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Abstract—

OpenID Connect is the OAuth 2.0-based replacement for
OpenID 2.0 (OpenID) and one of the most important Single
Sign-On (SSO) protocols used for delegated authentication. It
is used by companies like Amazon, Google, Microsoft, and
PayPal. In this paper, we systematically analyze well-known
attacks on SSO protocols and adapt these on OpenID Con-
nect. Additionally, we introduce two novel attacks on OpenID
Connect, Identity Provider Confusion and Malicious Endpoints
Attack, abusing flaws in the current specification and breaking
the security goals of the protocol. In 2014 we communicated
with the authors of the OpenID Connect specification about
these attacks and helped to repair the issue (currently an RFC
Draft).

We categorize the described attacks into two classes:
Single-Phase Attacks abusing a lack of a single security check
and Cross-Phase Attacks requiring a complex attack setup
and manipulating multiple messages distributed across the
whole protocol workflow. We provide an evaluation of officially
referenced OpenID Connect libraries and find 75% of them
vulnerable to at least one Single-Phase Attack. All libraries
are susceptible to Cross-Phase Attacks, which is not surprising
since the attacks abuse a logic flaw in the protocol and not an
implementation error. We reported the found vulnerabilities to
the developers and helped them to fix the issues. We address
the existing problems in a Practical Offensive Evaluation of
Single Sign-On Services (PrOfESSOS). PrOfESSOS is our open
source implementation for a fully automated Evaluation-as-a-
Service for SSO. PrOfESSOS introduces a generic approach to
improve the security of OpenID Connect implementations by
systematically detecting vulnerabilities. In collaboration with
the IETF OAuth and OpenID Connect working group, we
integrate PrOfESSOS into the OpenID Connect certification
process.

PrOfESSOS is available at https://openid.sso-security.de

The research was supported by the German Ministry of research and
Education (BMBF) as part of the VERTRAG Research project and the
European Commission through the FutureTrust project (grant 700542-
Future-Trust-H2020-DS-2015-1).
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Figure 1: Abstract overview of an SSO authentication token.

1. Introduction

Single Sign-On (SSO) is a concept to delegate the au-
thentication of an End-User on a Service Provider (SP) to
a third party – the so-called Identity Provider (IdP). Stan-
dardized in 2014, OpenID Connect is the latest SSO protocol
and is supported by large companies like Amazon, Google,
Microsoft and PayPal. In 2015 Google announced that de-
velopers should abandon the preceding protocol OpenID
2.0 (OpenID) and recommended switching to its OAuth
2.0 (OAuth) based successor OpenID Connect. The OpenID
Connect specification itself offers a list of available libraries
supporting OpenID Connect [25] and an additional list of
certified libraries [24]. On the one hand, using such a
library makes the integration of OpenID Connect into a
web application quite easy since the entire authentication
(including all security-related operations) can be delegated
to it. On the other hand, the security of the web application
then depends on the library being used.

SSO Attacks. We investigated attacks on well-known SSO
protocols including SAML [2, 29], BrowserId [8, 9], and
OpenID [19, 33] to get an attack systematization for OpenID
Connect protocol. The essence of each SSO protocol is
the authentication token containing statements regarding the
End-User who is going to be authenticated.

These statements can be grouped into four classes:
(1) identity, (2) recipient, (3) freshness, and (4) signature.
The authentication token, is similar across all SSO protocols
(Figure 1 shows the case of OpenID Connect) and forms the
basis of our identified Single-Phase Attacks. By changing
one or more of the values in the token different attacks
can be conducted. For example, the XML Signature Exclu-
sion attack on SAML [29] targets the signature statements,
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while the identity spoofing attack on OpenID [19] and on
BrowserId [8] targets the identity statements.

More complex attacks are Cross-Phase Attacks. They
target not only the token statements, but multiple protocol
messages in different phases of the protocol execution. Due
to the high complexity of such attacks, they are very hard
to identify. In this paper, we describe three different Cross-
Phase Attacks: one implementation flaw (Issuer Confusion),
and two specification flaws (IdP Confusion, Malicious End-
points) which have not been previously discovered and
which could only be revealed through a deep protocol
understanding of the relation between all SSO messages.

The specification flaws have been reported to the authors
of the OpenID Connect specification (together with another
independent research group which has identified similar
results on OAuth). In collaboration with the OAuth and
OpenID Connect working groups, we have created a fix for
them that is currently available as a draft [17].

Research Challenges. Correctly implementing SSO li-
braries is a challenging task, and previous research on
different protocols has revealed serious vulnerabilities in
implementations [19, 29, 32, 41]. We focus on OpenID
Connect because it is the latest SSO protocol and includes
most features from previous SSO protocols, opening doors
for all kinds of potential vulnerabilities. OpenID Connect
is by far more complex than any previous SSO protocol. It
supports different protocol variants (called flows), diverse SP
types (websites, mobile apps and native applications), and
extensively uses server-to-server communication. In sum-
mary, its investigation leads to new challenges and insights.
This paper answers three general research questions:

(Q1) OpenID Connect – as the latest SSO protocol – should
be aware of previous and known attacks. Which ex-
isting attacks are addressed by the specification and
which are not?

(Q2) How secure are the officially referenced implementa-
tions and do they follow the specification hints regard-
ing attacks?

(Q3) How can the implementation of SSO libraries be
improved regarding state-of-the-art security?

Evaluation-as-a-Service. In this paper, we show how at-
tacks, partially known from other SSO systems, can be
adapted to the new SSO system, OpenID Connect. The
adaption ranges from simple format changes (e.g., replay
attacks) to complex Cross-Phase Attacks.

Our results highlight that even simple and well-studied
attacks still exist and remain an open problem. As depicted
in Table 2 (p. 14), 75% of the evaluated libraries were
susceptible to at least one critical issue resulting in broken
End-User authentication. Even if the specification addresses
such issues (Q1), implementations are vulnerable to them
(Q2). The gap between specification and implementation has
several reasons ranging from too complex specifications to
standard developer mistakes and forgotten checks.

To address this problem, and to bring an implemen-
tation closer to the state of the art (Q3), we propose a
Practical Offensive Evaluation of Single Sign-On Services

(PrOfESSOS). PrOfESSOS is a security Evaluation-as-a-
Service (EaaS) for SSO applicable to all existing libraries,
independent of the programming language in use. To the
best of our knowledge, this is the most beneficial and
reliable approach to provide a practical evaluation of SSO
security and it can be integrated into the development cycle
of new as well as existing OpenID Connect libraries. To
execute all attacks, PrOfESSOS applies a barely known
penetration testing concept – it simulates both an honest IdP
and an attacker IdP [19]. The concept of using attacker IdP
means that the IdP behaves maliciously with respect to the
protocol flow, for example, by removing or manipulating
parameters, or by sending messages in the wrong order.
Thus, PrOfESSOS controls more SSO related messages and
supports more (and especially more complex) attacks than
other SSO evaluation tools.

In addition to finding security issues, PrOfESSOS offers
information on the vulnerabilities and advises how to fix
them. A demo is available at https://openid.sso-security.de.

Open Source. In recent years, many research papers imple-
mented automated validation tools. These tools were then
left unpublished or even protected by patents. Published
tools are not documented or used. We believe that proper
open source tools help the scientific community to proceed
with the research and produce verifiable and comparable
results. In addition, these open source tools may help
other researchers to quickly solve annoying but repetitive
challenges (e.g., the automatism to login into a website).
PrOfESSOS is open source and available on Github.1

Our Contribution.
� We show how to adapt attack patterns known from other

SSO protocols to OpenID Connect and categorize them
into Single-Phase Attacks and Cross-Phase Attacks.

� We present two unpublished Cross-Phase Attacks vul-
nerabilities on OpenID Connect (IdP Confusion, Mali-
cious Endpoints Attack) which abuse a logical flaw in
the OpenID Connect specification.

� We provide a security evaluation of all officially listed
OpenID Connect libraries. We responsibly disclosed
all security issues to the corresponding developers and
helped to fix them.

� We provide PrOfESSOS, our comprehensive open
source Evaluation-as-a-Service platform. PrOfESSOS is
the first tool to automatically analyze OpenID Connect
implementations and and which is capable of evaluating
high complex Cross-Phase Attacks.

� We are cooperating with the OAuth and OpenID Connect
working group to integrate PrOfESSOS into the OpenID
Connect certification process in order to support the
development and security of SSO.

