respective benefits and shortcomings in
fulfilling those requirements. Table 1 provides a summary
of our requirements analysis.

R1. Enforceable security policies. Each of the three ap-
proaches operates on one of the different representations of
the same app code, i.e., bytecode, IR, or binary. Hence,
all three approaches are identical in their capabilities of
instrumenting the code and none of the solutions addresses
any security policy alone.

R2. Strong security boundary. Both rewriting and the
compiler-based approach rely on injecting monitoring code
into the app’s process space and can, therefore, not provide
a strong security boundary between monitoring and (poten-
tially) malicious app code (�), e.g., native code. Thus, all
of them can only provide security guarantees for at most
honest-but-curious apps.

Bytecode

rewriting

Compiler-

based

Binary

rewriting
R1.Enforceable
security policies

identical

R2.Strong security
boundary

� � �

R3. Application
layer only

� � �

R4. User privilege
only

� (�) (�)

R5. Platform
independence

� � �

R6. Signature
preservation

� � �

R7. Robustness
against optimization

� � �

R8. Integrated
approach

� � �

R9. Supported
versions

all 6+ 5+

�= fulfilled; �= not fulfilled

TABLE 1: Comparison of security and deployment features be-
tween bytecode rewriting, compiler-based instrumentation, and
binary rewriting.

R3. Application layer only. All approaches can be imple-
mented purely at application layer (�). Deploying bytecode
rewriting techniques InstrAPK in form of separate apps has
been presented in the literature [10], [5], [11], [12]. A
compiler-based solution can be deployed as a separate app
that ships and controls the security-instrumented compiler
suite (see also Section 4.2). For both the compiler-based
approach and the binary rewriting, the main requirement
is access to the storage location of applications’ oat files,
which does not require system modification.

R4. User privilege only. While dex code is freely avail-
able for non-forward locked apps, accessing applications’
oat files makes elevated privileges necessary. However, in
Section 6.1.4, we discuss an approach that would allow
both binary and compiler-based rewriting to circumvent this
problem without requiring elevated privileges.

R5. Platform independence. Bytecode rewriting InstrAPK

(�) and compiler-based instrumentation (�) can be applied
on all platforms supported by Android, since they modify
the code before platform-dependent native code is generated.
Binary rewriting InstrOAT, in contrast, depends on the actual
hardware architecture of the platform (�), thus requiring
extra effort to support different hardware platforms.

R6. App signature preservation. App signatures are the
foundation of Android’s same origin model that governs the
app update policy and sharing of resources between apps,
like a common process or UID. Consequently, modifying
bytecode InstrAPK and the resulting obligation to resign
and repackage apps breaks this same origin model (�).
In contrast, compiler-based instrumentation (�) and binary
rewriting InstrOAT (�) do not modify the original app pack-
age and therefore do not invalidate the signature.

485

R7. Robustness against code optimization. The instru-
mentation point determines whether any instrumented code
will be subject to optimization at compile time. Apply-
ing optimization algorithms to instrumented code has the
potential to interfere with the semantics of the modifica-
tion through, e.g., instruction reordering, inlining, or simi-
lar techniques of state-of-the-art compilers like Optimizing.
Current bytecode rewriting approaches InstrAPK are applied
before compilation; thus any instrumentation has to be
robust against optimization by Optimizing—an aspect not
yet further investigated by contemporary research (�). On
the other hand, binary rewriting InstrOAT is restricted to
instrumenting optimized code (�), but misses the chance to
reuse the rich Optimizing framework to also optimize added
security code. The sweet spot is compiler-based instrumen-
tation that provides full control over which optimizations are
applied when and in which ordering (�). Even better, this
enables creating optimizations that are specifically tailored
towards improving the instrumented code by utilizing the
static program information that is present in the compiler.

R8. Integration into toolchain. Integrating an instrumen-
tation system into an existing toolchain ensures perpetual
development and fixes by the community as well as access
to established and well-tested tools and frameworks. In this
case, even though the ART project is open source and
therefore open to the community, the compiler is mostly
maintained by Google itself. Consequently, compiler-driven
solutions that do not break with the toolchain’s regular
functionality benefit from the continuing improvements (�).
In the case of ARTist, the amount of code that needed to be
changed is minimal and therefore easy to adapt for newer
versions of the toolchain. Bytecode rewriting InstrAPK and
binary rewriting InstrOAT are developed separately from the
toolchain and do not reap those benefits (�).

R9. Version support. While bytecode instrumentation In-
strAPK can be applied to all Android versions, compiler-
based approaches and binary rewriting InstrOAT depend on
ART and therefore can only be applied since Lollipop (5+),
where a compiler-based solution (as presented here) should
utilize the Optimizing backend on Android 6+ in preference
to Quick.

Sweet spot. In conclusion, comparing the security and
deployment features that the three available instrumentation
approaches provide, a compiler-based approach has very
appealing properties and occupies a sweet spot among all
approaches.

4. ARTist Design

In this section, we present the architecture of the ART
Instrumentation and Security Toolkit. ARTist consists of two
separate components: a security-instrumented compiler (sec-
compiler) and an app to deploy the compiler (deployment
app). The sec-compiler is our implementation of a compile-
time instrumentation tool that is based on the dex2oat com-
piler. The latter is a regular Android application that ships,
deploys, and manages the sec-compiler.

4.1. Security-Instrumented Compiler

ARTist’s sec-compiler enhances Android’s dex2oat with
additional instrumentation routines. This section will high-
light design challenges and decisions we encountered while
building sec-compiler, such as the placement of our in-
strumentation code within the compiler, the modification
capabilities of our approach and the inclusion of custom
libraries into target applications.

Choice of instrumentation point.
Given dex2oat’s modular design, multiple possibilities

for the placement of app modifying code are immediately
apparent. For instance, dex2oat’s design would easily allow
porting bytecode and binary rewriting approaches (InstrDEX

& InstrBIN) into the compiler infrastructure (cf. Figure 4).
Both techniques, although thoroughly studied in the litera-
ture, would benefit from instantiation within the compiler in-
frastructure by improving upon known shortcomings such as
the requirement to re-sign modified applications. However,
of the different choices, ARTist’s sec-compiler is concretely
designed to operate on the intermediate representation of
dex2oat’s Optimizing backend (InstrOPT), where the exist-
ing optimization infrastructure and static code information
in the Optimizing IR allow for efficient and precise code
modification.

