
Accumulators with Applications to Anonymity-Preserving Revocation*

Foteini Baldimtsi‖, Jan Camenisch¶, Maria Dubovitskaya¶, Anna Lysyanskaya‡,
Leonid Reyzin§, Kai Samelin¶,∗∗, Sophia Yakoubov§

‖ George Mason University, Fairfax, USA
foteini@gmu.edu

¶ IBM Research – Zurich, Rüschlikon, Switzerland
{jca, mdu, ksa}@zurich.ibm.com

‡ Brown University, Providence, Rhode Island, USA
anna@cs.brown.edu

§Boston University, Boston, USA
{reyzin, sonka}@bu.edu

∗∗ TU Darmstadt, Darmstadt, Germany

Abstract—Membership revocation is essential for crypto-
graphic applications, from traditional PKIs to group signa-
tures and anonymous credentials. Of the various solutions
for the revocation problem that have been explored, dynamic
accumulators are one of the most promising. We propose
Braavos, a new, RSA-based, dynamic accumulator. It has
optimal communication complexity and, when combined with
efficient zero-knowledge proofs, provides an ideal solution for
anonymous revocation. For the construction of Braavos we use
a modular approach: we show how to build an accumulator
with better functionality and security from accumulators with
fewer features and weaker security guarantees. We then de-
scribe an anonymous revocation component (ARC) that can
be instantiated using any dynamic accumulator. ARC can be
added to any anonymous system, such as anonymous creden-
tials or group signatures, in order to equip it with a revocation
functionality. Finally, we implement ARC with Braavos and
plug it into Idemix, the leading implementation of anonymous
credentials. This work resolves, for the first time, the problem
of practical revocation for anonymous credential systems.

1. Introduction

Authentication of users is vital to most of the electronic
systems we use today. It is usually achieved by giving
the user a token, or credential, that the user must present
to prove that she has permission to access a service. An
important challenge that such systems face is how to revoke
a user’s privileges in case she misbehaves or her credential
gets compromised.

Achieving revocation in practice has been shown to be
a very complex problem. The two obvious approaches are
whitelists, where a user is valid if her public key or identity
is on a whitelist, and blacklists, where anyone not on the
blacklist can be presumed to be a valid user. Both of these

* This is an extended abstract. The full version can be found in the IACR
ePrint Archive [1].

solutions are problematic, because the party that manages
revocation (hereafter called the revocation authority) needs
to distribute large lists and update them continuously.

In anonymous settings, where user authentication must
not reveal the user’s identity, things get even more com-
plicated. In order for a user to show that she hasn’t been
revoked, she must prove that she is on the whitelist (or is
not on the blacklist) in zero knowledge, which requires work
linear in the size of the list. Having to perform linear work
in the number of whitelisted (or blacklisted) users is far
from practical; thus, we look into solutions where the users
and verifiers in charge of authentication only have to do a
constant amount of work.

One of the most promising solutions to revocation in
anonymous settings has been the use of cryptographic ac-
cumulators [2], [3], [4]. An accumulator is a binding (but not
necessarily hiding) commitment to a set S of elements. This
set can change over time, as elements are added and deleted;
accumulators that support both additions and deletions are
called dynamic. Known dynamic accumulators are based on
Merkle hash trees [5], variants of RSA [6], [2], [7], and
bilinear maps [3], [8], [9]. Upon the addition of a new
element x to the set, a witness w, or proof of membership,
is generated for the element. This witness is later used, in
conjunction with the accumulator value, to demonstrate that
the element is, in fact, in the set. The witnesses may evolve
as the accumulated set changes.

A dynamic accumulator can be used as an anonymous
revocation mechanism [2], [4]. The accumulator contains
the whitelist S of users. The revocation authority then
only needs to maintain and distribute a short accumulator
value, not an entire large whitelist. When a user is issued
a credential, she is given a membership witness w for her
element x. While she hasn’t been revoked, she can prove
in zero-knowledge that her x is in the current accumulator,
i.e., that she knows (x,w) such that x corresponds to her
identity and w is a valid membership witness for x. The
complexity of this proof is independent of the numbers of

2017 IEEE European Symposium on Security and Privacy

© 2017, Foteini Baldimtsi. Under license to IEEE.

DOI 10.1109/EuroSP.2017.13

301

added and revoked users. When the user is revoked, x is
removed from the accumulator.

However, there are two downsides to using existing
accumulator constructions for revocation in this way. The
first is the high communication cost. Each user has to update
her membership witness every time the accumulator value
changes, which typically happens with every addition or
deletion. In order to give the users the information they
need for these updates, the revocation authority has to
send a broadcast message to all users. The frequency of
these broadcasts is unattractive, especially when constrained
devices are used.

The second downside is linkability: users who receive
these broadcast messages might be able to link revocations
of their fellow users with the corresponding additions. That
is, when a revocation occurs, the associated broadcast mes-
sage might contain information related to a previous addition
broadcast message, allowing recipients to determine that the
revoked user is the same user who was added at a certain
previous point. This join-revoke linkability is a breach in
anonymity.

1.1. Our Contributions

In this work, we focus on building accumulators that
avoid the two downsides described above, namely those of
communication overhead and join-revoke linkability. Our
contributions are threefold. First, we provide a new modular
definitional view of accumulators. Second, we use this mod-
ular view to build a new dynamic accumulator with optimal
communication cost and join-revoke unlinkability. Finally,
we explain how our proposed accumulator can be used to
instantiate an anonymous revocation component (ARC) and
showcase that our scheme can provide efficient revocation
for anonymous credential systems by implementing it for
Idemix [10] (IBM’s anonymous credential system).

Compositional Accumulator Framework. In Section 2, we
give a systematic view of accumulator properties, describing
them in a modular way. In Section 3, we leverage our
modular view to show simple ways of obtaining new ac-
cumulators with better security by combining accumulators
that possess only some of the desired properties. (In the
full version of this paper [1], we also show how to obtain
accumulators with more functionality - adding and deleting,
proving membership and non-membership - by combining
accumulators with less functionality.) This view of accumu-
lators also sheds light on trade-offs between functionality
and efficiency.

Construction. Utilizing our compositional framework, in
Section 4 we introduce a new dynamic accumulator which
we call Braavos.1 All previously known dynamic accu-
mulators with strong security guarantees require that the
accumulator and each membership witness be updated both
every time a new element is added to the accumulator, and

1. The Faceless Men of Braavos, from the Game of Thrones, are able
to assume unrecognizable personas, unlinkable to their other personas.

every time an element is deleted from the accumulator. In
Braavos, the accumulator value and membership witnesses
are updated only when an element is deleted, achieving
optimal communication complexity. In particular, this means
that the accumulator manager does not need to broadcast any
information to the witness holders when a new element ad-
dition occurs, making it practical to support a high element
addition rate. Because element addition does not involve the
communication of any information to other witness holders,
Braavos also ensures that a revocation event is not linkable
to a prior addition event, achieving join-revoke unlinkability.

Our Braavos accumulator builds upon the dynamic
CL-RSA-B accumulator, which was informally introduced
as a brief remark by Camenisch and Lysyanskaya [2].
CL-RSA-B has the communication optimality of Braavos,
but has a weaker security guarantee which makes it usable
only for the accumulation of random elements. CL-RSA-B
is only secure against non-adaptive attacks, as described in
Section 2.2.2 Braavos uses CL-RSA-B to accumulate random
elements, and uses digital signatures to bind the random
elements to the actual elements to be accumulated. Because
neither CL-RSA-B nor digital signatures require witness
updates upon additions, Braavos does not either.

Application and Implementation. In Section 5, we describe
an anonymous revocation component (ARC) which uses
accumulators to enable revocation in a variety of existing (as
well as new) anonymous schemes. Our definition of the ARC
is an extension of the revocation component described by
Camenisch et. al [11] that allows the addition of users after
the initial setup, as well as their re-addition after they have
been revoked. When Braavos is the accumulator used to
instantiate an ARC, members need to update their witnesses
only when another member is revoked (but not when another
member is added), which is key since the number of revoca-
tions in a typical system is much lower than the number of
additions. Consider, for instance, PKI certificates. Around
8% of unexpired certificates are revoked [12]. This number
rose from 1% in May 2014 because of the Heartbleed
vulnerability, and is expected to eventually return to 1%.
However, it is vital to be able to revoke this 1%, since the
compromised keys can be used to inflict a lot of damage.
Moreover, this has to be done without flooding certificate
holders with instructions to update their witnesses roughly
100 times more frequently than necessary.

In Section 5.2, we show how one can directly plug
an ARC with Braavos into the leading implementation of
anonymous credentials (Idemix) [10]) with no modifications
on either side. This compatibility with an existing working
system resolves, for the first time, the problem of practical
revocation for anonymous credentials.

We measure the performance of the resulting system,
and demonstrate that, for realistic credential presentation
policies, Braavos adds only a ≈10% runtime overhead,
both for generation and for verification. In more detail,
even for reasonably high security parameter sizes (2,048

2. As a side contribution, in Section 4.1 we formalize and prove the
security of CL-RSA-B.

302

bits), credential generation without revocation takes ≈1.6s,
while with revocation it takes ≈1.8s. For verification these
numbers become even closer: without revocation we need
≈1.7s, while with revocation we need ≈1.8s. Clearly, this
is a small price to pay for the benefits of revocation.

2. Definitions: A Modular View of Accumula-
tor Functionality

In this section, we provide a unified view of accu-
mulator properties. We separately consider accumulators
that support additions, deletions or both, and accumulators
that support membership proofs, non-membership proofs or
both. We have a different focus than Derler et al. [13],
who also discuss the unification of accumulators. Namely,
unlike Derler et al., we emphasize the modularity of our
definitions: subsets of the properties we define can be easily
combined, resulting in a broader range of accumulator types
than previously described. To limit our scope, we only
consider accumulator properties pertaining to functionality
and soundness in this section.

Various flavors of accumulator functionality definitions
have been restated in literature a number of times. We
leverage the definitions provided by Reyzin and Yakoubov
[14], but reformulate them to offer a more complete view of
the accumulator space. We begin by introducing four basic
kinds of accumulator primitives.