2. Single Sign-On in Three Phases

Every SSO protocol consists of three phases (cf. Fig-
ure 2): Phase 1: registration and trust establishment between

1. https://github.com/RUB-NDS/PrOfESSOS
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Service Provider (SP) and Identity Provider (IdP), Phase
2: End-User authentication on the IdP, Phase 3: End-User
authentication on the SP via the authentication token.

Enduser Service Provider
(https://sp.com)

Identity Provider
(https://idp.com)

Phase 1: Trust Establishment

Phase 2: Token Generation

Phase 3: Token Redemption

Figure 2: SSO consists of three phases.

Phase 1: Trust Establishment. In the first phase the trust
establishment phase between SP and IdP is provided. In
classical SSO systems, trust is established by an admin-
istrator manually registering a specific IdP on the SP. A
typical example is SAML.The administrator visits the IdP
and downloads the IdP’s metadata, for instance its certifi-
cate. Next, he uploads it on the SP and configures further
parameters like important URLs of the IdP. We call this full
trust establishment since only those authorized people (the
administrator) can invoke this manual trust establishment.

Modern SSO systems offer a more flexible alternative to
this approach: dynamic registration that is executed automat-
ically on the fly during an End-User’s login procedure. It is
supported by protocols like OpenID, BrowserId, OAuth and
OpenID Connect and basically works as follows: (1) The
End-User starts a login process on the SP by submitting his
identifier (e.g., his email bob@idp.com). (2) The SP extracts
the domain of it (the part after the @-sign) to identify the
IdP. (3) Then the SP can dynamically register on the IdP, for
example, by sending a POST request to a specified URL on
the IdP. We call this conditional trust establishment, since
every End-User can invoke this dynamic trust establishment
on a custom IdP.

SSO systems based on a conditional trust establishment
require additional verification steps by processing an SSO
token. If these steps are not implemented correctly, attacks
such as ID Spoofing (IDS) (see Section 5.1) are applicable.

Phase 2: Token Generation. In the second phase, the SP
typically forwards the End-User to the IdP. This is usually
an HTTP redirect to a pre-registered URL on the IdP with
additional parameters (e.g., the identity of the SP). The End-
User then logs in at the IdP, which then generates an SSO
token. This token is then submitted to the SP.

Phase 3: Token Redemption. In the final phase, the SP
receives the SSO token in order to authenticate the End-
User. This is a security critical process since the token
contains multiple parameters which must be verified.

SSO Token Structure. Independent of the concrete SSO
protocol implementation, every SSO token contains infor-
mation that can be categorized as follows:
� Class I: Identity. The SSO token contains information

about a subject (e.g., an End-User) authenticating at
the SP. In some protocols, this is an email address.
Others like OpenID, OpenID Connect, and BrowserId

use unique URLs or usernames. An important fact about
this category is that multiple parameters (and not only
one) represent the unique identity of the End-User.

� Class II: Recipient. An SSO token contains information
on the intended recipient, for example, the URL or a
unique ID of the SP.

� Class III: Freshness. Parameters like timestamps and
nonces belong to this category.

� Class IV: Signature. The SSO token (or a subset of it)
can be signed. The signature value as well as parameters
specifying meta information like key references or used
algorithms belong to this category.

3. Threat Model

The Single-Phase and Cross-Phase Attacks presented in
the following sections are intended for logging in with a
victim’s identity.2 There are two categories describing the
behavior of the victim:

Category A (Cat A). Attacks belonging to this category
involve a certain kind of victim interaction. For example, the
victim has to click on a link or he has to post his (expired)
token somewhere on the web (e.g., in a support forum).

Category B (Cat B). This category involves stealth because
it does not require any interaction from the victim. This
means that the attacker can log in with an arbitrary identity,
for example, using an @google.com identity on the SP
simply by using his attacker IdP. Cat B attacks are more
powerful than Cat A since no user interaction is necessary.

Attacker Capabilities. The attacks introduced in this paper
have been strictly verified in the web attacker model. Thus,
the attacker does not control the network and is not able to
eavesdrop or manipulate network communications. He can
set up a web service accessible on the Internet. The attacker
can use links (e.g., by posting them in web-blogs) to lure
the victim into opening a URL.

We assume that TLS channels are secure, the End-User
does not use a compromised/malicious software, and the
End-User detects Phishing attacks.

4. Attacker IdPs in SSO

One approach to analyze SSO is by using attacker
IdPs [8, 19]. At first glance this seems trivial: an IdP is
considered as a Trusted Third Party (TTP), allowing it to
compromise the security of the entire SP. But in protocols

Browser

Eval
(mIdP)

SP

SSO

result

Figure 3: Attacker IdPs.

2. We also present Malicious Endpoints Attack with different goals, e.g.,
Denial-of-Service or Server Side Request Forgery.
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such as OpenID, BrowserId, OAuth, and OpenID Connect,
the IdPs are conditionally trusted. In other words, the proto-
cols themselves provide mechanisms detecting a maliciously
acting attacker IdP. In order for these mechanisms to be
implemented correctly depends on the SP.

Advantages. By using the concept of attacker IdPs, more
messages can be analyzed since the used IdP takes part in
every phase and step of the protocol, controls the content of
every message, and can provide tests with valid or invalid
tokens. Note that the attacker IdP does not control the
communication between the browser and the SP, but since
it controls the messages that are forwarded to the SP (e.g.,
by using HTTP redirects), the attacker can even manipulate
these messages. Thus, this approach allows for full flexibility
in order to analyze an SSO protocol.

Disadvantages. An important limitation is that such attacker
IdPs are bound to one protocol. An implementation of every
SSO protocol has to be created, but this is an acceptable
downside since even the attacks themselves have to be
adapted to the specific protocol.

Applicability. There are multiple SSO libraries providing
IdP functionality. Thus, every attacker can download, install,
and configure such a library and deploy his own IdP – a cus-
tom IdP. An attacker IdP is a custom IdP acting maliciously
by creating invalid or malicious tokens or exchanging the
order of sent messages [8, 19]. There are two ways to force
an SP to use the attacker IdP.

Manual configuration of the SP. First, an SP has to
establish a trust relationship with the IdP. For this purpose,
key material and important URLs (e.g., the URL of the IdP
and the callback URL of the SP) are exchanged manually.
As a result, the SP is able to verify the signature contained
in the received authentication tokens.

Dynamic configuration. In OpenID Connect, the features
Discovery [35] and Dynamic Registration [36] can be used
to establish on-the-fly a trust relationship between an SP
and the custom IdP (conditional trust establishment). In
other words, a user can be force to use the attacker IdP by
entering its URL on the SP. The SP discovers all necessary
information about the IdP, such as supported cryptographic
algorithms, important URLs, and exchanges the key mate-
rial. A similar approach is described for other SSO protocols
like SAML [5], OpenID [30], and OAuth [15].

4.1. Comparison with other Approaches

By systematically studying previous work on SSO analy-
sis, we identify five other approaches to analyze SSO: man-
ual testing, formal analysis, static code analysis, dynamic
code analysis, and message invariants. We compare these
with our attacker IdP approach and describe the results.

Manual testing. Even though manual testing is often con-
sidered as out-of-scope in research papers and therefore
not described directly, it is an important part during every
security evaluation. Manual testing offers great flexibility,
which is needed at least at the beginning. Most research
ideas start with manual testing, so does this paper. We first

applied our attacks manually on multiple libraries to prove
our ideas and methodology. Since manual testing does not
scale for a larger number of targets, manual testing cannot
be the answer to research question Q3.

Formal Analysis. This approach provides a security evalu-
ation based on a formal protocol description, see Figure 4a.
The main goal of such analysis is to find generic vulnerabili-
ties. An important limitation however is that implementation
flaws and specific vulnerabilities are not covered since the
Evaluation module (Eval) is not able to analyze real net-
work traffic and to see how an implementation reacts to
manipulated messages.

This approach does not answer research question Q3
(nor even Q2) because specifications precisely address sev-
eral attacks. For example, the OpenID Connect specification
clearly states how to prevent Replay attacks, but our obser-
vation via manual testing was that implementations are not
aware of this. The real advantage of formal analysis relies
on finding generic issues in specifications like in SAML [1],
BrowserId [8] and OAuth [11]. Thus, in a perfect world, this
step should be included during the creation of a specification
to proof its correctness, which is also stated by Bai et al.
[3].