More precisely, our app instrumentation code is realized
as an HOptimization, an optimization pass over the com-
piler’s intermediate representation of the target app. As a
consequence, our instrumentation pass neatly integrates into
the compiler’s optimization framework, including automated
execution and access to the currently compiled method’s
HGraph. Implanting our instrumentation routines into the
optimization workflow additionally grants us full control
over the ordering and execution of optimizations in general,
which opens up the opportunity for arbitrary reordering or
even introduction of own optimization passes. Multiple such
passes can combine different instrumentation routines or
specifically crafted optimizations can improve the perfor-
mance of our security code within target apps.

Generally speaking, the HOptimization interface’s loose
coupling allows for neat integration of new functionality into
the compiler while, at the same time, keeping the effort for
adaption of patches and maintainability to a minimum. We
will refer to such independent extensions as Modules for the
remainder of this paper.

Spotting instrumentation targets. HGraph supports the
visitor pattern [15] that enables us to iterate over, inspect,
and modify each single HInstruction of the app’s code. In
contrast to method hooking techniques, we can therefore
operate at the instruction level. In ARTist, HGraphVisitors
are primarily used to identify instrumentation targets and
apply the desired modification. However, they can also be
utilized to bootstrap static analysis. We will see concrete
implementations using a visitor to collect instrumentation
sites for our dynamic permission enforcement system in
Section 5.1 and starting points for backward slicing in our
taint tracking case study in Section 5.2.

486

Modification capabilities. With full access to a method’s
HGraph, ARTist can arbitrarily modify the target applica-
tion’s code, e.g. change inputs, types, or even remove, add,
or replace instructions. ARTist even provides a dedicated
API to inject arbitrary method calls into HGraphs, which,
combined with the capability to inject whole libraries (see
4.2), allows to inject arbitrary code into target applications.
Module developers simply declare the instrumentation loca-
tion, the method to be invoked and the inputs to be passed.
An example can be found in Section 5.1 where our dynamic
permission enforcement use case Module makes heavy use
of this feature.

All instrumentation routines operate on HNodes, mean-
ing the dex frontend and native code generators stay ag-
nostic towards our changes and can therefore be used as
is. The result of this integrated solution is that we still take
advantage of the robustness of Optimizing’s code generators,
which are well-tested, constantly improved, and in produc-
tive use on every stock Android phone running version 6+.

Configuration. Using Modules, the instrumentation and
modification process is already flexible. To further increase
flexibility, Modules can, in turn, depend on policy configu-
ration files that govern the instrumentation process. While
the design of such policy files highly depends on the con-
crete Module, there are recurring and common patterns, for
instance, the amount and type of instrumentation targets
that should be detected, as demonstrated in Section 5.1. In
general, this allows adaptation of existing instrumentation
solutions to new targets or provisioning them with new
security policies.

4.2. Compiler Deployment App

There are multiple possibilities to apply sec-compiler
to installed apps on an Android device. A naı̈ve approach
simply replaces the system’s dex2oat and corresponding li-
braries with sec-compiler’s augmented ones. With this strat-
egy, each app installed on the device is automatically com-
piled using our custom dex2oat and therefore instrumented
accordingly. However, we choose an alternative approach
that does not require system modification. Based on the
fact that dex2oat and its libraries are regular dynamically-
linked ELF binaries, we can ship our custom compiler and
its libraries as assets in our deployment app. On the device,
deployment app manages and exposes sec-compiler’s instru-
mentation capabilities through an easy-to-use user interface.
When the user chooses an application to be instrumented,
deployment app executes our custom compiler to create an
alternative version of the app’s oat file, which we denote as
oat’ (oat prime).

Executing the compiler. Instead of shipping deployment
app with a statically linked dex2oat binary that includes
our ARTist extensions, we opted for utilizing a copy of An-
droid’s default dex2oat binary and leveraging its modularity
to ship our extensions to the compiler suite as separate
libraries. We use the LD LIBRARY PATH environment
variable to ensure that our dex2oat loads and dynamically

links our ARTist libraries, such as libart-compiler.so, from
the assets directory of the deployment app.

Executing instrumented code. In order to execute the
instrumented app, we need to trick the system into loading
our instrumented file oat’. Since oat files are by default
stored at and loaded from a protected location to which
3rd party apps have no access, a naı̈ve solution to this
problem would be to require extended privileges for our
deployment app (e.g., a dedicated SELinux type or root) to
replace the oat file. We discuss alternatives to the naı̈ve
approach in Section 6.1.4, which abstain from extended
privileges by using app virtualization or reference hijacking.
The user, however, stays agnostic to this change since she is
still able to launch the applications as usual, e.g. using the
app launcher, but triggering execution of the instrumented
version instead.

Inlining custom code. While sec-compiler can inject ar-
bitrary code on the instruction level, in some cases it is
preferable to inject a complete custom library into the
application and wire it with the existing code using sec-
compiler’s instrumentation capabilities. For example, both
use cases in Section 5 rely on this feature to inject their
companion libraries. The deployment app, in a preprocessing
step, utilizes the DexMerger utility to combine the app’s
original bytecode with the additional code library. During
compilation, connections between original and new code are
built in form of invocations of the added code’s methods.

5. Use Cases

We demonstrate the applicability and usefulness of our
system by discussing several use cases out of which we ex-
emplarily realized two as ARTist Modules. First, we imple-
mented an Inline Reference Monitor (IRM) injection Module
to allow for dynamic permission enforcement. Second, we
conduct a case study on realizing intra-app taint tracking
through inlining of taint tracking code. In addition, we
discuss further ideas for ARTist Modules.

5.1. IRM for Dynamic Permission Enforcement

In the literature, Inline Reference Monitoring (IRM) is
mostly implemented by modifying the bytecode before the
installation [10], [5] or by hooking into an application’s
method at the caller or callee side at runtime [12]. By
utilizing a security-instrumented compiler, IRM can be im-
plemented without the need to resign and repackage apps as
it is required by established approaches. Moreover, dex2oat-
based IRM can operate at instruction granularity instead of
at the method level. Those capabilities are showcased by our
IRM injection Module that allows for dynamic permission
enforcement, as shown by [12], [10], [16] on Android
versions before Marshmallow.