• static accumulator: represents a fixed set.
• additive accumulator: supports only additions.
• subtractive accumulator: supports only deletions.
• dynamic accumulator: supports both additions and

deletions (as defined in [2]).

Deletions and additions can, of course, be performed
simply by re-instantiating the accumulator with the updated
set. This takes at most a polynomial amount of time in the
number of element additions or deletions which have been
performed up until that point, but is not, in general, practical.
A dynamic accumulator should support both additions and
deletions in time which is either independent of the number
of operations performed altogether, or is sublinear in this
number.

We also describe accumulators in terms of the kinds
of proofs (membership proofs, non-membership proofs, or
both) they support.

• positive accumulator: supports membership proofs.
• negative accumulator: supports non-membership

proofs.
• universal accumulator [7]: supports both.

2.1. Accumulator Algorithms

Next, we describe the algorithms used by all of these ac-
cumulator primitives. For convenience, Figure 1 enumerates
and explains all algorithm input and output parameters.

We consider three types of parties: (1) an accumulator
manager, (2) an entity responsible for an element and its

corresponding witness (from hereon-out referred to as wit-
ness holder), and (3) a third party (e.g. a verifier, who is
given any relevant witnesses by the witness holder at the
time of verification). Parameters which are omitted in some
schemes have a bar on top.

The following are algorithms performed by the accumu-
lator manager:

• Gen(1λ, S0) → (sk, a0,m0) instantiates the accumu-
lator manager’s secret key sk, the accumulator a0
(representing the initial set S0 ⊆ D of elements in
the accumulator, where D is the domain of the accu-
mulator), and the auxiliary value m0 necessary for the
maintenance of the accumulator. mt can be thought
of as the accumulator manager’s memory or storage at
time t. The allowable S0 sets vary from accumulator to
accumulator. There are accumulators that support only
S0 = ∅; others support any polynomial-size S0, and
yet others support any S0 that can be expressed as a
polynomial number of ranges.

• Add(sk, at,mt, x) → (at+1,mt+1, w
x
t+1, upmsgt+1)

(for additive and dynamic accumulators) adds the ele-
ment x ∈ D to the accumulator.

• Del(sk, at,mt, x) → (at+1,mt+1, ux
t+1, upmsgt+1)

(for subtractive and dynamic accumulators) deletes the
element x ∈ D from the accumulator.

A positive or universal accumulator additionally has the
following algorithms:

• VerMem(at, x, w
x
t) → {0, 1} (executed by any third

party) verifies the membership of x in the accumulator
using its membership witness wx

t .
• MemWitUpOnAdd(x,wx

t , upmsgt+1) → wx
t+1 (exe-

cuted by a witness holder for additive and dynamic
accumulators) updates the membership witness for el-
ement x after y is added to the accumulator.

The membership witness update algorithm
MemWitUpOnDel (for subtractive and dynamic
accumulators) is defined analogously to MemWitUpOnAdd.
Notice that the accumulator manager can eliminate the
need for these algorithms by sending each witness holder
a fresh witness on demand; however, this is unreasonable
to ask of the accumulator manager, who might then have
to do additional work per witness holder per addition or
deletion. Instead, the accumulator manager broadcasts a
single update message upmsg which witness holders use to
bring their witnesses up to date.3

If an element x is in S0, there might be a need to
create a membership witness for x independently of the Add
algorithm. To this end, there exists a membership witness
creation algorithm MemWitCreate. (In this paper, we focus
on witness generation during Add, so MemWitCreate will
not appear in future sections.)

• MemWitCreate(sk, at,mt, x, (upmsg1, . . . , upmsgt))
→ wx

t (executed by the accumulator manager or any
third party) generates a membership witness wx

t for x
outside the element addition protocol Add.

3. The witness holders can also process the update messages in batches
if they choose.

303

λ: The security parameter.

D: The domain of the accumulator (the set of elements that the accumulator can accumulate). Often, D includes all elements (e.g., {0, 1}∗). Sometimes, D
is more limited (e.g., primes of a certain size).

sk: The accumulator manager’s secret key or trapdoor. (The corresponding public key, if one exists, is not modeled here as it can be considered to be a part
of the accumulator itself.)

t: A discrete time / operation counter.

at: The accumulator at time t.

mt: Any auxiliary values which might be necessary for the maintenance of the accumulator. These are typically held by the accumulator manager. Note that
while the accumulator itself should be constant (or at least sub-linear) in size, m may be larger.

St: The set of elements in the accumulated set at time t. Note that S0 can be instantiated to be different, based on the initial sets supported by the accumulator
in question. Most accumulators assume S0 = ∅.

x, y: Elements which might be added to the accumulator.

wx
t , u

x
t : The witness that element x is (respectively, is not) in accumulator at at time t.

upmsgwht: A broadcast message sent (by the accumulator manager, if one exists) at time t to all witness holders immediately after the accumulator has been updated.
This message is meant to enable all witness holders to update the witnesses they hold for consistency with the new accumulator. It will often contain the new
accumulator at, and the nature of the update itself (e.g., “x has been added and witness wx

t has been produced”). It may also contain other information.

upmsgtpt: A broadcast message sent (by the accumulator manager, if one exists) at time t to all third party verifiers immediately after the accumulator has been
updated. This message is meant to provide the third parties with up to date values (the accumulator at) to verify proofs of membership or non-membership
against. It may also contain other information.

upmsgt: All of the information broadcast (by the accumulator manager, if one exists) at time t. upmsgt = (upmsgwht, upmsgtpt). We often use upmsg instead
of upmsgwh and upmsgtp, since these are frequently the same.

Figure 1. Accumulator algorithm input and output parameters.

Static Additive Subtractive Dynamic
Pos Neg Uni Pos Neg Uni Pos Neg Uni Pos Neg Uni

Accumulator Manager Algorithms
Gen � � � � � � � � � � � �
Add � � � � � �
Del � � � � � �
MemWitCreate � � � � � � � �
NonMemWitCreate � � � � � � � �

Witness Holder Algorithms
MemWitUpOnAdd � � � �
MemWitUpOnDel � � � �
NonMemWitUpOnAdd � � � �
NonMemWitUpOnDel � � � �

Third Party Algorithms
VerMem � � � � � � � �
VerNonMem � � � � � � � �

Figure 2. Accumulator Algorithms.

For negative and universal accumulators, the non-
membership witness creation algorithm NonMemWitCreate,
the non-membership verification algorithm VerNonMem,
and the non-membership witness update algorithms
NonMemWitUpOnAdd and NonMemWitUpOnDel are
defined analogously to MemWitCreate, VerMem,
MemWitUpOnAdd, and MemWitUpOnDel, respectively.

The presence or absence of all of these algorithms is
simple to infer from the accumulator type. For convenience,
Figure 2 describes the algorithms corresponding to each
accumulator type.

2.2. Accumulator Security Properties

In this section, we describe accumulator security prop-
erties. Though in Section 2.1 we described many different
types of accumulators, here we limit ourselves to posi-
tive dynamic accumulators, because our focal construction
Braavos is positive and dynamic. Additionally, for simplic-
ity, we assume that the initial set S0 is empty. If desired, our
definitions can be extended to other initial sets, and other
accumulator types, in a straightforward way.

Naturally, accumulators must be both correct and sound.
We refer to Reyzin and Yakoubov [14] for formal definitions
of correctness. Informally, in a positive accumulator, cor-
rectness requires that for every element in the accumulator,

304

an honest membership witness holder can always prove
membership.

In a positive accumulator, soundness (also referred to as
security or collision-freeness) requires that for every element
not in the accumulator it is infeasible to prove member-
ship. We present two definitions of soundness for positive
dynamic accumulators with S0 = ∅ (that is, positive dy-
namic accumulators which start empty): adaptive soundness
(Definition 1), and non-adaptive soundness (Definition 2).
Adaptive soundness is the standard definition of accumulator
soundness; it is referred to simply as soundness. We intro-
duce non-adaptive soundness as a building block for our new
accumulator, Braavos, as described in Section 3. Informally,
in non-adaptive soundness, the adversary must commit to his
choice of elements to add in advance, whereas in adaptive
soundness the adversary can choose these elements on the
fly.

Definition 1. A positive dynamic accumulator is adaptively
sound (or simply sound) if for all security parameters λ,
for all stateful probabilistic polynomial-time adversaries A
with black-box access to Add and Del oracles (which take
elements x) on accumulator a, it holds that:

Pr

⎡
⎢⎣

(sk, a0,m0)← Gen(1λ, ∅);
(x,w)← AAdd,Del(a0,m0);
x /∈ S :
VerMem(a, x, w) = 1

⎤
⎥⎦ ≤ ν(λ) ,

where ν is a negligible function in the security parameter, x
is an element that is not currently a member (x 	∈ S, where
S started out empty and was updated with every call to Add
and Del), and a is the accumulator after the adversary made
all of his calls to Add and Del.

Our definition assumes that inputs to Add and Del are in
D and that Del does nothing when called on an element that
is not in the accumulated set. Some external mechanisms
must ensure that this is indeed the case, or else soundness
is not guaranteed. This notion of soundness is sufficient for
many scenarios, including anonymity-preserving revocation
described in this paper.

We also define a weaker notion of soundness in which
the elements are picked in advance (though the ordering of
their additions and deletions may still be adaptive).

Definition 2. A positive dynamic accumulator is non-
adaptively sound (NA-sound) if the conditions in Definition
1 hold with the following modification: before Gen is run,
the adversary A produces a set of elements x1, . . . , xq ∈ D,
and queries to Add and Del must come from this set.

This weaker notion of soundness suffices to ensure
soundness for randomly chosen elements, because it does
not matter when they are chosen.

3. Modular Accumulator Constructions

In this section, we introduce the idea of combining
different accumulators to obtain new accumulators with

different properties. This technique can lead to the creation
of more efficient accumulators, such as the Braavos accu-
mulator described in Section 4.