Static Code Analysis. During a static code analysis, the
Eval module has full access to the code of the targeted
system. Figure 4b illustrates this approach.

Analyzing the program code is a reliable approach to
track down implementation flaws, for example, in the veri-
fication logic. However, static code analysis is hardly used
for SSO protocols. We see two reasons for this. (1) Such
analysis requires full (or at least partial) access to the code
of the running implementation (see dashed lines). This is
possible for a library evaluation (especially for open-source
libraries), but it is not applicable to online websites (e.g.,
Amazon). (2) The biggest downside of static code analysis
is that it has to be applied for every programming language
and in additionally for every SSO protocol.

Dynamic Code Analysis. Bai et al. [3] shows a more
convenient approach combining program code analysis with
formal analysis (cf. Figure 4c). In this case the Eval module
expects HTTP traces plus initial knowledge, for example, the
credentials of at least two different users. The Eval module
then creates a formal model based on this information,
generates test cases, and simulates the SSO authentication.
The output of the tests can then be further inspected to
identify vulnerabilities.

Although dynamic code analysis is very flexible, it has
significant downsides. (1) Signed messages are considered
unmodifiable and thus not evaluated. This is an enormous
limitation regarding conditionally trusted SSO protocols
since attacks like IDS are not considered. (2) The direct
communication between IdP and SP cannot be evaluated. By
this means, our Cross-Phase Attacks cannot be evaluated.

Message invariants. The message invariants approach [37,
41] is depicted in Figure 4d. The Eval module again expects
HTTP traces and analyzes the traffic to define messages
and parameters that are modifiable. Instead of creating large
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Figure 4: The Eval module has access to different messages and information in different approaches. Dashed lines are
accessible and solid lines are not accessible for Eval.

subsets of tests by executing all possibilities, it examines
relations between different parameters. Such relations can be
used to influence parameters in one message, automatically
reflecting in another one. In this manner, points of attacks
can be identified and evaluated. The limitations of this
approach are identical with the previous one.

4.2. Lessons Learned

Since we need a scalable solution that can be applied
to numerous implementations, we need an approach which
can evaluate an implementation automatically. Therefore,
the manual approach is omitted. A formal approach unfor-
tunately does not help to find implementation issues, so we
cannot apply it either. Static and dynamic code analyses have
the disadvantage of depending on the used programming
language. Thus, this approach is difficult to apply since we
have to implement this approach in dependence of each
language. In addition, the attack surface is limited by the
inaccessible communication between the SP and IdP. Thus,
this approach cannot bring an implementation closer to a
specification. The message invariant approach seems to be
promising, but it has the huge disadvantage in that the
communication between the SP and the IdP is not part of
the evaluation. In addition, not all messages sent through the
browser can be manipulated. This disables the evaluation of,
for example, Issuer Confusion attack.

To the best of our knowledge, the attacker IdP approach
is the best way to analyze implementation flaws in SSO
since it offers great flexibility, full control over all phases
and messages, and can be used as a basis for an automated
analysis.

Q3: How can an implementation get closer to a spec-
ification? Before we thought about applying an automatic
testing approach, we did a manual analysis with only a few
libraries. One surprising result was that even very simple
(not to say stupid) implementations issues were made. The
best example for this are Replay attacks, which are clearly
addressed by the OpenID Connect specification; however
despite this fact, we could find them in a variety of imple-
mentations.

If we want to bring an implementation closer to a speci-
fication, we need to validate whether the implementation be-
haves correctly in exceptional scenarios. This is commonly
known as compliance testing and is a part of every serious
software development. However, when it comes to security,

these tests are missing. This may have different reasons, for
example, that developers are not aware of attacks, or they
do not understand the importance of a verification step in
a specification (“Why should one check the recipient of a
token?”).

5. Single-Phase Attacks

We executed extensive research on different SSO pro-
tocols and known attacks. By this means, we categorize
attacks on SSO into Single-Phase Attacks and Cross-Phase
Attacks (cf. Section 6). Most known attacks on SSO abuse
an insufficient or missing verification step on the SSO token
or one of the security relevant parameters. If this step
appears at one single point, for example, at the SP receiving
the token in Phase 3, we talk about Single-Phase Attacks.
The identification of such vulnerabilities is relatively easy
because a Single-Phase Attack can be conducted by only
manipulating, at most, one message in one phase of the
SSO protocol.

In the following sections, we systematically analyze
problems that can occur if such a verification step is not im-
plemented properly and map them precisely on the OpenID
Connect protocol.

5.1. Class I Attack: ID Spoofing

The IDS attack targets the Identity related information
(Class I) in the SSO token and belongs to Cat B. The idea
of IDS is that the attacker starts a login attempt on the SP
using his attacker IdP. The attacker IdP then generates an
SSO token for an identity managed by another honest IdP,
for example, by Google, but signs it with its own key. If this
SSO token is accepted by the SP, the attacker is logged in
and has access to accounts managed by other honest IdPs.

In OpenID Connect, the identity of an End-User is
represented by the combination of two parameters: (1) sub,
defining the identity of the authenticated End-User on the
IdP and (2) iss, which defines the issuer of the token.
Usually this is the URL of the IdP. Here the attacker can
try two different attacks. First, he can change the sub value
to the victim’s value. Second, he can change both sub and
iss to the victims’ using his attacker IdP. If applicable, the
impact of the attack is devastating since the attacker can
login on every account on the SP (Cat B).

As a countermeasure for IDS, the SP must verify that
the attacker IdP is not allowed to issue tokens managed

255



by another IdP. This can be implemented by checking the
iss value and verifying the signature with the key material
corresponding to this iss.

The concept of this attack has already been described on
OpenID [19, claimed_id, identity, email parameter],
and BrowserId [8].

5.2. Class II Attack: Wrong Recipient

The idea of the Wrong Recipient attack is that an at-
tacker acting as a malicious SP receives SSO tokens from
different users. Behind the scenes he tries to redeem these
tokens on other SPs and thus get unauthorized access on
different accounts.

This attack is feasible since an IdP is used by multiple
SPs and issues tokens for all of them. Every issued SSO
token must only be consumed by a specified SP. Therefore,
the SP must verify the Recipient information (Class II). The
Wrong Recipient attack belongs to Cat A.

In OpenID Connect the parameter specifying the recipi-
ent of the token is the aud parameter. It contains the unique
identifier of the SP (client_id). Once the SP receives an
ID Token (id_token) it must verify that the aud parameter
corresponds to its own client_id to counter the Wrong
Recipient attack.

The concept of this attack is well-known and has already
been applied to SAML [12, 18, Audience/ Recipient
element], to OpenID [19, return_to parameter], and to
OAuth [6, 32, redirect_uri parameter].

5.3. Class III Attack: Replay

Replay attacks circumvent the one-time use require-
ments and the time restrictions of an SSO token. In the most
devastating scenario, an End-User, for example, a former
employee, has access to an SP for infinite amount of time.

Replay attacks are possible if Freshness parameters
(Class III) are not checked properly and they belong to
Cat A. Such a limitation can be based on timestamps
defining a time-slot for the validity of the SSO token. A
more restrictive option of single use are nonces. In OpenID
Connect the relevant parameters are iat (issued at), exp
(expired), and nonce.

Replay attacks have been applied to various SSO pro-
tocols, for example, OpenID [33], Facebook Connect [41],
and SAML [18].

5.4. Class IV Attack: Signature Bypass

SSO protocols use cryptographic operations to protect
the integrity of the SSO token or at least parts of it.3

Signature Bypass attacks evade this integrity protection
and enable the modification of any content within the SSO
token. Generally speaking, if a Signature Bypass is possible,
all previous described Single-Phase Attacks are applicable

3. E.g., in SAML. The XML-Signature protects the Assertion element
in most cases, but not the XML root element Response.

since (1) any identity of an End-User can be inserted, (2) any
audience can be stated, and (3) all timestamps and nonces
can be adjusted.

The signature value itself, but also all relevant infor-
mation to verify the signature, belong to the Signature
information data (Class IV).4 Signature Bypasses are Cat B
attacks and target these parameters.

