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Abstract—Android’s growing popularity seems to be hindered
only by the amount of malware surfacing for this open
platform. Machine learning algorithms have been successfully
used for detecting the rapidly growing number of malware
families appearing on a daily basis. Existing solutions along
these lines, however, have a common limitation: they are all
based on classical statistical inference and thus ignore the
concept of uncertainty invariably involved in any prediction
task. In this paper, we show that ignoring this uncertainty leads
to incorrect classification of both benign and malicious apps.
To reduce these errors, we utilize Bayesian machine learning
– an alternative paradigm based on Bayesian statistical
inference – which preserves the concept of uncertainty in all
steps of calculation. We move from a black-box to a white-box
approach to identify the effects different features (such as
sensitive resource usage, declared activities, services and intent
filters etc.) have on the classification status of an app. We
show that incorporating uncertainty in the learning pipeline
helps to reduce incorrect decisions, and significantly improves
the accuracy of classification. We achieve a false positive rate
of 0.2% compared to the previous best of 1%. We present
sufficient details to allow the reader to reproduce our results
through openly available probabilistic programming tools and
to extend our techniques well beyond the boundaries of this
paper.

Keywords: Malware analysis, Uncertainty, Bayesian Ma-
chine Learning

1. Introduction

Android is an open source project not only in terms of
the source code but also in terms of the whole ecosystem.
Creating a developer account is the only prerequisite in
the app development and deployment cycle for making an
app publicly available. This open nature of Android has
facilitated a rapid pace of innovation, but it has also led
to creation and widespread deployment of malware [1], [2].
According to the 2015 Internet Security Threat Report from
Symantec, which analyzed 6.3 million apps, 1 million of
these apps were classified as malware, belonging to a total
of 277 families [1]. Fighting such a wide range of malware
is an uphill battle for security researchers.

Recently, it has been realized that machine learning can
help restore the balance of power by enabling automated
classification of apps into benign ones and malicious ones
based on different feature types [3], [4]. It has been shown
empirically that it is possible to achieve a high detection
rate using these features [5]. Previously, a detection rate of
84% has been reported based on the requested permissions
alone [6], whereas much higher rates have been achieved by
incorporating other features [3].

However, even though these machine learning algorithms
work well in general, their black box nature often disguises
the underlying reasons of how their success is achieved. The
general pipeline of this black box approach is that a model is
created for the problem at hand – classification of an app as
being benign or malicious – and the learning algorithm fits
the model’s parameters to get the best results on the dataset.
How the different features affect the outcome has not yet
been studied in detail.

A second facet of this issue is that all the machine
learning algorithms that have been applied on Android
malware datasets follow classical statistical techniques,
which discard all uncertainty information associated with
the analysis. The result of the prediction is always ‘benign’
or ‘malicious’ with no level of uncertainty associated with
it. We argue that uncertainty is an important aspect of any
prediction [7] that should be reported and can help improve
analysis.

An alternative to this classical statistical inference ap-
proach is the Bayesian statistical inference. This school of
thought calls for keeping track of uncertainties in all steps of
the prediction pipeline and enables us to utilize it to reason
with beliefs about events. We begin with some prior belief [8]
about a fact – in our case, the target app being benign or
malicious. This “belief” can be one of complete uncertainty,
assigning equal probability to the app belonging to either of
the two classes. We then look at the facts (provided to us in
the form of the dataset of malicious apps) and update our
beliefs, thus leading to posterior probability about the fact.
The computational costs and cognitive load involved in going
from the prior to the posterior have been the primary reason
for a low adoption rate of Bayesian inference [9]. However,
in the recent past, massive advances have been made in the
field of probabilistic programming, making these analyses
not only feasible but quite efficient [10].
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Our Contributions. In this paper, we present a Bayesian
inference-based analysis pipeline – dubbed LUNA (Leverag-
ing UNcertainty in Android malware analysis) – for analyzing
Android malware datasets through the use of probabilistic
programming concepts and tools. We describe an uncertainty-
preserving inference model for applying machine learning
on a large-scale Android malware dataset and then analyze
the results as well as the learned parameters of the model.
We outline the tools used and the necessary background to
enable the reader to get up to speed with Bayesian inference.
Further, we incorporate the uncertainty preserved by Bayesian
inference to improve upon the state-of-the-art classification
models for Android. In a nutshell, our contributions in this
paper can be summarized as follows:

1) We develop a Bayesian machine learning model of
Android malware classification that incorporates un-
certainty in analysis and prediction; our analysis of
learned parameters includes interesting and counter-
intuitive findings about critical resource usage.

2) We show through empirical results that ignoring
uncertainty leads to false positives in the analysis.

3) We improve upon the existing detection accuracy
reported by past works and identify some real-
world malicious applications which would have been
identified incorrectly as false positives if not for the
application of Bayesian inference.

Paper structure. Below, we first provide some requisite
background including Bayesian inference and malware ansl-
ysis on Android in Section 2 Our Bayesian model for
Android malware classification is presented in Section 3.
Incorporation of uncertainty to improve prediction in base
classification algorithms is provided in Section 4. Details
of our experiments are provided in Section 5 along with a
descriptive analysis of the dataset in Section 6. Section 7
reports the improvements we have made over state-of-the-art
in malware analysis on Android and Section 8 concludes the
paper.

2. Background

2.1. Android Malware Analysis

Android’s software stack was designed as a layered
architecture. The lowest layer is that of the Linux kernel,
and all subsequent layers increase the level of abstraction
while also enforcing security policies. The highest layer in
the stack is that of applications, including those developed
by the manufacturer and carrier as well as by third parties.
Applications interact with the application framework layer
through intents or API calls, which are protected by pre-
defined permissions. All sensitive resources such as network
access, contacts and the ability to send and receive text
messages are protected through different permissions [11].