We focus here on obtaining an accumulator with strong
security and functionality properties from two weaker ones.
We describe other modular constructions, which achieve rich
functionality by combining simpler accumulators, in the full
version of this paper [1].

ADDITIVE DYNAMIC

A
D

A
P.

SO
U

N
D

N
O

N
-A

D
A

P.
SO

U
N

D

H

a = set of added elements;
R = random elements.

a×R

R

Figure 3. Our Modular Accumulator Construction H. All accumulators
in this diagram are positive. R denotes random elements. A specific
(particularly efficient) instantiation of this construction is discussed further
in Section 4.

Given an (adaptively) sound positive additive accumu-
lator ACCA and non-adaptively sound (NA-sound) positive
dynamic accumulator ACCNA, we can build an adaptively
sound dynamic accumulator ACC, as shown in Figure 3.4

We call this construction “Construction H”. Its algorithms
are described in Figures 4 through 6. When an element x is
added, the accumulator manager selects a random element
r from the domain D of ACCNA. She then adds r to
ACCNA, and (x, r) to ACCA. (Recall that random elements
can always be safely accumulated in non-adaptively sound
accumulators, since those random elements can be cho-
sen without using any information about the accumulator.)
When deleting x, the accumulator manager removes r from
ACCNA. Proving the membership of x in ACC consists of
producing an r and proving that (r ∈ ACCNA) ∧ ((x, r) ∈
ACCA).

Note that, in order to support deletions, the accumu-
lator manager must store a mapping from every element
x to the corresponding r. This can be avoided by having
the accumulator manager use a pseudorandom function Fs

(where s is the secret pseudorandom function seed) to
select an r corresponding to a given x: r = Fs(x). Even
though this causes elements added to ACCNA to be computed
rather than chosen at random (therefore seemingly requiring

4. Shamir and Tauman [15] achieve a similar goal of construct chosen
message unforgeable signatures from random message unforgeable ones by
using a different technique.

305

Gen(1λ, ∅):

1) (ACCA.a,ACCA.m,ACCA.sk)← ACCA.Gen(1
λ, ∅)

2) (ACCNA.a,ACCNA.m,ACCNA.sk)← ACCNA.Gen(1
λ, ∅)

3) Let {Fs}s∈{0,1}λ be a pseudorandom function family whose

range is the domain of ACCNA; pick s ∈ {0, 1}λ at random.
4) Let sk = (ACCA.sk,ACCNA.sk, s).
5) Let a = (ACCA.a,ACCNA.a).
6) Let m = (ACCA.m,ACCNA.m).
7) Return (sk, a, m).

Add(sk, a,m, x):

1) Set r = Fs(x).
2) (ACCA.a,ACCA.m,ACCA.w,ACCA.upmsg) ←

ACCA.Add(ACCA.sk,ACCA.a,ACCA.m, (x, r)).
3) (ACCNA.a,ACCNA.m,ACCNA.w,ACCNA.upmsg) ←

ACCNA.Add(ACCNA.sk,ACCNA.a,ACCNA.m, r).
4) Let w = (ACCA.w,ACCNA.w).
5) Let upmsg = (ACCA.upmsg,ACCNA.upmsg).
6) Return (a,m,w, upmsg).

Del(sk, a,m, x):

1) Set r = Fs(x).
2) Let (ACCNA.a,ACCNA.m,ACCNA.upmsg) ←

ACCNA.Del(ACCNA.sk,ACCNA.a,ACCNA.m, r).
3) Return (a,m,ACCNA.upmsg).

Figure 4. Construction H from Figure 3 accumulator manager algorithms
(Gen, Add, Del and MemWitCreate), in terms of the underlying positive
adaptively sound accumulator ACCA and positive dynamic non-adaptively
sound accumulator ACCNA. In all of these algorithms, we assume that
sk = (ACCA.sk,ACCNA.sk, s), a = (ACCA.a,ACCNA.a), and m =
(ACCA.m,ACCNA.m).

MemWitUpOnAdd(a, x, w, upmsg):

1) Parse (ACCA.upmsg,ACCNA.upmsg) = upmsg.
2) Parse (ACCA.w,ACCNA.w) = w.
3) ACCA.w ← ACCA.MemWitUpOnAdd(x,ACCA.w,

ACCA.upmsg).
4) ACCNA.w ← ACCNA.MemWitUpOnAdd(x,ACCNA.w,

ACCNA.upmsg).
5) Return w = (ACCA.w,ACCNA.w).

MemWitUpOnDel(a, x, w, upmsg):

1) Parse (ACCA.w,ACCNA.w) = w.
2) ACCNA.w ← ACCNA.MemWitUpOnAdd(x,ACCNA.w,

upmsg).
3) Return w = (ACCA.w,ACCNA.w).

The witness holder can run BatchMemWitUpOnDel immediately before
producing a proof.

Figure 5. Construction H from Figure 3 witness holder algorithms
(MemWitUpOnAdd and MemWitUpOnDel), in terms of the underlying
positive adaptively sound accumulator ACCA and positive dynamic non-
adaptively sound accumulator ACCNA. Note that when Construction H is
instantiated with a digital signature scheme as the positive accumulator
ACCA, there is no need for a MemWitUpOnAdd algorithm.

adaptive soundness rather than non-adaptive soundness),
non-adaptive soundness is still sufficient because of the
indstinguishability of the pseudorandom and random cases.

The correctness of Construction H follows by inspection.

Theorem 1. Construction H is an adaptively sound positive

VerMem(a, x, w):

1) Parse (ACCA.a,ACCNA.a) = a.
2) Parse (ACCA.w,ACCNA.w) = w.
3) Let b1 ← ACCA.VerMem(ACCA.a, x,ACCA.w).
4) Let b2 ← ACCNA.VerMem(ACCNA.a, x,ACCNA.w).
5) Return 1 if b1 = b2 = 1, and return 0 otherwise.

Figure 6. Construction H from Figure 3 third party algorithms (VerMem),
in terms of the underlying positive adaptively sound accumulator ACCA

and positive dynamic non-adaptively sound accumulator ACCNA.

dynamic accumulator if ACCA is a positive additive adap-
tively sound accumulator, ACCNA is a positive dynamic non-
adaptively sound accumulator, and Fs is a pseudorandom
function.

Proof. The proof consists of a reduction to the adaptive
soundness of ACCA, or the non-adaptive soundness of
ACCNA, or the pseudorandomness of Fs. We give only
the outline here, because the formal reductions are simple
exercises. If an adversary produces a witness for an element
that is not a member of the accumulated set, then there are
two cases: either the element was never added, or it was
deleted. In the first case, the adversary has succeeded in
breaking the adaptive soundness of ACCA. In the second
case, the adversary has succeeded in forging a witness for a
pseudo-random element in ACCNA. We know that if truly
random elements were used in ACCNA, then this would
break the non-adaptive soundness of ACCNA, since random
elements could have been chosen non-adaptively. Thus, if
the adversary is able to forge a witness for ACCNA with
pseudorandom elements, the adversary breaks either the
non-adaptive soundness of ACCNA or the pseudorandomness
of Fs.

4. Braavos: A Communication-Optimal Adap-
tively Sound Dynamic Accumulator

In this section we introduce the Braavos accumulator,
which is an instantiation of construction H from Figure
3. Braavos is an adaptively sound positive dynamic accu-
mulator derived from an adaptively sound positive additive
accumulator ACCA and an non-adaptively sound positive
dynamic accumulator ACCNA.

We aim for Braavos to have two properties: com-
munication optimality [16] and efficient zero knowledge
proofs, as described in Section 4.4. Our choice of under-
lying adaptively sound accumulator ACCA in Braavos is
the CL signature scheme [17], because it supports efficient
zero knowledge proofs of knowledge of a signature on a
committed value. Note that though construction H has a
MemWitUpOnAdd algorithm (described in Figure 5), this
algorithm is not used by Braavos, since signatures do not
require witness updates when additions take place.

The challenge that remains is finding a communica-
tion-optimal, dynamic, non-adaptively sound accumulator

306

ACCNA. ACCNA should only require membership witness
updates upon element deletions, not element additions. In
Section 4.1, we describe CL-RSA-B, which is exactly such
an accumulator.

4.1. CL-RSA-B: A Communication-Optimal Non-
Adaptively Sound Dynamic Accumulator

In this section, we formally describe the CL-RSA-B ac-
cumulator, which was informally introduced by Camenisch
and Lysyanskaya [2] in a remark on page 12. The CL-RSA-B
accumulator is similar to the standard RSA accumula-
tor [2], which evolves the accumulator value (as well as
all membership witnesses) with every addition and deletion.
The CL-RSA-B accumulator, unlike the RSA accumulator,
evolves the accumulator value with every deletion only.
However, the price is that, as far as we can tell, the
CL-RSA-B accumulator is only non-adaptively sound.

The RSA Accumulator. In order to understand the CL-RSA-B
accumulator, it helps to understand the RSA accumulator
first. Its value is a quadratic residue a modulo n, where
n is an RSA modulus: n = pq, where p = 2p′ + 1 and
q = 2q′+1 for prime p, p′, q, and q′. The domain D of the
RSA accumulator consists of all odd positive prime integers
x.5

During the addition of x to the accumulator, the new
accumulator value is computed as at+1 = axt mod n. The
membership witness w for x is then defined to be the old
accumulator value at. A membership verification consists of
checking that a = wx mod n. When another element y is
added to the accumulator, the membership witness for x is
updated by taking wt+1 = wy

t mod n.
When an element y is deleted, the accumulator manager

(who knows the trapdoor p′q′) computes the new accu-

mulator as at+1 = ay
−1 mod p′q′

t mod n. The membership
witness w for x can then be updated using the Bezout
coefficients b and c such that bx + cy = 1. (Recall that
the domain D of the accumulator contains only odd prime
numbers, so such b and c are guaranteed to exist.) The new
witness is computed as wt+1 = wc

ta
b
t+1 mod n.