Basically, there are three different types of Signature By-
pass attacks. (1) Disabling signature verification by remov-
ing all signature information completely [29]. (2) Enforcing
the usage of wrong keys. This was described on SAML [18]
and applied on OpenID [19]. (3) Changing content without
invalidating the signature. A typical example for this is XML
Signature Wrapping (XSW) [29, 18], but other scenarios
have been successfully applied on Facebook Connect [41]
and OpenID [37].

An SSO token in OpenID Connect has several param-
eters belonging to Class IV. The signature value itself is
transferred in the JSON Web Token (JWT). The JWT header
contains a parameter alg. By setting its value to none, the
signature verification could be disabled [20]. According to
the OpenID Connect specification, none is not allowed if
the token is transferred via the browser of the End-User;
however multiple implementations missed this check. The
JWT header can optionally contain further parameters such
as the key id (kid), which is used to identify the key to
be used for the signature. If an attacker can point to his
own key, the wrong (untrusted) key is used and he can sign
arbitrary tokens containing arbitrary identities.

To prevent such attacks, an SP must (1) blacklist all
weak, broken, and thus insecure cryptographic algorithms,
for example, the none algorithm. (2) ensure that the correct
key material is loaded, which can be done by verifying the
signature with the key material corresponding to the iss in
the id_token, and (3) verify that all parameters used for
the authentication within the SSO token are protected by the
signature.

5.5. Q1: Does the specification address the existing
threats?

The short answer to this question is yes. Single-Phase
Attacks are well studied and our investigation revealed
that the OpenID Connect specification addresses all attacks
described in this section. Additionally, it presents examples
to clarify the verification steps that have to be implemented.

Unfortunately, our evaluation revealed multiple gaps in
the existing implementations ignoring all or many of the
required verification steps leading to broken authentication.
The main reason for ignoring security relevant checks seems
to be that functionality (features) comes before security.
Thus, developers concentrate on working implementations
and often forget to implement all needed verification steps.
Developers are also not aware of how critical one check
could be and what its impact is regarding the security of
the system if this verification step is skipped.

4. E.g., the algorithm being used, certificate information, etc.
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Figure 5: IdP Confusion Cross-Phase Attack: Logical flaw in the OpenID Connect specification.

6. Cross-Phase Attacks

A Single-Phase Attack can be conducted by only ma-
nipulating one message, at most, in one phase of the SSO
protocol. In contrast to this, Cross-Phase Attacks manip-
ulate multiple messages in different phases. This concept
introduces more complex attacks which have scarcely been
studied.

In general, Cross-Phase Attacks abuse the lack of a
binding between two or more protocol phases. This means
the attacker can skip or bypass an important verification step
leading to broken End-User authentication.

While the concept of Cross-Phase Attacks can be applied
to all SSO protocols (and already was, e.g., to OpenID
in [19]), we only concentrate on OpenID Connect in this
section because these kinds of attacks highly depend on the
protocol structure and the corresponding messages.

In this section, we first show how the Discovery phase
influences the OpenID Connect protocol flow. Based on this
knowledge we developed two attacks – IdP Confusion and
Malicious Endpoints – abusing a flaw in the current OpenID
Connect specification. Our third attack – Issuer Confusion
– makes use of an implementation flaw. As a result of these
Cross-Phase Attacks, the attacker is logged in on an SP in
the victim’s account.

Discovery phase in OpenID Connect. The attacks de-
scribed in this section depend on the Discovery phase.
Thus, we briefly introduce the relevant messages. Figure 6
shows how the information retrieved during the Discovery
phase influences the OpenID Connect phases. We do not
go into detail here, but for this paper, message 1.1.4 is
most important. This message returns different so-called
endpoints. Each endpoint is a URL called by the SP during
the different phases. For example, the Dynamic Registration
Endpoint (regEndp) defines where an SP starts the Dynamic
Registration. 75% of the evaluated libraries support this
feature.

Discovery
Service Provider Honest IdP

  Phase 1.1: Discovery
1.1.1. Discovery request: 

https://honestIdP.com/.well-known/webfinger

1.1.2. Discovery response: {href, rel}
1.1.3. OpenID Connect Configuration request sent to href

1.1.4.  Response: IdP Metadata 
{issuer, reg_endp, auth_endp, token_endp, userinfo_endp, jwks_endp}

Phase 1: 
SP Registration

Phase 2:
End-User 

Authenitcation on IdP

Phase 3: 
End-User 

Authentication 
on the SP

Figure 6: The OpenID Connect Discovery phase influences
all other phases.

6.1. Specification Flaw: IdP Confusion

IdP Confusion is a novel Cat A attack on OpenID Con-
nect which abuses a weakness in the current specification;
in this case, the connection between Phase 2 (the End-User
authentication on the IdP) and Phase 3 (the redemption
of the received code) is missing. More precisely, the SP
receives a code from the victim by the end of Phase 2, due
to the flaw in the specification, it is unable to determine
to which IdP the code belongs. Because the attacker has
modified an important step in Phase 2, the SP wrongly
sends the code (plus client_id and client_secret) to
the attacker IdP, which the attacker can use for its own
purposes.

Requirements. We assume that the SP allows for the use
of custom IdPs. Additionally, we assume that during the
registration, the SP receives the same client_id from the
attacker IdP as on the honest IdP. In other words, the SP
has the same client_id on two different IdPs, which is
allowed according to the specification.

Execution. Figure 5 shows the attack:
� In the first step the victim clicks on a malicious link or
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visits an attacker controlled website. This click automat-
ically manages to start a login attempt on the SP with
bob@attackerIdP.com.

� If the SP supports Discovery, metadata is retrieved.
� In Step 2.1 the SP redirects the End-User to the autho-

rization endpoint of the attacker IdP.
� In Step 2.2 the attacker IdP redirects the End-User to

the honest IdP. Additionally, it replaces the nonce pa-
rameter. This manipulation is necessary to successfully
impersonate the victim on the SP.

Please note that up to now all steps do not require any
interaction of the End-User and are transparent to him. Thus,
he is not able to detect the attack.
� In Step 2.3 the End-User must authenticate to the IdP.

In case the End-User has already authenticated, this step
will be skipped. This is the only step in which it is
possible for the victim to detect the attack. For instance,
it might seem suspicious for the victim to get an authen-
tication pop-up. If the user is already authenticated on
the honest IdP, this step is usually transparent for the
End-User.

� The IdP generates a valid code and returns it together
with the state parameter back to the SP.

� The SP still believes that it is communicating with the
attacker IdP due to Step 1.2. For this reason, it redeems
the received code on the attacker IdP and additionally
sends its client_id and client_secret.

� As a result, the attacker has a valid code which he can
then redeem through his browser on the SP.

The attacker now starts his authentication on the SP and
sends the stolen code to it. The SP redeems the code
on the honest IdP and logs the attacker into the victim’s
account. We describe the countermeasure for this attack in
Section 6.4.

6.2. Malicious Endpoints Attacks

The Malicious Endpoints Attack is a novel attack on
OpenID Connect which abuses a weakness in the current
specification. The connection between Phase 1 (the Discov-
ery) and Phase 3 (the redemption of the received code) is
missing. Similar to IdP Confusion, the idea is to confuse
and force the SP to send a valid code together with the
SPs client_id and client_secret to a URL controlled by
the attacker. More precisely, the SP downloads in Phase 1
maliciously craft metadata from the attacker IdP, forcing
the SP to use the honest IdP during Phase 2 for the End-
User authentication, but to redeem the received tokens on
the attacker IdP in Phase 3.

In addition, we extended Malicious Endpoints Attack to
Server Side Request Forgery (SSRF) and Denial-of-Service
(DoS) attacks.

6.2.1. Broken End-User Authentication. This Cat A at-
tack manipulates the information in the Discovery and Dy-
namic Registration Phases in such a way that the attacker
gains access to sensitive information. The attacker (1) pur-
sues the theft of the credentials between the honest IdP and

the honest SP and (2) steals a valid code authorizing the
SP to access End-User’s resources on the honest IdP.

Requirements. We assume that the End-User (victim) has an
active account on the SP and that he also has an account on
the honest IdP. In addition, the SP supports the Discovery.

Execution. In the following, we describe the attack protocol
flow we depicted in Figure 7.

Phase 1.1 - Injecting malicious endpoints. Similar to
the IdP Confusion attack, the victim is lured to login with
bob@attackerIdP.com on the SP. Consequentially, the SP
starts a discovery with the attacker IdP to initiate the actual
attack, which responds with the values shown in Listing 1.
This differs to the IdP Confusion attack, where the attacker
IdP does not manipulate this message.