The module is split into two distinct parts: the code
injection routine that will inline permission enforcement
code and the accompanying library that acts as a policy

487

decision point. While the first directs the instrumentation
process at installation time, the latter enforces the user’s
policy at runtime.

Code injection. We first utilize ARTist to locate the call
sites of permission-protected SDK methods that are defined
in a policy configuration file. Afterwards, ARTist injects
additional calls to our companioning library right before the
call sites to check whether the critical method invocations
should be allowed. This ensures that the control flow is
diverted to our policy decision point before the execution
of permission-protected methods.

The limitations imposed by the choice of this rather basic
strategy are discussed in Section 6.2.2.

Policy decision point. The library that our Module injects
into target apps provides an API to check the app’s current
state of permissions. Based on the given user permission
policy, the library either allows or rejects the execution of
a protected SDK method.

5.2. Case study: Taint Tracking

Established approaches for dynamic taint tracking on
Android [1] rely on instrumenting the by now scrapped
DVM for intra-application taint tracking or directly rewrite
bytecode [13], [14]. In this case study, we explore the
applicability of a compiler-based instrumentation framework
like ARTist to re-instantiate intra-app taint tracking for appli-
cations on Android version 6 and higher. That is, through a
prototypical implementation, we want to investigate whether
inlining taint tracking logic into the application code base
with ARTist at compilation time can be a surrogate for
solutions prior to Android version 5. Note that this case
study does not aim to be a full replacement of existing so-
lutions like TaintDroid [1], but demonstrates a new potential
foundation for future taint-tracking on Android.

5.2.1. Module Design. In general, we want to track infor-
mation as it flows through the code using tracking logic
inlined by a new HOptimization in the Optimizing backend.
However, simply assigning each single value that should
be tracked a taint tag and updating the tag for each single
instruction operating on it will incur a major performance
penalty. To minimize the runtime impact, we split our ap-
proach into two phases: analysis and instrumentation. Dur-
ing the analysis phase, we identify flows of tainted informa-
tion between sources and sinks. By restricting ourselves only
to those relevant flows of the values we are interested in, we
avoid generating irrelevant but costly taint tracking code for
parts of the method that never actually influence the data that
is observed and gain noticeable performance improvements
over more naı̈ve taint tracking. During the instrumentation
phase, code will be inlined that creates, propagates, and
checks the taint values along the identified data flows. Our
combined analysis and instrumentation achieves flow-, path-
, object-, and context-sensitive taint tracking.

While [13] and [17] also utilize static analysis to op-
timize and guide the instrumentation process, both assume

a holistic view on the application in form of a control or
data flow graph. In contrast, dex2oat backends operate on a
per-method level, leaving the primary challenge for our taint
tracking Module to achieve similar tracking properties while
inspecting one method at a time. A naı̈ve solution to this
problem would be to retrofit the compiler suite to provide
an application-wide view and instrumentation. However,
our prototype demonstrates how we can still achieve taint
tracking for the whole application while restricting ourselves
to a per-method view and instrumentation. To this end, we
introduce in the following a new design for storing and
propagating taint tags, in particular we have to refine the
definitions of sink and source.

5.2.2. Analysis Phase. In order to optimize the instrumen-
tation with taint tracking code, we exploit the processing
features (e.g., HGraph’s Visitor [15] pattern support) of the
dex2oat compiler to detect the data flow sources and sinks
and afterwards use its static analysis features to identify the
relevant data flows and the operations along those flows that
have to be instrumented.

Refining source and sink definition. The literature on
taint tracking for Android defines sources and sinks as
the API methods that input privacy-sensitive information
into the application process (e.g., framework functions that
return sensitive data, such as the location or telephony API)
or, respectively, leak privacy-sensitive information from the
application process (e.g., file handles, Internet sockets, or
logging facilities). Since dex2oat is operating on a per-
method level, we cannot assume that our analysis is able
to always connect a sink and a source (e.g., when they are
located in different methods). To address this problem, we
have to connect the data flows of tainted variables across
the different methods while maintaining the per-method-
based analysis. To this end, we introduce, in addition to the
above mentioned sinks and sources from the literature—in
the following denoted as global sinks/sources—new method-
local sinks/sources, more precisely HInstructions, which
form the entry and exit points for inter-procedural data
flows. Thus, global sinks and sources are points of interest
for taint tag creation and check, respectively, while local
sinks and sources are for inter-procedural tag propagation.
For local sinks and sources, we differentiate between three
categories each: Local sources include parameters provided
to the current method (LSO1), return values from method
invocations (LSO2), and values read from fields (LSO3).
Conversely, local sinks are method invocations that leak val-
ues through its arguments from the current method (LSI1),
return statements of the current method (LSI2), and field
setting instructions (LSI3). At the beginning of the analysis
phase, we collect all sinks within all methods and, in a
subsequent step, detect all relevant sources for those sinks
(see next paragraph).

Creating intra-procedural data flows. For each global
and local sink collected in the current method, we create
a backward slice by tracing back the sink’s inputs until a
source or constant is reached. Constants cannot be tainted

488

public String getID() {

 TelephonyManager tm =
 getSystemService(TELEPHONY_SERVICE);

 String id = tm.getDeviceId();

 if(id != null) {
 id = prefixID(id);
 } else {
 id = "N/A";
 }

 return id;
}

public String prefixID(String id) {
 String prefix = "ID: ";
 String result = prefix + id;
 Log.d(TAG, prefix + id);
 return result;
}