The CL-RSA-B Accumulator. The CL-RSA-B accumulator
preserves the relationship between the accumulator value
and the witnesses, but avoids computing a new accumu-
lator value and updating witnesses during each addition.
Instead, during the addition of odd prime x the accumulator
manager keeps the accumulator constant, and computes the

membership witness w for x as w = ax
−1 mod p′q′ mod n.

Notice that this eliminates the need for updating existing
membership witnesses during additions. The process for
proving membership and for deletions is the same as in
the RSA accumulator. The algorithms of the CL-RSA-B
accumulator are detailed in Figure 7.

5. Note that p′ or q′ cannot themselves be accumulated, since
(p′)−1 mod p′q′ and (q′)−1 mod p′q′ do not exist; however, that only
happens with negligible probability in the adaptive soundness game in
Definition 1, since if the adversary finds p′ or q′, he or she has succeeded
in factoring n.

Gen(1λ, ∅):

1) Select two λ-bit safe primes p = 2p′ +1 and q = 2q′ +1 where
p′ and q′ are also prime, and let n = pq. (Consider n to be public
knowledge from hereon out; it is actually a part of the accumulator
value a, but for simplicity we will not refer to it as such.)

2) Let sk = p′q′.
3) Select a random integer a′ ← Z

∗
n.

4) Let a = (a′)2 mod n.
5) Return (sk, a).

Add(sk, a, x):

1) Check that x ∈ D (that is, that x is an odd prime). If not, FAIL.

2) Let w = ax−1 mod p′q′ mod n.
3) Return (a,w, upmsg = ⊥).

Del(sk, a, x):

1) Check that x ∈ D (that is, that x is an odd prime). If not, FAIL.

2) Let a = ax−1 mod p′q′ mod n.
3) Let upmsg = (a, x).
4) Return (a, upmsg).

MemWitUpOnDel(a, x, w, upmsg):

1) Parse (a, y) = upmsg.
2) Compute Bezout coefficients b, c such that bx+cy = 1. (Given that

x �= y, since both x and y are prime, such b and c are guaranteed
to exist.)

3) Let w = wcab mod n.
4) Return w.

VerMem(a, x, w):

1) Return 1 if a = wx mod n.
2) Return 0 otherwise.

Figure 7. CL-RSA-B algorithms.

CL-RSA-B Soundness. The RSA accumulator is adaptively
sound, meaning that an adversary cannot find a membership
witness for an element that is not a member even if she
chooses which elements should be added, optionally based
on accumulator and witness values she has previously seen.

The CL-RSA-B accumulator is non-adaptively sound,
meaning that an adversary cannot find a membership witness
for an element that is not a member if she chooses all
elements to add prior to seeing any accumulator information.
In particular, the CL-RSA-B accumulator is sound when only
random elements are added to the accumulator, since those
can be chosen prior to seeing any accumulator or witness
values.6 This holds under the strong RSA assumption [18].

Assumption 1 (Strong RSA). For any probabilistic
polynomial-time adversary A,

Pr[p, q ← {λ-bit safe primes};n = pq; t← Z
∗
n;

(r, e)← A(n, t) : t = re mod n ∧ e is prime] = ν(λ)

For some negligible function ν.

6. We are not certain whether CL-RSA-B is also adaptively sound.
Proving that it is or is not is an open problem. It is adaptively sound when
the when a polynomial-size subset of D is used as the domain; however,
this is a very limiting restriction.

307

Theorem 2. The CL-RSA-B accumulator with a domain D
consisting of odd primes is non-adaptively sound under the
strong RSA assumption.

Proof. In Figure 8, we reduce the non-adaptive soundness of
the CL-RSA-B accumulator to the strong RSA assumption.
The reduction R takes in an RSA integer n and a random
value t ∈ Z

∗
n, and returns r, e such that t = re mod n. R

leverages an adversary A which can break the non-adaptive
soundness of the CL-RSA-B accumulator; that is, after mak-
ing addition (Add) and deletion (Del) queries on elements
chosen before seeing the initial state of the accumulator,
A can produce an odd prime x and a witness w such that
a = wx mod n, and x is not in the accumulator.
R must be able to answer two types of queries from

A: Add queries on the non-adaptively chosen elements, and
Del queries on the same elements. Let qAdd be an upper
bound on the number of Add queries, and qDel be an upper
bound on the number of Del queries A can make. During
the setup phase, having received the elements x1, . . . , xqAdd
from A, the reduction R creates an accumulator for which it
can answer Add and Del queries on elements x1, . . . , xqAdd .
It does so by starting with a = t2 mod n, and raising a to
the power of the elements. By raising a to the power of
xqDel

j , R creates an accumulator value for which it is able to
answer Del and Add queries on xj even if A spends all of
its Del queries on that one element. However, if A forges a
witness w for xj (after having added and deleted it fewer
than qDel times), the reduction won’t be able to use w to
break the strong RSA assumption, since it already knows
w! For that reason, R guesses a “target” element xj from
among x1, . . . , xqAdd , and the number ej of times that xj

will be added and deleted before the forgery (which can be
anywhere from 0 to qDel), and only raises t to the power
of x

ej
j , not xqDel

j . Figure 8 shows the details of how the
reduction picks an accumulator value based on x1, . . . , xqAdd ,
how it answers Add and Del queries, and how it then uses
the output of A to break the strong RSA assumption.

This reduction succeeds as long as:

1) During the query phase, R does not output FAIL. R
does not output FAIL if the target exponent ei was cho-
sen correctly, which happens with probability 1

qDel+1 .

2) During the output phase, R does not output FAIL. If A
outputs a witness for an element xi ∈ {x1, . . . , xqAdd},
R does not output FAIL as long as:

a) R makes x the “target” prime (that is, j = i). This
happens with probability 1

qAdd
.

b) R correctly chooses the target exponent ei for x.
This happens with probability 1

qDel+1 . However, this
is already accounted for in item 1.

3) A succeeds in breaking the security of the CL-RSA-B
accumulator, which we assume happens with non-
negligible probability ε.

As long as R does not output FAIL, A sees the same
transcript it would when interacting with a real accumulator
manager. The probability of the reduction R succeeding is
1

qAdd
1

qDel+1ε, which is non-negligible.

Setup(n, t, qAdd, qDel):

1) Let x1, . . . , xqAdd
be the distinct odd primes provided by the

adversary A.
2) Let a = t2 (so as to make a a quadratic residue).
3) Let ec = 2 be the current exponent linking t to a. (So, a =

tec mod n is an invariant.)
4) Pick a random index j ← {1, . . . , qAdd}.
5) For i ∈ [1, . . . , qAdd]:

a) If i = j: pick a random ei ← {0, . . . , qDel}.
b) Else: ei = qDel.

c) Let a = a(x
ei
i

) mod n.
d) Let ec = ecx

ei
i .

6) Return a = eeci mod n to the adversary A.

Add(xi):

1) If ei = 0: FAIL.
2) Let w = tec/xi mod n. (Note that ec must be divisible by xi,

since ec has a factor of x
ei
i , and ei > 0.)

3) Return w.

Del(xi):

1) If ei = 0: FAIL.
2) Let ec = ec/xi. (Note that ec must be divisible by xi, since ec

has a factor of x
ei
i , and ei > 0.)

3) Let ei = ei − 1.
4) Let a = tec mod n.
5) Let upmsg = (a, xi).
6) Return (a, upmsg).

Output(e, w):

1) Check that a = we mod n. If not, FAIL.
2) If e = xi for i ∈ {1, . . . , qAdd} and (i �= j or ei > 0): FAIL.
3) We know that e and ec must be relatively prime; ec has no factors

outside of x1, . . . , xqAdd
, and those factors have powers ei. So,R

can compute Bezout coefficients b, c such that be + cec = 1.
4) Let r = tbwc mod n.

(Let y = te
−1 mod p′q′ mod n; equivalently, ye mod n = t.

Since we mod n = a and tec mod n = (ye)ec mod n =
a, it follows that w = yec mod n. So, r = tbwc =
(ye)b(yec)c = y1 = y.)

5) Return (r, e).

Figure 8. Reduction R from the non-adaptive soundness of CL-RSA-B to
the strong RSA assumption.

Other Approaches for Expanding the Domain and Get-
ting Adaptive Soundness for CL-RSA-B. The domain D of
CL-RSA-B consists of odd primes. Such a limited domain is
not a problem for our main application, because the Braavos
accumulator manager can choose a (psuedo)random prime r
when a new element is added to the accumulator for the first
time, as described in Construction H. In fact, Construction
H can be viewed as one approach to expanding the domain
of CL-RSA-B and obtaining adaptive security for it. Here
we briefly mention other approaches. Let D′ be the desired
domain. Let f be a mapping from D′ to λ-bit odd primes.
To add x ∈ D′ to the accumulator, add f(x) instead. We
can obtain adaptive soundness in the following ways:

• We can model f as a random oracle (the proof is
straightforward).

308

• We can avoid the random oracle by making a different
strong assumption instead: namely, the assumption that
f is collision-resistant, and the very strong “adap-
tive strong-RSA assumption”. Informally, the adaptive
strong-RSA assumption states that even given an oracle
that can take roots modulo n, it is difficult to find new
roots whose power is relatively prime to those of the
roots produced by the oracle.

• We can get somewhat better assumptions by having f
be a randomized mapping, and include the randomness
R as part of the witness. Then, assuming that for every
two elements x1 and x2, the distributions f(x1;R) and
f(x2;R) (over random choices of R) are statistically
close, we can use the technique from [19]. To do so,
we need to assume that the strong RSA assumption
(Assumption 1) also holds in a model where there exists
an oracle O that on input x, p returns a random R such
that f(R;x) = p.

• Alternatively, we can use the strong-RSA assumption
without modification if f is a trapdoor hash function,
following the technique of [15].

All of these approaches require f that maps to primes. A
way to build such f is described in [20, Section 3.2] (see
also [21, Section 7]).