1 issuer : https :// attackerIdP.com
2 regEndp : https :// honestIdP.com / register
3 authEndp : https :// login.honestIdP.com /
4 tokenEndp : https :// attackerIdP.com
5 userInfoEndp : https :// attackerIdP.com

Listing 1: Endpoints returned by the attacker IdP

Phase 1.2 – Dynamic Registration. In the next step, the
SP accesses regEndp for the Dynamic Registration. It sends
a registration request to https://honestIdP.com/register and
receives a client_id and client_secret.

Note: The SP automatically starts the Dynamic Reg-
istration, even if it is already registered on the honest
IdP. The reason for this behavior is that the SP believes
that http://attackerIdP.com is the responsible IdP since it is
not known from previous authentication procedures. Thus,
http://attackerIdP.com is a new IdP for the SP and it starts
the registration procedure.

Phase 2 – End-User Authentication and Authorization.
In the next phase, the SP redirects the End-User to Autho-
rization Endpoint (authEndp), https://login.honestIdP.com/,
where the End-User must authenticate himself and authorize
the SP. The End-User is not able to detect any abnormalities
in the protocol flow. Phase 1.1 and Phase 1.2 cannot be
observed by the End-User, and in Phase 2 the End-User will
be prompted to authenticate to the honest IdP and authorize
the honest SP (he trusts both). Thus, the End-User authorizes
the SP and the IdP generates the code which is sent to the
SP.

Note: Phase 2 follows the specified OpenID Connect
protocol flow – there are no parameter manipulations, no
redirects to malicious websites, and no observation of the
network traffic between the End-User, the honest IdP, and
the SP. Thus, the attack started at the beginning of the
protocol flow can be neither detected nor prevented by any
of the participants at this point.

Phase 3 – The Theft. Now the SP redeems the received
code from the previous phase. It sends the code, together
with the corresponding SP’s credentials received during the
Dynamic Registration (client_id/client_secret), to the
real Token Endpoint (tokenEndp).

Attack Summary. The attacker receives a valid code and
client_id/client_secret. Thus, he is authorized to ac-
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Discovery

SP
(https://honestSP.com)

  Phase 1.1: Discovery
Steps 1.1.1 – 1.1.3

1.1.4.  Response: IdP Metadata 
{issuer, reg_endp, auth_endp, token_endp, userinfo_endp, jwks_endp}

tokenEndp/
userInfoEndp/

jwksEndp

Honest IdP
(https://honestIdP.com)

regEndp authEndp

Victim

Phase 1.2: Dynamic Registration 

Phase 2: End-User Authentication on IdP

3.1. Token Request: code, client_id, client_secret

3.3. (Optional) Access Token

Attack Core:
Discovery

Attacker IdP
(https://attackerIdP.com)

Figure 7: Malicious Endpoints attack. By manipulating the Discovery, the attacker steals the code.

cess the End-User’s resources on the IdP, retrieve a valid
id_token, and he can impersonate the SP.

6.2.2. Server Side Request Forgery. A Server Side Re-
quest Forgery (SSRF) attack describes the ability of an
attacker to create requests from a vulnerable web application
to the application’s Intranet and the Internet. Usually, SSRF
is used to attack internal services placed behind a firewall
and those not accessible from the Internet.

SSRF attacks on OpenID Connect can be conducted by
configuring URLs which point to other services in a local
area network (LAN, e.g. http://192.168.0.1/shutdown) in the
Discovery information (cf. Listing 1).

6.2.3. Denial-of-Service Attacks. By applying Denial-of-
Service (DoS) attacks, the attacker allocates resources on
a SP and negatively affects its workflow. Such resources
are CPU usage, network traffic, or memory. The attack can
target one or more of these resources during the execution
of DoS attack.

DoS attacks in OpenID Connect can be easily executed
if the attacker IdP uses endpoints containing large files (e.g.,
public Linux DVD images or video files). The SP then starts
a GET request on these endpoints and downloads the file,
which takes lot of time and consumes memory.

6.3. Malicious Endpoints Attack, IdP Confusion,
and IdP Mix-Up

At a quick glance, IdP Confusion and IdP Mix-Up
look very similar, but the following differences must be
mentioned:
� The IdP confusion attacker works in the web attacker

model. The initial version of the IdP Mix-Up requires a
network attacker [10, v2], the SP, and the IdP. Conse-
quentially and after reporting both attacks, the authors
of the IdP Mix-Up attack then optimized their attack to
the web attacker model [10, v3].

� The main goal of the IdP Mix-Up is to compro-
mise the OAuth flow by revealing a valid code or

access_token. These can be used to get unauthorized
access to restricted resources.
The main goal of the IdP Confusion attack is the imper-
sonation of the victim on the SP. It requires the manip-
ulation of more parameters due to the validation of the
id_token, for example, state, nonce, and client_id.

� IdP Mix-Up is not able to get a valid access token in
code flow, but the IdP Confusion is able to do so [10,
p. 35].

6.4. Fixing the OpenID Connect Specification

After discovering the IdP Confusion and Malicious End-
points Attacks, we promptly contacted the OpenID Connect
working group in October 2014. Unfortunately, they did
not respond and even a second and third attempt failed.
In November 2015, we were then contacted by the IETF
OAuth working group because our attacks could be applied
to the OAuth protocol as well (parallel work of a different
research group [10]).

Result: Specification Change. We were invited to a special
security meeting in which we discussed different mitiga-
tion techniques and helped the working groups to create
an update for the OAuth as well as the OpenID Connect
specification [17].

In general, the reason for the authentication issues is
the missing connection across all phases, which leads to
confusion on the SP side. To mitigate the attacks, a param-
eter linking the phases was added. In Phase 2, by adding
the issuer parameter in addition to the code parameter (see
Step 2.4 in Figure 5), the SP knows to which IdP the code
must be sent in Phase 3.

Summarized, the issuer parameter must be provided in
(1) Phase 1 during the Discovery, (2) Phase 2 as a mitigation
against the reported Cross-Phase Attacks, and (3) Phase 3
within the id_token. Thus, the Cross-Phase Attack can
be detected and the leackage of valid SSO tokens can be
prevented on the SP side.
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6.5. Implementation Flaw: Issuer Confusion

Issuer Confusion is a Cat B attack and is depicted
in Figure 8. The idea of Issuer Confusion is to confuse
the SP into successfully accepting an id_token issued by
the attacker IdP while believing that it was issued by an
honest IdP. The main idea is related to the IDS attack – an
id_token issued and signed by attacker IdP in the name of
the honest IdP is successfully verified on the SP.

Still, in comparison to IDS, the Issuer Confusion abuses
a missing verification step in Phase 1 to break the entire
security even if the verification of the SSO token in Phase 3
is implemented correctly. In Section 5.1, we showed the IDS
attack abusing the skipped verification of the iss parameter.
Consequentially, the question arises of how this verification
step can be implemented correctly. In other words, how can
the SP verify that the iss within the SSO token really belongs
to the IdP that has generated the token. According to the
specification, “the Issuer Identifier for the OpenID Provider
(which is typically obtained during Discovery) MUST ex-
actly match the value of the iss (issuer) Claim.” [34]. This
means the correct verification of the SSO token in Phase 3
depends on parameters exchanged in Phase 1.

Requirements. The attack assumes an SP, allowing the
usage of custom IdPs, for example, the attacker IdP.

Execution. The attack proceeds as depicted in Figure 8:

Attacker Service Provider
(https://sp.com)

Attacker IdP
(https://attackerIdP.com)

In Phase 1 (Discovery) 
uses malicious 

metadata

1.1. bob@attackerIdP.com

1.2. Discover the IdP and get ist metadata: 
issuer:https://honestIdP.com

Phase 3: Send 
malicious ID Token

3.1. Token Request: 
code, client_id, client_secret

3.2. Token Response: 
id_token: {issuer: https://honestIdP.com; subject: victim}

Figure 8: Issuer Confusion Cross-Phase Attack.

� The attacker starts the login on the SP.
� In Step 1.2 the SP discovers the IdP – in our example

https://attackerIdP.com – and retrieves the identity of the
IdP, public keys, and important URLs. Here the attacker
IdP returns the parameter issuer: https://honestIdP.com
(instead of https://attackerIdP.com).