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

LSI2
GSI

LSO1
LSI2

LSO2 LSI1

GSO

10: LoadString: 'ID: '
35: LoadString: 'TAG’
60: LoadClass: Landroid/util/Log;
61: ClinitCheck, args:(60) uses:[64]
78: InvokeVirtual: TaintLib.checkLeakage,
 args:(75, 77)
64: InvokeStaticOrDirect: Log.d,
 args:(35, 10, 8, 61)
76: InvokeVirtual: TaintLib.setReturnTaint,
 args:(75, 77)
66: Return args:(8)

prefixID: Basic Block 1

 6: ParameterValue: this
 8: ParameterValue: Ljava/lang/String
77: InvokeVirtual: TaintLib.getArgTaint, args:(75)

prefixID: Basic Block 0

6: LoadString: 'phone'
12: InvokeVirtual: Activity.getSystemService, args:(4, 6)
15: LoadClass: Landroid/telephony/TelephonyManager
17: CheckCast args:(12, 15)
21: InvokeVirtual: TelephonyManager.getDeviceId, args:(12)
25: Equal, args:(21, 44)
26: If, args:(25)

getID: Basic Block 1

52: InvokeVirtual: TaintLib.
 setArgTaint, args:(51, 47)
31: InvokeVirtual: printID,
 args:(4, 21)
54: InvokeVirtual: TaintLib.
 getReturnTaint, args:(51)

getID: Basic Block 2

36: LoadString: 'N/A'

getID: Basic Block 4

43: Phi, args:(31, 36)
53: InvokeVirtual: TaintLib.
 setReturnTaint, args:(51, 54)
35: Return, args:(43)

getID: Basic Block 3

1

2

3

4

5

1

2

3

4

5

Figure 5: Tracking tainted variable id from example of Figure 2. All discovered sinks and sources are marked. Solid lines indicate
intra-procedural data flows of tainted variables, dashed lines inter-procedural data flows between local sink-source pairs. The right-hand
side depicts the inlined taint tracking code to propagate taint tags.

and are therefore omitted, the found sources however define
which data can potentially leak through the sink, so our slice
is defined by a sink and all its influencing sources appearing
in the currently analyzed method.

For instance, Figure 5 continues the example code from
Figure 2. In the Java code on the left-hand side, all sinks
have been identified (i.e., the parameter id passed to func-
tion prefixID in line 9 is a local sink of type LSI1, the
return statements in lines 14 and 21 form local sinks of type
LSI2, and in line 20 the call to Log forms a global sink).
Using backwards slicing (solid lines 1 , 3 , and 5) the
local sources in lines 17 (LSO1) and 9 (LSO2) as well as
the global source in line 6 (getDeviceID call to retrieve
device’s phone number) have been identified. Each resulting
backward slice is defined by its starting point (i.e., the
sink) and all found endpoints (i.e., the sources). Together,
those backward slices form the input for the instrumentation
phase.

Because the backward slice dictates the targets for the
instrumentation phase, high precision is desirable for im-
proved runtime performance, but soundness is crucial since
missed data flows result in false negatives. Consequently,
our slicing algorithm over-approximates to compensate for
known shortcomings of static analysis like missing runtime
information, e.g., when encountering phi nodes or native
method invocations. While over-approximating phi nodes by
tracing back all its inputs is sound, handling native code is
more involved. Our heuristic assumes that all data provided
as an argument to a native function will influence its result,
hence the return value taint is the combined taint of all
inputs. However, this is sound for side-effect-free (pure)
functions only. Native code in general, as well as reflection,
are limitations we share with similar approaches as ours.

5.2.3. Instrumentation Phase. During the instrumentation
phase, we inline code that creates taint tags for global
sources and that checks taints at global sinks at runtime.
Additionally, we inline code that inter-procedurally propa-
gates taints at runtime from a local sink to a local source,
ensuring the data flow of a tainted value across multiple
methods correctly propagates the taints.

TaintLib. In order to improve the flexibility of our solution
by not restricting our system to a specific implementation
for storing, updating, and checking taints, we make use of
ARTist’s modular design and deploy the taint tracking logic
in form of a new companion library called TaintLib that is
merged by deployment app into the app code at compile
time. TaintLib, in turn, relies on a policy file that defines
the global and local sources/sinks as well as the sources’
taints tags. TaintLib provides source type-specific taint-set
methods, calls to which are inlined at all sources, and sink-
type-specific taint-get methods, calls to which are inlined
at all sinks. By injecting TaintLib method calls instead of
concrete taint tracking logic, we decouple the instrumenta-
tion from the taint management code. For global sources,
taint-get retrieves and sets the taint tag according to the
policy and taint-set at global sinks checks4 the taint tag. In
contrast, for local sinks taint-set propagates the tag together
with the tainted value to the next local source, where it is
retrieved with taint-get. By instrumenting all methods alike,
an implicit contract between all methods is established and
fulfilled, i.e., every time a taint-get tries to obtain the taint
value of a method parameter on the callee side, we know
the corresponding taint-set has been executed in the calling

4. While a naı̈ve check halts the program when tainted data is about to
leak, invoking a sanitizer as suggested by [17] can easily be implemented
in ARTist.

489

method to provide the taint data. In case the slice contains
multiple sources, the output of their corresponding taint-
gets is combined by injecting a call to a merger method
that combines the taint tags.

To continue our running example, the right hand side of
Figure 5 presents the IR of the code snippet with taint-set
and taint-get calls inlined. For instance, the setArgTaint
call for LSI1 in basic block 2 of getID (HInstructions 52)
precedes the local sink in HInstructions 31 that invokes
the prefixID function. The setArgTaint instruc-
tion transfers the taint of id inter-procedurally to the
getArgTaint instruction in HInstruction 77 of basic
block 0 of prefixID (dashed line 2), from where it is
intra-procedurally propagated using the backwards slicing
information (solid line 3). Similarly, the taint is propa-
gated back from prefixID to getID through the return
statement and variable assignment (dashed line 4).

Inter-procedural taint tag propagation channel. In the
case of parameters (LSO1 and LSI1) and method returns
(LSO2 and LSI2), there are always pairs of taint-sets and
taint-gets present at runtime, due to the fact that for each
callee method, there is a caller method that also has been
instrumented. Combining this with the observation that a
caller-callee method pair is always executed in the same
thread, the taint propagation can be realized using thread
local storage for a taint stack. At the caller side, the
taint information is pushed onto a per-thread stack and
at the callee side it is popped again, vaguely resembling
the x86 calling convention for passing arguments to meth-
ods. Keeping in mind that almost every injected TaintLib
method call accesses the taint information, replacing more
straightforward approaches for taint storage (like a single
HashMap) with cheaper stack operations also benefits the
overall performance of our taint tracking solution.