4.2. Braavos Soundness

The Braavos accumulator uses Camenisch-Lysyanskaya
(CL) signatures [17] as the underlying positive accumulator
ACCA, and the CL-RSA-B accumulator as the underlying
dynamic positive non-adaptively sound accumulator ACCNA.
CL signatures are existentially unforgeable under the strong
RSA assumption. Recall that according to Theorem 2, the
CL-RSA-B accumulator is non-adaptively sound under the
same assumption. By Theorem 1, this implies that the
Braavos accumulator is an adaptively sound positive dy-
namic accumulator under the strong RSA assumption.

Properties other than adaptive soundness (such as cor-
rectness) are self-evident.

4.3. Comparison with Other Constructions

The Braavos accumulator is a positive, dynamic accu-
mulator with efficient (constant-time) membership witness
generation, and no membership witness updates upon ele-
ment additions — only upon element deletions. In particular,
for a fixed security parameter λ, Braavos achieves the total
communication lower bound shown by Camacho [16]. (Total
communication refers to the sum of the sizes of all upmsg
messages sent by the accumulator manager to the witness
holders after |a| additions and |d| deletions.) In Appendix A
of the full version of this paper [1] , we prove that adding
universality would necessarily degrade the total communi-
cation of Braavos.

In Figure 9, we compare Braavos to prior constructions
in terms of the properties introduced in Section 2. We com-
pare it to digital signatures, and to the three other primary

lines of work on accumulators: the RSA construction [6],
[2], [7], the bilinear map constructions [3], [8], [9], and the
Merkle tree constructions [5].7 In our comparison we also
include CL-RSA-B, which is used in Braavos and described
in Section 4.1.

Though Figure 9 includes some of the most well known
accumulator constructions to compare with Braavos , we
would like to note that there exists a large number of other
dynamic accumulator constructions in the literature [7], [8],
[4], [9], [23], [24]. To the best of our knowledge, these
constructions do not achieve the efficiency we aim for.

4.4. Adding Zero Knowledge to Braavos

So far, we have only discussed the functionality of
accumulators, ignoring potential privacy concerns. There
typically exist three primary privacy goals in the context of
accumulators: hiding the membership (or non-membership)
witness, hiding the element whose membership (or non-
membership) is being demonstrated as well as the witness,
and hiding all information about the accumulated set [25].
For our application of anonymous credential revocation (dis-
cussed in Section 5), we mostly care about zero knowledge
proofs of member knowledge, which hide not only the
witness, but the member element itself.

The Braavos accumulator supports efficient zero-
knowledge proofs of member knowledge. Given that
Braavos is composed of two accumulators ACCA and
ACCNA, in order for a witness holder to produce a zero-
knowledge proof of member knowledge in Braavos, she
would have to produce a conjunction of proofs of member
knowledge in both ACCA and ACCNA and a proof that those
members have the correct relationship. More concretely, she
would have to compute the following zero-knowledge proof
(described using Camenisch-Stadler [26] notation):

ZKP[(x, r,ACCA.w,ACCNA.w) :

∧ ACCA.VerMem(ACCA.a, (x, r),ACCA.w)

∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a)

Where ACCA is the signature scheme SIGCL =
(KeyGen, Sign,Verify) due to Camenisch and Lysyan-
skaya [17], and ACCNA is the CL-RSA-B accumulator.

For integration into larger systems, it might be impor-
tant to be able to link the witnesses used in the proof
to other statements, while still keeping the elements and
witnesses private. To this end, commitments to the wit-
nesses can be used. Let Com = (Commit,Verify) be a
commitment scheme; to integrate commitments into the
zero knowledge proof, a witness holder computes commit-
ments to the membership witnesses ACCA.w and ACCNA.w:
(C1, o1) = Com.Commit(ACCA.w) and (C2, o2) =

7. For those interested in a more concrete comparison, Lapon et al. [22]
provide concrete running time measurements of bilinear map accumulator
constructions and the RSA construction. We discuss the concrete running
times of Braavos in Section 5.2.

309

Com.Commit(ACCNA.w), where o1 and o2 are decommit-
ment values. The proof is then enhanced, as follows:

ZKP[(x, r,ACCA.w,ACCNA.w, o1, o2) :

Com.Verify(C1,ACCA.w, o1)

∧ Com.Verify(C2,ACCNA.w, o2)

∧ ACCA.VerMem(ACCNA.a, (x, r),ACCA.w)

∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a, C1, C2)

For concrete descriptions of the individual clauses of this
proof using the commitment scheme due to Fujisaki and
Okamoto [27], please refer to Fujisaki and Okamoto [27]
and Camenisch and Lysyanskaya [17], [2].

5. Anonymous Revocation from Accumulators
In this section, we show how accumulators can be used

in practice. Accumulators combined with zero knowledge
proofs are a perfect solution for providing revocation in a
system where preserving users’ privacy is crucial.

As an example, consider an anonymous credential sys-
tem where transactions involving the same credential need
to be unlinkable. An anonymous credential system is com-
prised of users, issuers, and verifiers. An issuer certifies a
user’s attributes in the form of a credential. To authenticate
a user, a verifier first sends her a presentation policy that
describes which statements she should prove about her
credentials. Based on the policy, the user derives a fresh
unlinkable proof (or token) from her credentials and sends
it to the verifier. The verifier then determines whether the
token is valid with respect to the policy.

To make credentials revocable, the user needs to be able
to prove that the credential, on which the token is based,
was not revoked. This must be done in a privacy-preserving
fashion, i.e., without destroying unlinkability. Camenisch et
al. [11] describe a generic revocation component, which can
be added to any anonymous system, including anonymous
credentials and group signature schemes. We refer to this
component as the anonymous revocation component (ARC).

An ARC requires an additional entity called a revocation
authority (RA). The RA assists the issuer with adding
new users to the system, maintains the necessary revocation
information, and changes the revocation status of any user
in the system. (The role of the RA can optionally be played
by an issuer or a verifier.) Camenisch et al. [11] describe
the necessary interfaces and definitions for an ARC, and
show how to instantiate it with the revocation scheme of
Nakanishi et al. [28].

In Section 5.1, we show how to instantiate an ARC
with accumulators and zero knowledge proofs, and extend
the definition of an ARC to include the addition of users
after the initial setup and the re-addition of users after they
have been revoked. In Section 5.2, we provide performance
measurements of our ARC with Braavos in the Identity
Mixer anonymous credential system (idemix) [10].

8. |a| and |d| refer to the number of elements added and deleted after
the addition of the element whose witness updates are being discussed.

5.1. Anonymous Revocation Component (ARC)
with Accumulators

ARC Syntax. In an ARC, revocation is done via a special
value called a revocation handle (rh) that can be embedded
into the revocable object, i.e., as a special attribute in a
credential. rh is bound to the revocable object with a signa-
ture. By using a commitment to rh , a proof that rh has not
been revoked can be easily combined with any other proof
about rh– for example, that rh was signed in a credential,
as shown in Section 4.4.

As described by Camenisch et al. [11], an ARC consists
of the following algorithms: ARC.SPGen, ARC.RKGen,
ARC.RevTokenGen, ARC.Revoke, and ARC.RevTokenVer.

• Revocation parameters are generated using
ARC.SPGen(sparg) → spar r , and then added to
the global system parameters sparg .

• The revocation authority RA runs
ARC.RKGen(spar r) → (rsk , rpk ,RI) to generate the
RA’s secret and public keys (rsk , rpk) and the initial
revocation information RI . RI contains all public data
that parties need in order to generate and verify proofs
of non-revocation. RI can also be supplemented by
privately held witnesses.

• The RA can revoke a user based on her revocation
handle rh by updating the revocation information RI :
ARC.Revoke(rh, rsk ,RI)→ RI ′.

• A user who has a valid credential can generate a
publicly verifiable token rt proving that her revocation
handle rh has not been revoked and that C is a commit-
ment to rh . ARC.RevTokenGen(rh, C, o,RI , rpk) →
rt .
(For each new revocation token rt , the user generates a
fresh commitment to rh in order to avoid making her
tokens linkable. (C, o, rh) can also be used in other
proofs - for example, the user should also prove that
rh is an attribute of her credential.)

• A verifier can check such a token by running
ARC.RevTokenVer(rt , C,RI , rpk)→ {0, 1}.

Note that ARC.RevTokenGen and ARC.RevTokenVer can
be integrated into an interactive protocol if interactive zero
knowledge proofs are used instead of non-interactive ones.

Accumulator-Based ARC. Let ACCP and ACCN be a posi-
tive and a negative dynamic accumulator, respectively. Let
ZKP = (Prove,Verify) be a zero knowledge proof of
knowledge system (as described in Section 4.4), SIG =
(KeyGen, Sign,Verify) be a signature scheme, and Com =
(Commit,Verify) be a commitment scheme.

LetRS be a set of supported revocation handles,W be a
list of all witnesses, andM be a list of all update messages
that are contained in the revocation information RI and are
necessary for the witness updates.