� Phase 2 is not depicted in Figure 8 since no manipula-
tions or any attack takes place here.

� In Phase 3, Step 3.2, the SP receives an SSO token
(called id_token in OpenID Connect) and verifies it.
The id_token once more contains the value issuer:
https://honestIdP.com, which matches the value of Step
1.2. If the validation is successful, the attacker gets
access to the victim’s account on the SP.
In summary, the attacker has to manipulate the issuer

parameter in two different protocol phases, meaning we have
a Cross-Phase Attack. This attack abuses an implementation
flaw. The SP must verify that the returned issuer param-
eter matches the IdP. To fix it, the SP must verify that
the issuer returned in Step 1.2 matches the called URL
(according to the specification).

A similar attack was applied to OpenID [19] by sending
manipulated XRDS/HTML discovery files.

6.6. Q1 - Does the Specification Address the Exist-
ing Threats?

In comparison to Single-Phase Attacks, Q1 cannot be
answered clearly for Cross-Phase Attacks. The specification
addresses the Issuer Confusion attack, but all necessary
verification steps are distributed over the whole specification
and are not documented at one central place. It is thus hard
for a developer to see the relation between all verification
steps.

Another issue is that Cross-Phase Attacks are scarcely
studied and up to now can only be found in, for example,
OpenID [19] and OAuth [10].

7. PrOfESSOS: Analyzing OpenID Connect
with Attacker IdPs

To the best of our knowledge, PrOfESSOS is the first au-
tomated EaaS security tool for practically analyzing OpenID
Connect implementations. It is the first tool capable of eval-
uating the high complex Cross-Phase Attacks instead of only
detecting, for example, simple Replay attacks (Single-Phase
Attacks). In this section we describe the main challenges
implementing PrOfESSOS. We then describe its design,
architecture, and automated workflow.

7.1. Challenges in Analyzing OpenID Connect

Analyzing OpenID Connect by using an attacker IdP
has many novel challenges which need to be addressed in
comparison to previous work.

Complexity. OpenID Connect is by far more complex than,
for example, OpenID and BrowserId. This is reasoned by
the following properties.

(1) OpenID Connect supports different protocol flows
leading to significant differences in the messages exchanged
between the entities. In OpenID Connect, there are three
different main flows: code, implicit, and hybrid. All flows
expect different parameters and messages. This increases
the necessary depth of analysis. In the implicit flow, the
id_token is validated by the End-User itself. The SP
therefore sends, for example, JavaScript code to the End-
User’s browser. In the other flows, the id_token is validated
on the SP using server code (PHP, Java, . . . ). Thus, there
are different implementations on a single SP which have to
be validated separately.

(2) OpenID Connect defines different SP types: web
applications, mobile apps, and native applications. Each
category requires different flows and messages. Moreover,
for each SP capability, different security considerations have
to be made. For example, by using OpenID Connect on a
web application, an attacker cannot see the entire communi-
cation; the communication between the web application and
the IdP is hidden. In contrast to that, the attacker has full
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access to a mobile device; the communication between an
installed app and the IdP can be easily observed and even
manipulated, for example, by using an HTTP-Proxy.5 In
OpenID and BrowserId, only web applications are supported
and evaluated with respect to the security.

(3) OpenID Connect defines a more powerful Discovery
phase which influences all other phases, especially the token
validation phase. A Discovery is also supported in OpenID
and BrowserId, but therein, it simply defines the URL of
the IdP. This reduces the potential for attacks.

Back-channel Communication. In the code and hybrid
flow, the SP and the IdP exchange multiple messages includ-
ing the SP authentication on the IdP and the id_token and
access_token. In other words, multiple security related
messages will be sent. A huge restriction for an attacker
is that it is not possible to observe or manipulate this
communication. Thus, he is not able to access the id_token
and manipulate it, which automatically limits the attack sur-
face. To bypass this restriction, we found novel attacks (IdP
Confusion, Malicious Endpoints) leaking the SP credentials
and a valid token to an attacker. In comparison to other SSO
protocols, there is no such back-channel communication,
and therefore, no such analysis exists.

Using Attacker IdPs. Some SPs provide authentication
possibilities only with a limited range of IdPs, for exam-
ple Google, Facebook, Twitter, or PayPal. Thus, a security
evaluation using an attacker IdP is possible if the adminis-
trator manually configures the attacker IdP. The application
of an attacker IdP can be additionally enforced in some
scenarios by the HTTPoxy [7] vulnerability or by setting
specific HTTP GET parameters in a request (e.g., changing
idp=google.com parameter). In OpenID and BrowserId
this problem is less complex since the Discovery and Dy-
namic Registration are part of the core specification. Thus,
by implementing these protocols, the SP automatically sup-
ports the usage of attacker IdPs.

7.2. Implementation Challenges

In addition to general protocol related challenges, we
had to cover different implementation challenges. The first
challenge is to cover all flows and all SPs like web, mo-
bile, and native applications. To be platform independent,
we decided to implement PrOfESSOS as a web service.
Thus, no installation is required and it easily allows for
continues integration. The second challenge is to establish a
flexible meta language for configuring the security tests. The
flexibility is needed since each attack differs from others by
the following properties.

Success Condition. Attacks can have different goals. For
example, the win condition in a Replay attack is to be
successfully logged in. For IDS, this is not enough; it is
only successful if the attacker is logged in with a specific,
specific identity, meaning that of the victim’s.

5. Certificate pinning can be used for protection, but it
can also be circumvented: https://eaton-works.com/2016/07/31/
reverse-engineering-and-removing-pokemon-gos-certificate-pinning/

Flows. Some attacks are only applicable to specific OpenID
Connect flows. This problem does not exist in OpenID nor
in BrowserId where only one flow exists.

Login. PrOfESSOS must be able to login on the SP. There-
fore, it has to find the input form, which is complicated to
detect [41]. Because of this, we first try to do so automati-
cally. If this fails, the user can provide a Selenium script.6

7.3. Architecture

PrOfESSOS
Testing SPs

Pentester
Target SP

(https://honestSP.com)

Step 1:
Configuration

Step 2:
Security Tests

Step 3:
Security Report

Security Test Runner
(https://sso-security.de)

Attacker IdP
(https://attack-sso.de)

Honest IdP
(https://honest-sso.de)

Figure 9: Test scenario when using PrOfESSOS.

A user of PrOfESSOS – the penetration tester – can
access it via its web interface.7 The penetration tester enters
the URL of the target SP and selects the attacks to be tested.
In Figure 9 we depict the architecture and components of
PrOfESSOS.

Security Test Runner (STR). PrOfESSOS is an EaaS.
As such, it is available for multiple penetration testers
simultaneously. The Security Test Runner (STR) component
is basically the executing processor of PrOfESSOS so that
multiple, parallel, running tests do not interfere with each
other. The STR navigates the attacker IdP during testing,
gets the HTTP and HTML results back, and evaluates the
attack’s success condition.

Attacker IdP. The attacker IdP is a highly configurable
IdP capable of act honestly and maliciously. The IdP gets
information from the STR about the target SP, for example,
important URLs needed to start the authentication flow (e.g.,
login page URL). It also needs information to verify whether
the login attempt was successful.

Honest IdP. Using only one IdP for testing implementa-
tions is quite limited. During some attacks, the attacker
IdP confuses the SP by making him believe he is com-
municating with the honest IdP (mainly for Cross-Phase
Attacks). Unfortunately, the attacker IdP cannot observe this
communication. Therefore, it is impossible to analyze the
exact behavior of the SP during the attacks and evaluate
the results. To solve this limitation, PrOfESSOS introduces
a second honest IdP which does not perform any attacks.
Instead, it is only used to simulate the victim’s IdP and to
observe the communication between the SP and any honest
IdP.

6. http://www.seleniumhq.org/

7. Demo: https://openid.sso-security.de.
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Attacks Targeted Flows Discovery Modification by the Attacker IdP Success Condition(s)
Required Phase Message

IDS (v1) code, hybrid, implicit – Phase 3 id_token.sub = honestIdP.sub (1) Login Successful?
(2) User = honestIdP.sub?

IDS (v2) code, hybrid, implicit – Phase 3 id_token.iss = honestIdP.iss
id_token.sub = honestIdP.sub

(1) Login Successful?
(2) User = honestIdP.sub?