In the case of field operations (LSO3 and LSI3), we can
neither assume them to appear in pairs nor to be executed on
the same thread and therefore employ a thread-safe mapping
in the form of a ConcurrentHashMap. This, however,
raises the challenge of providing easily computable, stable
and unique keys. If we consider our taint tags not to store
the taint value of a certain value, but of a certain location,
we can compute stable identifiers for fields and use them
as keys. For static class fields, identifying the specific class
and field is sufficient and can be precomputed during com-
pilation. The current implementation injects the computed
key as a constant into the HGraph and provides it as an
argument to a field taint-set or taint-get. For object fields,
we do not only need to identify classes but concrete objects,
which requires runtime information. In this case, we only
inject the field identifier as a constant and provide it together
with the field’s concrete object to a carefully crafted TaintLib
function. The returned key is robust to object aliasing such
that we do not lose track of objects in, e.g., collections.
Afterwards, we can use this key in a taint-set or taint-get
for the object field.

It is important to note that our approach to taint tracking
depends not only on the entity for which we store taints

(i.e., variable locations instead of values), but also on the
type of data to which we assign taint values. In our model,
we track taints only for primitive types and the taint tag
of objects is transitively given by their field’s tags. In case
of non-primitive fields, the rule applies recursively because
eventually all objects can be decomposed to primitives.
This design decision is motivated by the fact that tracking
all taint-set and taint-get operations on fields and on all
method invocations is more fine-grained than storing taint
information at the object level.

5.3. Further Use Cases

Dynamic analysis. Compiler-based solutions are inherently
well-suited for white box approaches that require an under-
standing of the application’s internals. One example is the
taint tracking Module described above that re-instantiates
TaintDroid-inspired intra-app taint tracking. Other examples
are existing works on commodity systems [18], [19] that
already utilize compilers for information flow control, which
can now be realized on Android as well.

Container solutions. Modifications of the Android runtime
environment have been used in the past (for instance Di-
vide5, now part of Google Android for Work) to establish
container solutions that, e.g., encrypt file system I/O of
apps or restrict inter-application communication. Using a
compiler-based approach such as ARTist, similar container
solutions can be established by replacing the corresponding
method invocations (e.g., calls to Java’s I/O classes) with
calls to injected security-enhanced versions of the same.

Code replacement and compile-time patching. Google has
recently started separating security-critical libraries, such as
the notorious WebKit, from application packages into stand-
alone apps that are called by apps on-demand. This allows
Google to maintain those libraries on an ecosystem-wide
scale and roll out security patches more effectively. Since
ARTist is not only able to inject but also to replace or
remove code from an app’s code base, ARTist can also be
used to apply compile-time patches by replacing vulnerable
libraries within apps with fixed versions. In an extreme case,
this mechanism could allow for removing entire libraries
by mocking all their method invocations (e.g., removing
ads), or moving code partitions behind a strong security
boundary, such as a dedicated process, and reconnect the
code through inter-process communications (e.g., as done
in the AdSplit [20] or AdDroid [21] solutions).

Beyond security: profiling and debugging. Besides its
application in the security domain, using ARTist to inject
tracing, debugging or profiling code allows to gain addi-
tional insights into third-party applications. A basic example
is the method call-tracing we employ in our robustness
evaluation in Section 6.1.1.

5. http://www.divide.com

490

6. Discussion

This section evaluates ARTist and its Modules in terms
of robustness, performance, inherent and implementation-
specific limitations, and discusses ideas for future work.

6.1. ARTist

We first evaluate the general ART Instrumentation and
Security Toolkit and discuss its general limitations.

6.1.1. Robustness. In order to prove its applicability, we
conducted an evaluation on top apps from the Google Play
Store.

Evaluation Infrastructure In order to scale our evaluation
to thousands of apps, we created a dynamic on-device app
testing infrastructure called monkey-troop. It allows us to
automatically test apps with ARTist Modules on an arbitrary
number on connected devices in parallel, thereby heavily
reducing the time required for large-scale evaluations. Its
pipeline works as follows:

1. Setup Before we start the actual testing, our special
Module within ARTist is installed as an application on all
test devices.

2. Filter In order to be a valid target for our evaluation,
some applications are filtered out early. Some apps, even
though they are in our list, are not available in the Google
Play Store anymore and thus we cannot download them
for our tests. Also, those apps that can be downloaded and
installed successfully are tested by the monkey UI exerciser
tool before we apply our instrumentation, thus ruling out
apps that are already crashing without any modification from
our side. Dropping them them off the list avoids impairment
of our evaluation results.

3. Test We apply the instrumentation of the installed ARTist
Module by recompiling the target applications. Afterwards,
we test them again using the monkey UI test automation tool
and monitor the execution. Using the same monkey seed
during filtering and testing ensured reproducibility. If the
application does not crash, we count a success.

4. Collect We collect and store all data generated by the
testing scripts, as well as logcat dumps from the device
to allow for further analyses after the evaluation.

ARTist Robustness Evaluation We used monkey-troop to
test the robustness of ARTist-based instrumentation on 3060
top apps from the Google Play Store. As automated app test-
ing with high coverage is still an open problem, the ARTist
Module created for the evaluation ensures the execution of
our custom code by injecting it into each single onCreate
method in any developer-written class. Thus, starting an
application through its launcher activity (as done by monkey)
always triggers our injected code.