In Figure 10, we describe our accumulator-based ARC.
For clarity we describe two approaches in parallel: the
blacklist [BL] approach and the whitelist [WL] one. In
the blacklist approach, only the revoked users’ revocation

310

Protocol Runtimes
Accumulator Sigs RSA BM Merkle CL-RSA-B Braavos

Add 1 1 1 log |a| 1 1
Del − 1 1 log |a| 1 1

NonMemWitCreate (without sk) − |S| |S| log |a| − −
MemWitUpOnAdd 0 1 1 log |a| 0 0
MemWitUpOnDel − 1 1 log |a| 1 1

NonMemWitUpOnAdd − 1 1 log |a| − −
NonMemWitUpOnDel − 1 1 log |a| − −

VerMem 1 1 1 log |a| 1 1
VerNonMem − 1 1 log |a| − −

Storage
Accumulator Sigs RSA BM Merkle CL-RSA-B Braavos

Accumulator size 1 1 1 1 1 1
Witness size 1 1 1 log |a| 1 1

Manager storage (|m|) 1 |S| |S| |a| 1 1
Properties

Accumulator Sigs RSA BM Merkle CL-RSA-B Braavos

Additive? � � � � � �
Subtractive? � � � � �

Positive? � � � � � �
Negative? � � �

Total communication to Verifier 8 0 |a|+ |d| |a|+ |d| (|a|+ |d|) log |a| |d| |d|
Total communication to Member 0 |a|+ |d| |a|+ |d| (|a|+ |d|) log |a| |d| |d|

Efficient ZKPs? � � � � �
CMA-sound? � � � � �

Figure 9. Various Accumulators and their Protocol Runtimes, Storage Requirements, and Properties. We let |a| denote the number of elements added to the
accumulator, |d| denote the number of elements deleted from the accumulator, and |S| denote the total number of member elements in the accumulator.
(Note that |S| is |a| − |d|.) The Braavos accumulator is the first CMA-sound dynamic (additive and subtractive) accumulator to have the optimal total
communication of O(|d|). Sigs represents any digital signature scheme. The RSA Construction is due to [6], [2], [7]. The BM (bilinear map) construction
is due to [3], [8], [9]. The Merkle tree construction is due to [5]. CL-RSA-B and Braavos were described earlier in this section. A logarithmic factor is
omitted everywhere; it is implicit as the size of our elements. Big-O notation is omitted from this table in the interest of brevity.

handles are added to the accumulator. To prove that her
credential has not been revoked, a user proves that her
revocation handle rh is not in the accumulator (by means
of a non-membership witness). In the whitelist approach
all users’ revocation handles are added to the accumulator
when their credentials are issued, and are removed from the
accumulator upon revocation. To prove that her credential
has not been revoked, a user proves that her revocation
handle rh is in the accumulator (by means of a member-
ship witness). Naturally, a positive accumulator realizes the
whitelist approach and a negative accumulator realizes the
blacklist one.

5.1.1. Security Analysis of ARC With Accumulators.
We now analyze the security of the accumulator-based ARC
constructions described in Figure 10.

Correctness. Correctness requires that whenever an honestly
computed revocation information RI is used, an honest user
is able to successfully generate valid tokens. See the full
version for a formal definition [1].

Theorem 3. The ARC described in Figure 10 is correct.

The proof follows immediately from the correctness of
the accumulator scheme and the properties of ZKP.

Soundness. Revocation soundness captures the following: to
make the verifier accept, the user must know the revocation
handle contained in the commitment it computes a revo-
cation token for. Further, nobody except for the revocation
authority can come up with a new valid revocation infor-
mation, i.e., the revocation information is always authentic.
Finally, this revocation handle must not have been revoked
in an earlier revocation step. See the full version for a
formal definition [1].

Theorem 4. Assuming that the accumulators ACCP and
ACCN are adaptively sound, the signature scheme SIG is
existentially unforgeable, and the zero knowledge proof sys-
tem ZKP is sound, then the ARC described in Figure 10 is
sound in the random oracle model.

Proof. We prove this theorem by showing that a prover can
only convince the verifier with negligible probability for
each of the three given winning conditions.

Case a: Assume that the adversary outputs
(RIA, rt , C) such that the verifier accepts, but
commitment verification fails. By construction,
a revocation token rt is a zero knowledge
proof of knowledge of rh, o such that
Com.Verify(rh, C, o) = 1. Therefore, it follows from
the soundness of ZKP that Com.Verify(rh, C, o) =

311

ARC.SPGen(sparg): Using global system parameters sparg (group
descriptions, parameters for ZKP, etc.), generate revocation system
parameters sparr = (sparg ,RS), where RS specifies the set of
supported revocation handles. The revocation system parameters can be
given to any algorithm of the revocation framework.

ARC.RKGen(sparr):

• Generate the initial accumulator value:
[WL]: (sk, a,m)← ACCP.Gen(1

λ, ∅).
[BL]: (sk, a,m)← ACCN.Gen(1

λ, ∅).
• Generate witnesses for every rh ∈ RS:

[WL]: (a,m,wrh , upmsg) ← ACCP.Add(sk, a,m, rh). Let
M =M∪ {upmsg},W =W ∪ {wrh}.
[BL]: wrh ← ACCN.NonMemWitCreate(sk, a,m, rh). Let
W =W ∪ {wrh},M = ∅.

• Generate signing keys (sgk , vk)← SIG.KeyGen(sparg).
• Sign the revocation information: σ ←

SIG.Sign(sgk , (a,W,M)).
• Output rpk = vk , rsk = (sgk , sk,m), and RI =

(a,W,M, σ).

ARC.Revoke(rh, rsk ,RI):

• Parse RI as (a,W,M, σ) and rsk as (sgk , sk,m).
Abort if SIG.Verify(vk , σ, (a,W,M)) = 0.

• Update the accumulator value:
[WL]: (a,m, upmsg)← ACCP.Del(sk, a,m, rh).
[BL]: (a,m,w, upmsg)← ACCN.Add(sk, a,m, rh).

• Let M =M∪ {upmsg}.
• Remove the corresponding witness from the revocation information:
W =W\{wrh}.

• Sign the updated revocation information: σ ←
SIG.sign(sgk , (a,W,M) and append the signature to
RI : RI = (a,W,M, σ).

• Output the updated RI .

ARC.RevTokenGen(rh, C, o,RI , rpk):

• Parse RI as (a,W,M, σ) and rpk as vk . Abort if
SIG.Verify(vk , σ, (a,W,M)) = 0.

• Update the accumulator witness wrh :
For every new upmsg ∈ M since the last witness update:
[WL]: wrh ← ACCP.MemWitUpOnDel(rh, wrh , upmsg)
[BL]: wrh ← ACCN.NonMemWitUpOnAdd(rh, wrh , upmsg).

• Prove knowledge of wrh and rh such that wrh is a witness that
rh is (not) in the accumulator a:
[WL]: rt ← ZKP.Prove[(rh, o, wrh) :
Com.Verify(rh, C, o) = 1 ∧ ACCP.VerMem(a, rh, wrh) =
1](C, a).
[BL]: rt ← ZKP.Prove[(rh, o, wrh) : Com.Verify(rh, C, o) =
1 ∧ ACCN.VerNonMem(a, rh, wrh) = 1](C, a).

• Output rt .

ARC.RevTokenVer(rt, C,RI , rpk):

• Parse RI as (a,W,M, σ) and rpk as vk . Abort if
SIG.Verify(vk , σ, (a,W,M)) = 0.

• Verify the proof:
[WL]: b← ZKP.Verify[(rh, o, wrh) : Com.Verify(rh, C, o) =
1 ∧ ACCP.VerMem(a, rh, wrh) = 1](C, a, rt).
[BL]: b ← ZKP.Verify[(rh, o, wrh) : Com.Verify(rh, C, o) =
1 ∧ ACCN.VerNonMem(a, rh, wrh) = 1](C, a, rt).

• Output b.

Figure 10. ARC algorithms using accumulators, for both the whitelisting
and blacklisting approaches.

0 ∧ ARC.RevTokenVer(rt , C,RI , rpk) = 1 can only
happen with negligible probability.

We note that here we consider the revocation compo-
nent in isolation, without bridging it with any signature
or credential scheme. Therefore, it is not necessary
to require the binding property from the commitment

scheme. When the revocation handle is used in any
other proof (of a valid signature, etc.) the binding
property is required for the security of the overall
system.

Case b: Assume that the adversary outputs
(RIA, rt , C) such that the verifier accepts although the
given revocation information was never generated by
the revocation authority. Then the following algorithm
R can be used to break the unforgeability of the
underlying signature scheme SIG. Briefly, R behaves
as follows.

• It runs ARC.SPGen and ARC.RKGen(spar r) as de-
scribed in Figure 10, obtaining values rpk , RI and
parr.

• It then calls A on input (rpk ,RI , parr).
• For every call (Revoke, rh) to ORevoke, R computes

the updated revocation information by requesting the
required signatures from the signing oracle.

• When A outputs (RIA, rt , C), R extracts the sig-
nature component σA of RIA (and removes the
signature from the RIA value itself.. If the signature
σA does not verify on the signature-less RIA or
if the signature σA was previously returned by the
signing oracle, R returns ⊥. Otherwise, R returns
(RIA, σA).

It is easy to see that R succeeds in forging a signature
as long as it does not output ⊥, which occurs with
non-negligible probability if A succeeds with non-
negligible probability.

Case c: Assume that the adversary outputs
(RIA, rt , C) such that the verifier accepts although
the revocation handle was previously revoked. Then
through a sequence of games we can build a reduction
to the adaptive soundness property of the underlying
accumulator scheme and the soundness of ZKP. Briefly,
R uses the adaptive soundness oracles to add and
delete revocation handles from the accumulator, and
then uses the ZKPK extractor to extract the revocation
handle and the corresponding membership witness. It
then outputs these revocation handle and witness as a
forgery to the adaptive soundness challenger.

Privacy. Revocation privacy ensures that no adversary can
tell which of two unrevoked revocation handles rh0, rh1

underlies a revocation token. See the full version for a
formal definition [1].

Theorem 5. Assuming that the commitment scheme Com
is hiding and that the zero knowledge proof system ZKP is
zero knowledge, the ARC described in Figure 10 is private.

As revocation tokens are zero knowledge, they do not
leak any information about the revocation handle, and the
claim follows immediately.

312

5.1.2. Enabling Dynamic Revocation. In most large sys-
tems, it is insufficient to start with a fixed set of users,
and revoke users over time. Other users might need to be
added to the system, or users’ revocation status might need
to be changed back to “un-revoked”. We extend the syntax
described by Camenisch et al. [11] to include this additional
functionality; that is, we add a Join algorithm that allows
the RA to add users to the system after the initial setup has
been performed.

For the whitelist approach, this reduces the compu-
tational complexity of the RA key generation algorithm
ARC.RKGen and the size of the revocation information
RI , since the RA no longer needs to include all potential
users’ revocation handles in the initial whitelist accumulator.
Users’ witnesses are no longer a part of RI , since they are
given to their intended holders when a Join is executed.
Additionally, RevTokenGen algorithm takes a witness as a
separate input.

Let RU be a set of the revocation handles that are
already in use. RU is initialized in ARC.RKGen, at which
time it is empty since we assume that initially there are no
users in the system – they are now only added via the Join
algorithm. We describe the details of the Join algorithm in
Figure 11.