Wrong
Recipient

code, hybrid, implicit – Phase 3 id_token.aud = honestIdP.aud (1) Login Successful?

Replay (v1) code, hybrid, implicit – Phase 3 id_token.nbf = 01.01.2070 (1) Login Successful?
Replay (v2) code, hybrid, implicit – Phase 3 id_token.exp = 01.01.1970 (1) Login Successful?
Replay (v3) code, hybrid, implicit – Phase 3 id_token.nonce = old.nonce (1) Login Successful?

Signature
Bypass (v1)

code, hybrid, implicit – Phase 3 id_token.alg = "none" (1) Login Successful?

Signature
Bypass (v2)

code, hybrid, implicit – Phase 3 id_token.signature = "Invalid
Signature"

(1) Login Successful?

Issuer
Confusion

code, hybrid, implicit yes Phase 1

Phase 3

discovery.issuer =
honestIdP.iss
id_token.sub = honestIdP.sub
id_token.iss = honestIdP.iss

(1) Login Successful?
(2) User = honestIdP.sub?

Spec. Flaw:
IdP
Confusion

code, hybrid – Phase 2 authRequest.nonce = nonce’
authRequest.redirectURL =
honestIdP.authEndp

(1) Attacker IdP receives
code, client_id,
client_secret?

Spec. Flaw:
Malicious
Endpoints

code, hybrid yes Phase 1 discovery.regEndp =
honestIdP.regEndp
discovery.authEndp =
honestIdP.authEndp

(1) Attacker IdP receives
code, client_id,
client_secret?

TABLE 1: Configuration summary of Single-Phase and Cross-Phase Attacks supported by PrOfESSOS.

7.4. Automated Analysis Workflow

PrOfESSOS evaluates the target SP in three stages:
setup, configuration evaluation, and attacks.

Stage 1: Setup. The penetration tester starts the SSO eval-
uation by visiting the homepage of PrOfESSOS. In the
background, the STR creates one attacker IdP and another
honest IdP instance on the fly (cf. Figure 9).

Stage 2: Configuration Evaluation. The penetration tester
enters the URL of the SP that he wants to test. PrOfESSOS
then fetches the HTML document at the URL and tries
to detect the login form. If PrOfESSOS can automatically
detect the form, it enters the URL of the attacker IdP to start
the authentication. Otherwise, the penetration tester must
provide additional information so PrOfESSOS is able to start
a login attempt automatically.

Once PrOfESSOS is able to successfully login to the
SP, the next challenge has to be solved: PrOfESSOS must
detect the name of the user currently logged in. In some
cases, the username is simply printed on the website. On
more complex SPs, the penetration tester can provide a link
to a URL where this information can be found. PrOfESSOS
needs this kind of information for attacks related to the
Identity information (Class I) of the SSO token. If, for
example, an attack sends two different usernames in one
token, PrOfESSOS must decide which value is used.

Finally, PrOfESSOS starts a new login attempt, but this
time the attacker IdP creates an invalid token (containing
a wrong signature). By this means, it tests whether a false

login state can be distinguished from a correct login. If this
test fails, PrOfESSOS aborts the SP evaluation.

Stage 3: Attacks. In this stage, the penetration tester selects
different attacks that will be executed against the target SP.
In Table 1 we summarize the configuration of all attacks
described in this paper.

PrOfESSOS uses two IdPs – an honest IdP and an
attacker IdP. The honest IdP strictly follows the OpenID
Connect specification. It is used for monitoring the HTTP
traffic and does not apply any protocol or message ma-
nipulation. On the other side, the attacker IdP can differ
from the OpenID Connect specification. Once an attack is
started, the attacker IdP takes the attack configuration and
manipulates the specified messages. All other messages are
untouched. The attack configuration thus only specifies the
manipulations deviating from the specified protocol flow.
The configuration contains additional information about the
applicable protocol flows, required OpenID Connect features
(e.g., whether the attack requires Discovery), and about
success conditions. For example, an IDS attack (see Table 1,
row 1) can be executed on all OpenID Connect flows
(code, hybrid and implicit). During the attack execution, the
attacker IdP acts according to the OpenID Connect specifica-
tion until Phase 3. Therein, the attacker IdP must manipulate
the id_token by setting the sub value to the victim’s
identity. More precisely, the attacker IdP first creates a valid
id_token, then it replaces the sub value, and finally signs
the id_token. Once the id_token is sent, PrOfESSOS
observes the reaction of the SP and the corresponding
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results. In case of IDS, PrOfESSOS validates the success
conditions, meaning (1) whether the login was successful
and (2) if the name of the logged-in user corresponds to
the victim’s identity (belonging to the honest IdP). Table 1
also depicts the more complex Cross-Phase Attacks, such
as Issuer Confusion, by specifying manipulations in the
Discovery and in the id_token. Further attacks can be
added by creating a new configuration, which potentially
allows for the manipulation of every message or for the
addition of new ones according to the attack’s requirements.8

7.5. Limitations

PrOfESSOS currently supports only OpenID Connect.
Some tests can be started on OAuth SPs due to the famil-
iarities of both protocols. Protocols such as OpenID and
SAML are not yet implemented. We intentionally decided
to implement the manual configuration of PrOfESSOS (see
Stage 1). The reason for our decision are the existing
challenges documented by Zhou et al. [41], which include
automatically finding the login button, captchas, invisible
identity, atypical HTML elements, etc. Such problems make
automated configuration and analysis very hard, error-prone,
and in the case of complex attacks like Cross-Phase Attacks,
they can lead to false results. The configuration overhead of
filling out six text fields is considered feasible for a penetra-
tion tester and developer. PrOfESSOS was not designed for
large scale studies, crawling Alexa Top websites and finding
security issues. The main goal was to improve the security
of SSO by continuously supporting developers during the
implementation of new libraries.

8. Evaluation

We selected all 12 open source libraries officially ref-
erenced on the OpenID Connect website [25].9 In addition,
11 commercial products like Amazon and MS Azure and
18 tools supporting JSON-based operations (e.g., encryption
and signing) are referenced although we did not consider
them in our evaluation.

Setup. We documented the supported features of the SPs.
Such features are (1) flows (code, implicit, hybrid), (2) cryp-
tographic algorithms, and (3) additional features such as
Discovery and Dynamic Registration. 4 of 12 libraries do
not support a full SP functionality. Such libraries are used
as a foundation to implement an SP. Features like an au-
thenticated session after a successful login or an End-User
profile page are not implemented. Without adding this part,
whether is not possible to verify if an attack is successful
or not. Therefore, we did not consider these libraries.

We concentrated on the remaining 8. These libraries
support the usage of attacker IdP, which allows us to use
PrOfESSOS for the security evaluation. Only 2 out of 8

8. https://github.com/RUB-NDS/PrOfESSOS/blob/master/src/main/
resources/testplan/rp_test.xml

9. Note that the referenced list is growing rapidly.

libraries did not support Discovery and Dynamic Registra-
tion. Because of that, we manually configured them to use
PrOfESSOS. For the remaining 6, no pre-configuration and
no manual steps were required.

Amazon. PrOfESSOS can also be applied to live web-
sites. We chose Amazon Web Services for our proof-of-
concept since Amazon supports the usage of attacker IdP.
PrOfESSOS can be started by simply configuring its URL
in the configuration area. Thus, we were able to evaluate
all known attacks. Amazon is not susceptible to any of
them. Interestingly, Amazon already implemented a coun-
termeasure against the IdP Confusion attack similar to the
countermeasure proposed by IETF [17].

Q2: How secure are reference implementations? (Part
2/2). The results of our security evaluation are presented in
Table 2. 75% of the libraries were susceptible to at least
one critical implementation issue,10 for instance, one of the
Single-Phase Attacks or the Issuer Confusion attack.

Even though Single-Phase Attacks are well-known, se-
curity relevant parameters were ignored and not verified at
all. We reported all issues to the developers of the libraries
and supported them while fixing the vulnerabilities. Even
though many of the vulnerabilities exist due to missed
checks, reporting and fixing the issues involved huge outlays
since we had to precisely explain the security issues and the
impact of the attacks. This showed us that many developers
are not aware of the risks of skipping one security check,
especially in the complex Cross-Phase Attacks.

In the case of attacks abusing weaknesses in the spec-
ification like IdP confusion, all implementations are vul-
nerable. This is an expected result since even a correct
implementation which strictly follows the specification rules
is still susceptible.