The injected tracking code implements method-call trac-
ing by utilizing stack inspection to print the current method’s
name to the log. Using this setup, we can evaluate the

Category Tested Success Percentage
Books And Reference 44 39 88.64%
Business 37 33 89.19%
Comics 44 41 93.18%
Communication 45 38 84.44%
Education 38 35 92.11%
Entertainment 34 32 94.12%
Family 30 28 93.33%
Family?age=age Range1 41 40 97.56%
Family?age=age Range2 40 39 97.5%
Family?age=age Range3 29 27 93.1%
Family Action 33 31 93.94%
Family Braingames 43 43 100.0%
Family Create 47 44 93.62%
Family Education 46 45 97.83%
Family Musicvideo 52 49 94.23%
Family Pretend 40 38 95.0%
Finance 37 30 81.08%
Game Action 34 32 94.12%
Game Adventure 25 23 92.0%
Game Arcade 31 29 93.55%
Game Board 48 47 97.92%
Game Card 38 33 86.84%
Game Casino 25 22 88.0%
Game Casual 25 25 100.0%
Game Educational 36 34 94.44%
Game Music 41 37 90.24%
Game Puzzle 31 30 96.77%
Game Racing 32 30 93.75%
Game Role Playing 20 19 95.0%
Game Simulation 21 21 100.0%
Game Sports 40 40 100.0%
Game Strategy 25 23 92.0%
Game Trivia 42 38 90.48%
Game Word 50 46 92.0%
Health And Fitness 36 31 86.11%
Libraries And Demo 20 18 90.0%
Lifestyle 42 41 97.62%
Media And Video 36 33 91.67%
Medical 42 41 97.62%
Music And Audio 40 32 80.0%
News And Magazines 43 38 88.37%
Personalization 47 44 93.62%
Photography 44 38 86.36%
Productivity 34 31 91.18%
Shopping 39 34 87.18%
Social 33 25 75.76%
Sports 32 30 93.75%
Tools 48 44 91.67%
Transportation 49 46 93.88%
Travel And Local 41 36 87.8%
Weather 41 38 92.68%
51 Categories 1911 1761 92.15%

TABLE 2: ARTist robustness evaluation results for the Google
Play categories. Note that the Family categories contain apps from
other categories as well. Filtered apps are omitted.

491

robustness of our instrumentation on real-world applications.
The significant performance overhead incurred by the expen-
sive stack inspection routine is only of secondary interest
since we solely focus on robustness testing here. Table 2
shows the results of our evaluation. Out of 1911 tested apps,
1761 (92.15%) were successfully instrumented and tested,
clearly showing the robustness of ARTist’s instrumentation
capabilities.

We conducted a manual investigation on the remaining
applications in order to find the root cause of their failure
during the evaluation. We detected that a lot of errors are
seemingly not a result of our instrumentation but false
positives. Even though the same touch events are delivered
to the app before and after instrumentation, there are still
unexpected errors that are seemingly unrelated to our mod-
ifications. For example, we encountered apps failing with
a SecurityException because of missing permissions
or IllegalStateException because the application is
already initialized. Both should have been triggered during
the filtering in the first place. Also, we can rule out deviating
behavior because of statefulness since we make a clean
install of the app before instrumenting it, thus removing
any state potentially created during the first monkey test.
Our findings therefore indicate that the filtering failed in
those cases.

We conclude that our large-scale evaluation approach
meets its purpose by providing an estimation on the robust-
ness of instrumenting real-life applications. However, the
degree of automation and the lack of a more sophisticated
UI testing tool for Android apps introduces a certain im-
precision that needs to be taken into account when working
with those results.

6.1.2. Performance. The actual runtime overhead induced
for apps instrumented with ARTist largely depends on the
concrete Module, e.g., taint tracking requires more injected
code than permission enforcement. Therefore, we provide
concrete measurements for instrumented applications in the
context of our implemented use case Modules in Sections
6.2.1 and 6.3.1.

6.1.3. Conceptual Limitations.

Native code support. Optimizing operates by design
on dex input only. Bundled native libraries (i.e., C/C++)
that are connected via JNI are never transformed into
Optimizing’s IR and therefore, neither instrumented nor
inspected by our prototype. Native code components are
a limitation of the attacker model not only our concept
but are indeed an open challenge for most of the solutions
by the Android security research community, e.g., code
analysis as well as IRM solutions in particular.

Potential fallback to dex. The oat files produced by
dex2oat still contain the original dex byte code of the app
to allow fallback to interpretation mode. Naturally, fallback
to interpretation would render our instrumentation of the
compiled dex byte code futile. This fallback is currently

limited to app debugging. However, no guarantees exist that
such a fallback cannot be triggered maliciously. Similarly,
dynamically loaded dex code [22], [23] (e.g., via the Dex-
ClassLoader) is by default compiled to native bytecode,
but no guarantee can be given that dynamically loaded code
cannot fall back to interpretation.

6.1.4. Implementation Limitations.

Permanence of instrumentation. Instrumentation of an
app’s oat file might be reverted through an application
update or a firmware update where apps are re-compiled.
Thus, there exists a window of opportunity for an attacker
to start an uninstrumented app after a system or app update.
Apps, however, cannot be started programmatically after
install/update until the user has started the app manually
and both scenarios can be detected by deployment app via
system notifications (i.e., broadcasts). Assuming that the
system notifies the deployment app fast enough in order
to re-instrument the updated app before the user manually
starts the app, the window of opportunity in which an
uninstrumented app is started can be closed.

Deployment strategy. In order to create a pure application
layer solution, our prototype currently relies on the naı̈ve
approach of requesting elevated privileges to replace the
installed app oat file with the instrumented version. We
can eliminate this requirement by integrating ARTist with an
application-layer only sandboxing solution that provides file
system virtualization, such as Boxify [24] or NJAS [25], or
by resetting the execution environment and replacing loaded
libraries using reference hijacking [14]. Both approaches
enable the manipulation of file paths from the original to
the instrumented oat file at application startup time.

6.2. Dynamic Permission Module

We briefly evaluate the performance impact of our dy-
namic permission module and discuss limitations.

6.2.1. Evaluation. The additional security checks inlined by
our Module are only inserted before permission-protected
SDK method calls. Thus, we cannot rely on benchmark
apps, because they rarely trigger the added functionality.
Therefore, we evaluate the performance impact of our
permission-checking code using custom microbenchmarks.
Table 3 depicts the results of our measurements for calls
that are protected by 3 distinct permissions. The overhead
encountered in the microbenchmarks ranges between 1.18%
and 30.65%, showing the feasibility of our prototype if we
consider that only permission-protected method calls suffer
from this overhead.