ARC.Join(rsk , rpk ,RI , rh′)→ (wrh ,RI ′, rh): RA optionally
receives a revocation handle rh′ (for a previously revoked user) as
input. (If the user is joining for the first time, the input rh′ is ⊥ and
RA picks a fresh rh , which is returned to the user.) RA then does
the following:

• Parse RI as (a,M, σ), rpk as vk , and rsk as (sgk , sk,m).
Abort if SIG.Verify(vk , σ, (a,M)) = 0 or if rh′ /∈ RS.

• If rh′ = ⊥, pick a fresh revocation handle rh′ ← RS\RU .
• Let rh = rh′.
• Add rh to RU .
• Update the accumulator value:

[WL]: (a,m,wrh , upmsg)← ACCP.Add(sk, a,m, rh).
[BL]: (a,m, urh , upmsg)← ACCN.Del(sk, a,m, rh).

• Let M = M ∪ {upmsg}. wrh ←
ACCN.NonMemWitCreate(sk, a,m, rh).

• Sign the updated revocation information: σ ← SIG.sign(sgk ,
(a,M)).

• Let RI = (a,M, σ).
• Output wrh and rh privately to the party that invoked the algorithm,

and output RI publicly.

Figure 11. Join algorithm.

The RA is usually asked to execute the Join algorithm by
the issuer. When issuing a revocable credential, the issuer
requests a membership witness from the RA. If the user
in question has previously joined - and subsequently been
revoked from - the system, the issuer gives the RA her
revocation handle rh . Otherwise, the RA generates a fresh
revocation handle for the user. The issuer signs the revoca-
tion handle inside the credential, and sends the credential
together with rh and the witness to the user.

If the Join algorithm changes the accumulator value,
users need to update their witnesses to account for
the additions. Therefore, the ACCP.MemWitUpOnAdd (in
the whitelist approach) or ACCN.NonMemWitUpOnDel

(in the blacklist approach) algorithms are used in
ARC.RevTokenGen to bring the witness up to date.

Theorem 6. The ARC extended with the Join algorithm
(Figure 11) is correct, sound and private if the commitment
scheme Com is hiding, the zero knowledge proof system ZKP
is sound and zero knowledge, the accumulators ACCP and
ACCN are adaptively sound, and the signature scheme SIG
is existentially unforgeable.

The proof is very similar to the one from the previous
section and, therefore, omitted.

Join-Revoke Unlinkability. Before adding the Join algorithm,
we did not have to worry about a user addition being
linkable with a user revocation, because we had no user
additions. Now that we do have a Join algorithm, though,
this is a real concern; the revocation information could allow
others to determine that the user revoked just now was the
user who joined two hours ago, and not the user who joined
four hours ago.

More formally, join-revoke unlinkability ensures that no
adversary can determine which joining session a revocation
corresponds to. This is similar to the blindness of blind
signature schemes. The adversary should be unable to guess
which user out of two has joined, even if it can choose
the revocation handles itself, can arbitrarily join and revoke
users, and can generate revocation tokens for all participants.
Note, however, the revocation authority parameters must be
generated honestly, and thus this definition does not imply
privacy. We provide a formal definition for the join-revoke
unlinkability in the full version of this paper [1].

Theorem 7. The ARC extended with the Join algorithm and
instantiated with Braavos is join-revoke unlinkable.

Using ARC with Braavos precludes join-revoke linka-
bility, because joins are not reflected at all in the revocation
information.

5.2. Revocation for Anonymous Credentials Using
Braavos: Performance Evaluation

In the previous section we discussed how one can con-
struct an ARC using any dynamic accumulator that sup-
ports zero-knowledge proofs of member knowledge (as well
as any secure commitment scheme and any existentially
unforgeable signature scheme). In particular, the Braavos
accumulator can be used, together with the zero knowl-
edge mechanisms described in Section 4.4 and Fujisaki-
Okamoto commitments. Using Braavos is especially effi-
cient because during ARC.RevTokenGen, users only need
to run MemWitUpOnDel, not MemWitUpOnAdd.

We now discuss the performance of a real anonymous
credential system that uses an ARC with Braavos to support
revocation. The system we have tested is idemix [10].9 We
left out key generation, as this is only relevant at setup once.

Idemix binds multiple user attributes (e.g., name, age,
citizenship status, or employer) into a single credential. It

9. https://abc4trust.eu/idemix

313

allows a credential to be used in a number of ways, which
are described in detail by Camenisch et al. [29]. Briefly,
during credential presentation, a user can either simply prove
that she has a valid credential (“proof of possession”), she
can reveal one or more attributes (“opening”, i.e., she can
disclose that she is a citizen), or she can describe attributes
in a range (“range proof”, i.e., she can disclose that she is
between 21 and 65 years old, without revealing her actual
age).

1A
tt0

R
an

ge

5A
tt0

R
an

ge

10
A

tt0
R
an

ge

20
A

tt0
R
an

ge

5A
tt5

R
an

ge

10
A

tt5
R
an

ge

20
A

tt5
R
an

ge
0
50

100
150
200
250
300
350
400
450
500
550
600

26326600 ..999 270...050 277..212 285...515 266..59555555999999927922222222227 ..757777775555529522222229 ..58555555588888882952 .73
22
302.11

22
308
7777

.8
22
315
28585

.
55
08
511 308.111111 317333 7177777712222

325555
9595 5555

..
555
999999999999
888888

32333222 030333 3933339999.797779 45444555. 55252225 62666222. 1118188888111

307308308....222992922229
2727222222222727
1111111111111
2222222222
33333333318317317..7777 222424442292922922292971717777711111111222222222222

33
99

3 1111111111

77777777 .46 8188888 .6666 888888 .6222 1061100 .050

352....444444444 364...65666666 333744444374374..111111111

282882222222..0000000000.33020000033333333 33 4149999999..7777777777996966666999999999 44 535555555555 22222222222551211115555555555 66 8088222222 88888888
06060000

111311111111111
050500000

388....212
33
399....383

333333

434..13

7977.446642222266 888888888810311 6666669229222888888888
112
88 626222

1444441010111110000001270606 005597779777755

441.18447.3944
475.02

R
u

n
ti

m
e

in
m
s

Iss. w/o Iss. w/

Pres. w/o Pres. w/

Verf. w/o Verf. w/

+
1
2

.0
2
%

+
1
1
.8

7
%

+
1
1
.4

0
%

+
1
0
.3

6
%

+
1

5
.5

7
%

+
1
3
.5

7
%

+
1
0

.2
5
%

+
1

4
1
.8

4
%

+
1
0

5
.2

3
%

+
9

5
.8

9
%

+
6

8
.8

4
%

+
1
4
.6

9
%

+
1
4
.5

2
%

+
8
.7

7
%

+
1
8
3
.4

0
%

+
1
4
9
.2

7
%

+
1

1
1
.1

1
%

+
5
9
.7

0
%

+
1
3
.6

4
%

+
1
2
.0

2
%

+
9
.4

2
%

Figure 12. 1,024Bit Measurements

1A
tt0

R
an

ge

5A
tt0

R
an

ge

10
A

tt0
R
an

ge

20
A

tt0
R
an

ge

5A
tt5

R
an

ge

10
A

tt5
R
an

ge

20
A

tt5
R
an

ge
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200

7898 ..474 80177 ...010 803...616 830..464 797...686666688888048888880 ...73777773333836888883 ..67666677778608878978988 44443347478877
872801801 0086010188875803803 6606616188

901830830 4441464677877797797 666665855558886868668888888888888
88088804804888080 7777232223337373773333388888888

907999836836838383 66666678777788888677677777

94999444 8282 110111100...323222214344343..686888
1929292..7777777

1,49666.777177,55333.4844
148484488593333...98999

32133332222 253353333 9539833999 994274422 .343

1,731 06166,760 81 788 75

93934444444..8888888822626662222222 11 12211 222221010000000.....333322222268886222214144444441751175757575434343434344343 6666888883555388881919999999
262222 222629292229292 777777777716666677

14444550550009696666666 77777111111117777777777777777777783,,5555
1558855555555600005353333333 4444444111144444444444448888388 388885959

188
,,
33335555
,
339999
7000000
93933 999999
8888..

.
88
77
88
7575

3163212122 ..22.553131115533333333333333155..9595.55333333333 4024989899 ..99994646466699424244444222222
4804272722 334471777111144

177,337333131..0066736611666,,771777777,667606060..88118888888811
,,,,87777
77771777777888498888 77558455

R
u
n
ti

m
e

in
m
s

Iss. w/o Iss. w/

Pres. w/o Pres. w/

Verf. w/o Verf. w/

+
8

.9
7
%

+
8
.9

6
%

+
8
.8

9
%

+
8
.5

4
%

+
1
0
.0

2
%

+
9
.3

8
%

+
8
.5

0
%

+
2

3
8
.9

0
%

+
2

0
4
.5

2
%

+
1
7
7
.6

9
%

+
1
2
1

.6
8
%

+
1
5
.6

6
%

+
1
3
.3

5
%

+
1
2
.2

2
%

+
2

3
7

.8
6

%

+
1

7
0
.0

5
%

+
1
2
9

.5
2

%

+
8
3

.3
0

%

+
1
1
.7

9
%

+
1

0
.0

3
%

+
8
.7

6
%

Figure 13. 2,048Bit Measurements

In Figures 12 and 13, we show the timings of creden-
tial issuance (“Iss.”), presentation (“Pres.”) and verification
(“Verf.”), with (“w/”) and without (“w/o”) the anonymous
revocation component (ARC) with a 1024-bit and 2048-bit
RSA modulus, respectively. We use credentials with 1, 5, 10,
and 20 attributes. For all of those credentials, we measure

presentation consisting of a simple proof of possession. For
credentials with 5, 10, and 20 attributes, we also measure
presentation consisting of 5 range proofs, to show that using
our ARC in conjunction with more realistic presentation
policies only adds a marginal amount of run-time. On the x-
axis, xAttyRange means that the credential has x attributes
and y range proofs are performed during presentation.