Automated Analysis with PrOfESSOS. Simultaneous to
our initial manual analysis, we developed PrOfESSOS, con-
firmed the results of our evaluation and to verify whether
the reported issues were fixed by the developers. Once
configured, the re-evaluation with PrOfESSOS requires only
a few minutes.

9. Related Work

We separated existing research into two categories.

SSO protocol security. SAML: Groß [12], Groß and Pfitz-
mann [13], and Armando et al. [1] analyzed a formal model
for the SAML Browser/Artifact profile and identified several
generic flaws allowing connection hijacking/replay, Man-
in-the-Middle (MitM), and HTTP referrer attacks. In 2012
Somorovsky et al. [29] investigated the XML Signature
validation of several SAML frameworks. In 2014 Mainka
et al. [18] evaluated the SAML interfaces of cloud provider
and successfully applied different Single-Phase Attacks, for
example, Replay attacks, Token Recipient Confusion (TRC),

10. Beyond that, all the libraries were vulnerable to the specification
issues.
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SP
Libraries

Custom
IdP

Dynamic
Trust

Single-Phase Attacks Cross-Phase Attacks

IDS
Wrong

Recipient
Replay

Signa-
ture

Bypass

Issuer
Conf.

Specification
Flaws

Attack Category Cat B Cat A Cat A Cat B Cat B Cat A
mod_auth_openidc Yes Yes � � � Vuln. � Vuln.
MITREid Connect Yes Yes � � � � � Vuln.
oidc-client Yes Yes Vuln. Vuln. Vuln. � Vuln. Vuln.
phpOIDC Yes Yes Vuln. Vuln. Vuln. Vuln. Vuln. Vuln.
DrupalOpenIDConnectd Yes No Vuln. Vuln. Vuln. Vuln. Vuln. Vuln.
pyoidc Yes Yes Vuln. Vuln. Vuln. Vuln. � Vuln.
Ruby OpenIDConnect Yes Yes � � � � � Vuln.
Apache Oltu Yes No � � Vuln. Vuln. � Vuln.
Total Successful Attacks 8/8 6/8 4/8 4/8 5/8 5/8 3/8 8/8

TABLE 2: Security analysis results of officially referenced SPs libraries. Only 2 of 8 (25%) libraries implemented all
required verification steps properly. Legend. Secure/Attack fails: �; Insecure/Attack successful: Vuln..

and XSW. None of the previous work considered an evalu-
ation via an attacker IdP.

BrowserId: In 2014 Fett et al. [8] built a formal
model of the BrowserId protocol. Based on the analysis, the
authors defined possible points of Single-Phase Attack and,
using manual testing, found a IDS vulnerability. Cross-Phase
Attacks were not considered. Since Mozilla will end the
BrowserId support on 30th November 2016, further security
evaluation is not likely.

OpenID: In 2008, Newman and Lingamneni [22] cre-
ated a model checker for OpenID and identified a session
swapping vulnerability, which forces the victim to log in
into attacker’s account on an SP. In 2012 Sun et al. [33]
analyzed OpenID Connect in a formal analysis and identified
several existing threats such as CSRF, Man-in-the-middle
attacks, and the SSL support of OpenID implementations.
Wang et al. [37] demonstrated the problems related to token
verification with different attacks targeting implementation
issues. In 2016 a comprehensive evaluation regarding the
OpenID security was published by Mainka et al. [19]. Here
the authors considered an attacker IdP for security evaluation
of SSO for the first time.

OAuth: OAuth has been analyzed in different formal
models [4, 28]. Additional threats are also considered in the
OAuth Threat Model and Security Considerations [26]. In
2016, Fett et al. [11] formally analyzed OAuth independent
of our work and discovered generic flaws that can be ex-
ploited by a network attacker. The IdP Mix-Up attack on
OAuth is similar to our IdP Confusion attack on OpenID
Connect, but our attack requires only the web attacker model
instead of an attacker controlling the network. In 2012 Sun
and Beznosov [32] provided a large-scale study regarding
the security of OAuth implementations and found serious
security flaws in many of them. The evaluation concentrated
on classical web attacks like Cross-Site Scripting (XSS),
CSRF, and TLS misconfiguration. Further security flaws in
OAuth-based applications were discovered [14, 23, 27, 41]
whereby the authors concentrated on individual attacks.

In 2013 Wang et al. introduced a systematic process for
identifying critical assumptions in SDKs, which led to the
identification of exploits in constructed apps that resulted
in changes in the OAuth specification [38]. Chen et al.
[6] revealed serious vulnerabilities in OAuth applications
on mobile devices which were caused by the developer’s
misinterpretation of the OAuth protocol.

OpenID Connect: In 2015 Wanpeng Li [39] analyzed
OpenID Connect by evaluating the security of 103 SPs
using Google as an IdP and found several vulnerabilities
like Replay attacks, Man-in-the-middle, session swapping,
and XSS. Attacks like IDS and Cross-Phase Attacks were
not considered. We summarized our knowledge of all exist-
ing attacks on OpenID Connect in a technical report [21].
The document contains the attacks described in this paper
and examples contributing to a better understanding of the
attacks.

Automated Penetration Testing Tools. In 2013 Bai et al.
[3] introduced AuthScan, a penetration testing tool that
automatically extracts the authentication protocol based on
HTTP traces and JavaScript code. The authors found se-
curity flaws in several SSO systems like MitM attacks,
Replay attacks, and Guessable tokens. More complex at-
tacks like IDS or Cross-Phase Attacks were not considered.
Xing et al. [40] published InteGuard - a tool detecting the
invariance in the communication between the browser and
the SP. Another tool similar to InteGuard is BLOCK [16].
Both tools can detect Single-Phase Attacks. However, Cross-
Phase Attacks requiring the usage of attacker IdP were not
covered by either tool. Yuchen Zhou [41] published a fully
automated tool named SSOScan for analyzing the secu-
rity of OAuth implementations and described five attacks
which can be automatically tested by the tool. We used
this work as a basis of PrOfESSOS – a website capable
to evaluate different implementations. However, SSOScan is
limited to the analysis of Facebook SSO and cannot consider
attacks like IDS and Cross-Phase Attacks. In 2016 Mainka
et al. [19] published OpenID Attacker - the fully automated
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tool to analyze OpenID by using an attacker IdP. OpenID
Attacker is limited to OpenID and is not available as a
service. Thus, it has to be downloaded and then configured
for each test. In 2016 Sudhodanan et al. [31] introduced
an automated tool for black box testing Multi-Party Web
applications, including Cashier-as-a-Service, and discovered
multiple vulnerabilities. They extended the OWASP ZAP
tool and implemented seven attack patterns. However, the
implementation is not publicly available, and the authors of
the paper excluded the usage of attacker IdP.

10. Conclusion
We showed that although the OpenID Connect specifi-

cation addresses (most) attacks or at least provides coun-
termeasures without stating attacks (Q1), implementations
often do not follow its guidelines for implementing it se-
curely (Q2). All investigated OpenID Connect libraries have
critical implementation flaws resulting in broken End-User
authentication. We have thus to assume that implementation
flaws will always exist since developers are not always secu-
rity experts nor do they follow the specification instructions
perfectly. To tighten the gap between a specification and
an implementation, we propose PrOfESSOS, an EaaS that
automatically performs and evaluates attacks (Q3) which
we divide into Single-Phase and Cross-Phase Attacks. Since
PrOfESSOS is open source and available on Github, it can
serve as the basis for many other research projects besides
SSO exclusively; it can also serve other multi-party web
applications, for example, Cashier-as-a-Service. In future
work, we plan to extend PrOfESSOS to validate IdP imple-
mentations of OpenID Connect for completeness as well.
Based on our experiences with SSO security regarding all
major protocols (SAML, OpenID, OpenID Connect, OAuth,
BrowserId), we are absolutely convinced that an approach
like PrOfESSOS is the best solution for reaching the re-
quired security level that a critical component like an SSO
library needs. To reach this goal, we do not plan to start
a large scale study which will obviously reveal that imple-
mentation issues exist, but instead, we are collaborating with
the OAuth and OpenID Connect working group to include
PrOfESSOS in their certification process. If big companies
such as Google or Microsoft follow this, the overall security
of their SPs will be significantly improved.
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