6.2.2. Limitations.

Restriction to synchronous calls. In order to demonstrate
the straightforward implementation of an ARTist Module,
we opted for a simple instrumentation strategy that only
covers synchronous permission-protected method calls. As

492

Microbenchmarks
Tested Method Permission Baseline Instrumented Penalty
WifiManager.getConfiguredNetworks() ACCESS WIFI STATE 0.681 ms 0.742 ms 8.89%
WifiManager.isWifiEnabled() ACCESS WIFI STATE 0.071 ms 0.072 ms 1.18%
WifiManager.getScanResults() ACCESS COARSE LOCATION 0.452 ms 0.591 ms 30.65%
BluetoothAdapter.startDiscovery() BLUETOOTH ADMIN 0.910 ms 0.940 ms 3.32%

TABLE 3: Microbenchmarks averaged over 60.000 runs. The baseline benchmarks measure the pure execution time of the permission-
protected call while the instrumented benchmarks measure the protected call and the additional permission check.

a result, the current prototype does not support callbacks or
asynchronicity and its implementation should therefore be
considered a proof-of-concept only.

Best effort permission map. In order to direct ARTist to the
instrumentation targets, i.e., the application’s permission-
protected method calls, we utilize the method call to permis-
sion mapping provided on the website of the state-o-the-art
tool Axplorer[26]6. Unfortunately, the latest available map
is generated for SDK 24, which means that our permission
enforcement Module only supports Marshmallow. In addi-
tion, as stated on the website, the map is incomplete since
many permission checks moved into the AppOpsManger,
which requires different analysis techniques and is therefore
not fully supported yet. Our Module inherits this limitation
from the used permission map.

6.3. Taint Tracking Module

We evaluate our taint tracking Module in terms of feasi-
bility, performance, and limitations of its current prototypi-
cal implementation.

6.3.1. Evaluation.

Runtime overhead. We leverage an Android microbench-
mark application to evaluate the performance of our proto-
type. Since our taint-instrumentation only affects the per-
formance of Java code, we specifically chose the Passmark
benchmark, which does not contain native libraries and
implements all benchmarks in Java. Table 4 compares the
results of the baseline benchmark with a non-instrumented
Passmark app to those of an instrumented and taint-aware
version. The results show an overhead ranging between
7.74% and 30.73%, which is within an acceptable range
for a taint tracking approach that is not fully tuned for
performance. This result is also roughly comparable to mi-
crobenchmark results of TaintDroid’s [1] interpreter-based
approach. However, as stated in [27], microbenchmarks are
not very representative in user-driven scenarios such as
Android apps. Hence, we take this result with a grain of
salt.

Overall performance can be enhanced by introducing
custom optimizations specifically tailored towards improv-
ing taint tracking code. One approach would be to eliminate
taint-sets and taint-gets that are based on stack operations
and cancel each other out, e.g., alternating pushs and pops of

6. http://axplorer.org

Passmark
Test Baseline Taint-Aware Penalty
CPU 32521 22526 30.73%
Disk 24893 20777 16.53%
Memory 3627 3346 7.74%

TABLE 4: Passmark results averaged over 5 runs, higher is better.

the same tag as seen for methods that return the return value
of another method call. Moreover, the analysis phase allows
to abstain from instrumenting apps that do not contain any
global taint sinks in order not to impact performance at all
in this case.

Functional Evaluation. We conducted this case study to
research whether intra-application taint tracking can be
achieved with a compiler-based instrumentation framework
such as ARTist; thus our functional evaluation focuses on
detecting different kinds of data leaks in apps. However,
to the best of our knowledge, there is no standardized test
suite specifically tailored towards evaluating dynamic taint
tracking systems for Android apps, and testing real applica-
tions is not feasible because they lack the required ground
truth. In order to overcome this unsatisfactory situation,
we decided to exploit an open-source suite called Droid-
Bench [28], [29] that was initially created to benchmark
static taint tracking systems. Even though this does not
immediately apply to a dynamic system such as ours, we
can still leverage the fact that it provides us with an assort-
ment of applications with different but well-defined leakage
behavior. Table 5 summarizes our Module’s results for those
tests and categories within scope. Tests for implicit flows,
inter-component communication, and reflection are omitted
because they currently exceed the scope of our proof-of-
concept taint tracking. As we are abusing the benchmark
suite, we need to be careful which conclusions we draw from
the test results. The first insight we gain, however, is that our
case study succeeded in showing that intra-app taint tracking
can be implemented as a pure application-layer solution
using compiler-driven instrumentation. The second insight
we derive is that, as indicated by lower results such as those
for the Android Specifics category, our proof-of-concept does
not yet catch up with previous works such as TaintDroid.
Nonetheless, our work not only shows the feasibility of the
approach but also lays the foundation for creating a full-
fledged taint tracking system for Android versions above
Marshmallow that utilizes compiler-based instrumentation
and does not require operating system modification.

493

DroidBench
Category Successful Tests Ratio
Callbacks 14/15 93%
Lifecycle 13/14 92.9%
General Java 14/20 70%
Aliasing 1/1 100%
Android Specifics 5/9 55.6%
Field & Object Sensitivity 7/7 100%

Overall 54/66 81.8%

TABLE 5: Results for the DroidBench taint tracking evaluation.
Broken tests and categories not applicable to our system are
omitted.

6.3.2. Limitations.

No tracking of implicit flows. Like TaintDroid [1], our
system currently does not track implicit flows (i.e., data
leakage using control flow dependencies) and malevolent
apps could exfiltrate data in a way that is unnoticeable by
our prototype. As the TaintDroid authors discuss, mitigating
leakage through control flows would require static analy-
sis and access to the app’s source code—both of which
TaintDroid could not provide. ARTist, however, is already
provided with the full app code and it would be highly
interesting future work to investigate to which extent the
structural program information of the IR and analytical fea-
tures of the compiler backend (i.e., Optimizing) can help to
remedy the limitations of customary taint tracking solutions
on Android.