The measurements were performed locally on a machine
with a Intel Quad-Core CPU with 2.70GHz, 16GB of RAM
and Java8u77. In total, 1,000 runs where taken and the
figures represent the average run-time. We provide a table
of the exact timings in the full version of this paper [1].

Conclusions. The revocation overhead for issuance is the
same for all credential types, and is very small. For pre-
sentation and verification, the revocation overhead is only
significant for simple proofs of possession with few at-
tributes. In these cases, the absolute numbers are very small
anyway, so the overhead is not a practical problem. We think
that having more attributes inside a credential and more
complex presentations (e.g., involving range proofs) is more
realistic, and in the case of credentials with 20 attributes
and 5 range proofs, the overhead for a presentation and
verification is less than 10%. Thus, anonymity-preserving
revocation using ARC with Braavos is practical, as it does
not impact performance significantly. The advantages one
gains by achieving revocability is clearly worth the small
price of 10% runtime overhead.

6. Acknowledgements

Jan Camenisch, Maria Dubovitskaya, and Kai Samelin
were supported by the European Research Council under
grant agreement number 321310 (PERCY). The work of
Foteini Baldimtsi, Leonid Reyzin, and Sophia Yakoubov was
supported, in part, by US NSF grants 1012798, 1012910,
and 1422965. Foteini Baldimtsi performed this work while
at Boston University. Leonid Reyzin is grateful for the hos-
pitality and support of IST Austria, where part of this work
was performed. Anna Lysyanskaya’s work was supported by
US NSF grant 1422361.

References

[1] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya,
L. Reyzin, K. Samelin, and S. Yakoubov, “Accumulators with ap-
plications to anonymity-preserving revocation,” Cryptology ePrint
Archive, Report 2017/43, 2017, http://eprint.iacr.org/2017/043.

[2] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Advances
in Cryptology – CRYPTO 2002, ser. Lecture Notes in Computer
Science, M. Yung, Ed., vol. 2442. Springer, Heidelberg, Aug. 2002,
pp. 61–76.

[3] L. Nguyen, “Accumulators from bilinear pairings and applications,” in
Topics in Cryptology – CT-RSA 2005, ser. Lecture Notes in Computer
Science, A. Menezes, Ed., vol. 3376. Springer, Heidelberg, Feb.
2005, pp. 275–292.

314

[4] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based
on bilinear maps and efficient revocation for anonymous credentials,”
in PKC 2009: 12th International Conference on Theory and Practice
of Public Key Cryptography, ser. Lecture Notes in Computer Science,
S. Jarecki and G. Tsudik, Eds., vol. 5443. Springer, Heidelberg, Mar.
2009, pp. 481–500.

[5] P. Camacho, A. Hevia, M. A. Kiwi, and R. Opazo, “Strong accumula-
tors from collision-resistant hashing,” in ISC 2008: 11th International
Conference on Information Security, ser. Lecture Notes in Computer
Science, T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, Eds., vol.
5222. Springer, Heidelberg, Sep. 2008, pp. 471–486.

[6] J. C. Benaloh and M. de Mare, “One-way accumulators: A decentral-
ized alternative to digital sinatures (extended abstract),” in Advances
in Cryptology – EUROCRYPT’93, ser. Lecture Notes in Computer
Science, T. Helleseth, Ed., vol. 765. Springer, Heidelberg, May
1994, pp. 274–285.

[7] J. Li, N. Li, and R. Xue, “Universal accumulators with efficient
nonmembership proofs,” in ACNS 07: 5th International Conference
on Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, J. Katz and M. Yung, Eds., vol. 4521. Springer,
Heidelberg, Jun. 2007, pp. 253–269.

[8] I. Damgård and N. Triandopoulos, “Supporting non-membership
proofs with bilinear-map accumulators,” Cryptology ePrint Archive,
Report 2008/538, 2008, http://eprint.iacr.org/2008/538.

[9] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu, “Dynamic universal
accumulators for DDH groups and their application to attribute-
based anonymous credential systems,” in Topics in Cryptology – CT-
RSA 2009, ser. Lecture Notes in Computer Science, M. Fischlin, Ed.,
vol. 5473. Springer, Heidelberg, Apr. 2009, pp. 295–308.

[10] J. Camenisch and E. Van Herreweghen, “Design and implementation
of the idemix anonymous credential system,” in ACM CCS 02: 9th
Conference on Computer and Communications Security, V. Atluri,
Ed. ACM Press, Nov. 2002, pp. 21–30.

[11] J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and
M. Ø. Pedersen, “Formal treatment of privacy-enhancing credential
systems,” in Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, vol.
9566. Springer, 2015, pp. 3–24.

[12] Y. Liu, W. Tome, L. Zhang, D. R. Choffnes, D. Levin, B. M. Maggs,
A. Mislove, A. Schulman, and C. Wilson, “An end-to-end measure-
ment of certificate revocation in the web’s PKI,” in Proceedings of
the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015. ACM, 2015, pp. 183–196.

[13] D. Derler, C. Hanser, and D. Slamanig, “Revisiting cryptographic
accumulators, additional properties and relations to other primitives,”
in Topics in Cryptology – CT-RSA 2015, ser. Lecture Notes in
Computer Science, K. Nyberg, Ed., vol. 9048. Springer, Heidelberg,
Apr. 2015, pp. 127–144.

[14] L. Reyzin and S. Yakoubov, “Efficient asynchronous accumulators for
distributed PKI,” Cryptology ePrint Archive, Report 2015/718, 2015,
http://eprint.iacr.org/2015/718.

[15] A. Shamir and Y. Tauman, “Improved online/offline signature
schemes,” in Advances in Cryptology – CRYPTO 2001, ser. Lecture
Notes in Computer Science, J. Kilian, Ed., vol. 2139. Springer,
Heidelberg, Aug. 2001, pp. 355–367.

[16] P. Camacho, “On the impossibility of batch update for cryptographic
accumulators,” Cryptology ePrint Archive, Report 2009/612, 2009,
http://eprint.iacr.org/2009/612.

[17] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in SCN 02: 3rd International Conference on Security in
Communication Networks, ser. Lecture Notes in Computer Science,
S. Cimato, C. Galdi, and G. Persiano, Eds., vol. 2576. Springer,
Heidelberg, Sep. 2003, pp. 268–289.

[18] N. Bari and B. Pfitzmann, “Collision-free accumulators and fail-
stop signature schemes without trees,” in Advances in Cryptology –
EUROCRYPT’97, ser. Lecture Notes in Computer Science, W. Fumy,
Ed., vol. 1233. Springer, Heidelberg, May 1997, pp. 480–494.

[19] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign signatures
without the random oracle,” in Advances in Cryptology – EURO-
CRYPT’99, ser. Lecture Notes in Computer Science, J. Stern, Ed.,
vol. 1592. Springer, Heidelberg, May 1999, pp. 123–139.

[20] C. Cachin, S. Micali, and M. Stadler, “Computationally private infor-
mation retrieval with polylogarithmic communication,” in Advances
in Cryptology – EUROCRYPT’99, ser. Lecture Notes in Computer
Science, J. Stern, Ed., vol. 1592. Springer, Heidelberg, May 1999,
pp. 402–414.

[21] S. Micali, M. O. Rabin, and S. P. Vadhan, “Verifiable random
functions,” in 40th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Oct. 1999, pp. 120–130.

[22] J. Lapon, M. Kohlweiss, B. D. Decker, and V. Naessens, “Perfor-
mance analysis of accumulator-based revocation mechanisms,” in
Security and Privacy - Silver Linings in the Cloud - 25th IFIP TC-
11 International Information Security Conference, SEC 2010, Held
as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010.
Proceedings, ser. IFIP Advances in Information and Communication
Technology, vol. 330. Springer, 2010, pp. 289–301.

[23] D. Catalano and D. Fiore, “Vector commitments and their applica-
tions,” in PKC 2013: 16th International Conference on Theory and
Practice of Public Key Cryptography, ser. Lecture Notes in Computer
Science, K. Kurosawa and G. Hanaoka, Eds., vol. 7778. Springer,
Heidelberg, Feb. / Mar. 2013, pp. 55–72.

[24] D. Derler, C. Hanser, and D. Slamanig, “Revisiting crypto-
graphic accumulators, additional properties and relations to other
primitives,” Cryptology ePrint Archive, Report 2015/087, 2015,
http://eprint.iacr.org/2015/087.

[25] E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and
N. Triandopoulos, “Zero-knowledge accumulators and set op-
erations,” Cryptology ePrint Archive, Report 2015/404, 2015,
http://eprint.iacr.org/2015/404.

[26] J. Camenisch and M. Stadler, “Efficient group signature schemes
for large groups (extended abstract),” in Advances in Cryptology –
CRYPTO’97, ser. Lecture Notes in Computer Science, B. S. Kaliski
Jr., Ed., vol. 1294. Springer, Heidelberg, Aug. 1997, pp. 410–424.

[27] E. Fujisaki and T. Okamoto, “Statistical zero knowledge protocols to
prove modular polynomial relations,” in Advances in Cryptology –
CRYPTO’97, ser. Lecture Notes in Computer Science, B. S. Kaliski
Jr., Ed., vol. 1294. Springer, Heidelberg, Aug. 1997, pp. 16–30.

[28] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki, “Revocable group
signature schemes with constant costs for signing and verifying,” in
PKC 2009: 12th International Conference on Theory and Practice of
Public Key Cryptography, ser. Lecture Notes in Computer Science,
S. Jarecki and G. Tsudik, Eds., vol. 5443. Springer, Heidelberg,
Mar. 2009, pp. 463–480.

[29] J. Camenisch, M. Dubovitskaya, R. R. Enderlein, A. Lehmann,
G. Neven, C. Paquin, and F. Preiss, “Concepts and languages
for privacy-preserving attribute-based authentication,” J. Inf. Sec.
Appl., vol. 19, no. 1, pp. 25–44, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jisa.2014.03.004

315