Taint tracking boundaries. The compiler is restricted to the
app’s codebase, which introduces imprecision when leaking
information through SDK methods, where a taint-set at the
caller side (developer code) but not the taint-get at the callee
side (SDK) can be inlined. In particular, and in contrast to
object types, storing primitives or strings in collections or
sharing them across threads are corner cases where the taints
will not be propagated appropriately. This shortcoming can
be solved by using pre-computed control-flow models for
framework methods [30] to generate corresponding taint-set
and taint-get pairs that model the transition of data through
the framework. A preferable technical solution in the future,
which removes the potential over-approximations of SDK
internal states in control-flow models [30] and which could
be of interest beyond taint tracking, is the instrumentation
of the core image. The core image is a pre-compiled oat
file of the framework classes that is pre-loaded into every
application process via Zygote. Since the core image is
created with dex2oat during the device startup once after
each system update, it can be instrumented using a sec-
compiler as in ARTist. However, in either case and as in
the original work [1], data that already left the phone (e.g.,
through a network socket) cannot be tracked.

Inter-application communication. Our prototype is cur-
rently limited to intra-application tracking and lacks support
for inter-application tracking, for instance, through the file
system or Binder IPC. This opens the possibility of confused

deputy [31], [32] or collusion attacks [33], [34] to exfiltrate
data. Assuming that all installed apps are instrumented, a
fix to this problem would be the instrumentation of the I/O
method calls in order to write out taints together with the
data (e.g., into a file or Binder Parcel) and restore taints
at the receiver side. When abandoning the requirement for
a pure application-layer solution, our system could also be
complemented with the original TaintDroid file system and
IPC infrastructure, which is unaffected by the loss of DVM,
in order to track taints across applications.

7. Conclusion

In this paper, we presented ARTist, a dex2oat compiler-
based instrumentation solution for Android applications that
operates at the application layer only. In order to be able to
design and implement ARTist, we first and foremost had
to thoroughly study the yet uncharted internals of the new
compiler suite and in particular of its Optimizing backend.
A deeper understanding of this compiler suite and the new
ART runtime is of interest for the security community
insofar as ART and dex2oat replaced the interpreter-based
runtime (DVM) of Android versions prior to Lollipop (i.e.,
version 5) and hence also voided applicability of any secu-
rity solution that relies on interpreter instrumentation (e.g.,
TaintDroid [1] and its derivatives [2], [9]). We studied the
feasibility of our approach by implementing two distinct
use cases. Furthermore, our case study highlights the ca-
pability of a compiler-based instrumentation framework to
re-instantiate basic taint tracking for Android apps at the
application layer. In general, our results provide compelling
arguments such as higher robustness and better integration
for preferring compiler-based instrumentation over alter-
native bytecode or binary rewriting approaches. We open
sourced the results of this paper to allow for independent
research on the topic.

Acknowledgment

We would like to thank the reviewers for their helpful
comments. This work was supported by the German Min-
istry for Education and Research (BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA).

References

[1] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in USENIX OSDI’10.

[2] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect
data from imperious applications,” in ACM CCS’11.

[3] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “MOSES:
supporting operation modes on smartphones,” in ACM SACMAT’12.

[4] L. P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen, B. Wu, and
S. Cheemalapati, “Spandex: Secure password tracking for android,”
in USENIX SEC’14.

494

[5] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android
Applications,” in IEEE CS MoST’12.

[6] H. Hao, V. Singh, and W. Du, “On the Effectiveness of API-level
Access Control Using Bytecode Rewriting in Android,” in ACM
ASIACCS’13.

[7] P. Sabanal, “Hiding behind ART,” Online: https://www.blackhat.com/
docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf,
2015.

[8] A. Bechtsoudis, “Fuzzing Objects d’ART: Digging Into the New
Android L Runtime Internals,” Online: http://census-labs.com/media/
Fuzzing Objects d ART hitbsecconf2015ams WP.pdf, 2015.

[9] “Google code: Droidbox,” https://code.google.com/p/droidbox/.

[10] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S.
Foster, and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained
Permissions in Android Applications,” in ACM CCS SPSM’12.

[11] B. Davis and H. Chen, “Retroskeleton: Retrofitting android apps,” in
ACM MobiSys’13.

[12] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “AppGuard - enforcing user requirements on Android
apps,” in TACAS’13.

[13] J. Schütte, D. Titze, and J. De Fuentes, “AppCaulk: Data leak pre-
vention by injecting targeted taint tracking into android apps,” in
TrustCom14.

[14] W. You, B. Liang, W. Shi, S. Zhu, P. Wang, S. Xie, and X. Zhang,
“Reference hijacking: Patching, protecting and analyzing on unmod-
ified and non-rooted android devices,” in ICSE’16.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[16] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium – Practical Policy
Enforcement for Android Applications,” in USENIX SEC’12.

[17] B. Livshits and S. Chong, “Towards fully automatic placement of
security sanitizers and declassifiers,” in ACM SIGPLAN’13.

[18] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in ACM CCS’08.

[19] F. Araujo, W. Kevin et al., “Compiler-instrumented, dynamic secret-
redaction of legacy processes for attacker deception,” in USENIX
SEC’15.

[20] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications,” in USENIX SEC’12.

[21] P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner, “AdDroid:
Privilege separation for applications and advertisers in Android,” in
ACM ASIACCS’12.

[22] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code loading
in android applications,” in NDSS’14.

[23] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in ACM WISEC’12.

[24] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android,”
in USENIX SEC’15.

[25] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “NJAS: Sand-
boxing unmodified applications in non-rooted devices running stock
android,” in ACM CCS SPSM’15.

[26] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and
S. Weisgerber, “On demystifying the android application framework:
Re-visiting android permission specification analysis,” in USENIX
SEC’16.

[27] B. Livshits, “Dynamic taint tracking in managed runtimes,” Microsoft
Research, Tech. Rep.

[28] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in ACM PLDI ’14.

[29] Online: https://github.com/secure-software-engineering/DroidBench.

[30] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “EdgeMiner: Automatically detecting implicit control
flow transitions through the android framework.” in NDSS’15.

[31] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Per-
mission re-delegation: Attacks and defenses,” in USENIX SEC’11.

[32] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in ISC’10.

[33] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones,” in NDSS’11.

[34] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards Taming Privilege-Escalation Attacks on An-
droid,” in NDSS’12.

495