If an application might need to use a resource at any point
during its lifetime, the developer of the app must request
the permission associated with that resource at compile time.

When a user installs the application, she is presented with a
list of these permissions and must agree to grant all these
permissions in order to be able to install the application. The
most recent version of Android (6.0 Marshmallow) allows
users to restrict some of these permissions after installation
of the app. Regardless, all applications must still declare, at
compile time, all the permissions they might need during
run-time.

These permissions are quite fine-grained, and as such give
insights into the workings of the requesting application. One
of the first studies of this phenomenon was Kirin [12], which
defined rules to match undesired combinations of requested
permissions and warn users about them. For instance, if
an app requested contacts information and the internet
permission, the installer would raise a red flag since the
app would have the ability to steal the user’s contacts data.
Another view into the world of requested permissions was
provided by Barrera et al. [13]. They used Self-Organizing
Maps [14] to gain insights into permissions requested by
apps belonging to different categories in the Play Store.

Deeper dynamic analyses beyond the requested permis-
sions have also been carried out by several studies including
TaintDroid [15], which used taint tracking to discover pos-
sible information leakage. Studies along these lines were
carried out by DroidScope [16] and FlowDroid [17] among
several others [18], [19], [20]. However, these frameworks
are difficult to implement and analyze. Moreover, they do
not scale well to large-scale datasets and are infeasible to
deploy on mobile devices [3].

Machine learning techniques seem to be a more viable
solution in this scenario. Several attempts have been made to
classify Android apps by training machine learning models
on available datasets of malware. One of the first attempts to
make such a dataset available was by the Android Malware
Genome Project [21]. The researchers in this project spent
around a year and a half collecting samples which have since
been used in several studies. For instance, Peng et al. [4]
introduced risk scores based on several variations of naive
Bayes and achieved an area under the curve of 95.3% using
requested permissions from this dataset. BayesDroid employs
a slightly different approach by using naive Bayes to classify
information flows of non-malicious apps as legitimate or
illegitimate [22]. The word ‘naive’ in the model’s name
comes from the assumption of conditional independence
among features – a simplification that is seldom true in real-
world problems [23]. Similarly, Garcia et al. [5] reported an
obfuscation-resilient technique for accurate classification of
Android malware. They too base their work on both static
analysis along with applications’ meta data.

A recent and highly successful variation of these efforts
is Drebin [3]. It analyzed different features of Android
applications including their requested permissions, accessed
network URLs, static analysis reports and several other
metrics to fit a Support Vector Machine (SVM) classifier.
This achieved a detection rate of 94% with an error rate of
only 1%. Dash et al. [24] use fine-grained dynamic analysis
and virtual machine introspection for placing malware into
specific families using SVMs. Drebin and the work by Peng
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et al. [4] are closest to the concepts presented in this paper.
However, both of these, and indeed all the other works
using machine learning for classification of Android apps to
date, have ignored the uncertainty invariably present in the
learned model parameters. We, on the other hand utilize the
unique strengths of Bayesian inference by quantifying and
leveraging uncertainty in our model. The next section gives
a brief review of Bayesian inference and the part played by
uncertainty in this framework.

2.2. Bayesian Inference

The primary difference between Bayesian inference and
classical statistical inference is that Bayesian inference
preserves uncertainty in calculation. From another perspec-
tive, classical models of statistics have the interpretation
that probability is the long-term frequency of events, e.g.
frequency of cars hitting pedestrians. However, such a view
becomes difficult to maintain in cases where the events
do not occur more than once. For instance, consider the
probability of a team winning the 2018 Soccer World Cup.
This event will only occur once, and hence there is no
frequency associated with it. The so-called ‘frequentist school
of thought’ [23] works around this limitation by defining
probability as the frequency that this event will occur from
among all possible realities.

Bayesian interpretation of probability, on the other hand,
is much more intuitive. In this viewpoint, probability is a
measure of belief. In other words, it is the level of confidence
in the occurrence of an event. A probability of 1 means that
an individual is certain about that event occurring; one of 0.5
means that there is a lot of uncertainty involved in the belief.
The inclusion of an individual in this interpretation means
that the individual’s prior knowledge about the world also
plays a part in the probability – this knowledge is known
as the prior. After an individual sees more data, she can
update her belief to another probability which is known
as the posterior [23]. Hence, from a Bayesian perspective,
every event has an uncertainty associated with it and this
uncertainty is carried forward using the rules of probability
through all steps of the calculation. We now define this
process using formal semantics.

2.2.1. Probability Refresher. We provide a very brief re-
view of some of the concepts of probability below in order
to bring the reader up to speed with the terminology. For
details, we refer the reader to [23]. A joint distribution
pX,Y (x, y) gives the probability of random variables X and
Y taking on the values x and y respectively. The concept
of joint probability is different from that of conditional
probability, which describes the probability of x happening
given that y is already known to have happened. It is defined

as: pX|Y (x|y) = pX,Y (x,y)
pY (y) . Re-arranging and expanding this

equation leads to Bayes’ rule:

pY |X(y|x) = pX|Y (x|y)pY (y)∑
y pX,Y (x, y)
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Figure 1: Posterior Distributions from Priors

In order to compute the probabilities of a continuous
random variable X , we need the probability density function,
fX(x), that must satisfy the following property: fX(x) ≥
0,

∫∞
−∞ fX(x)dx = 1.

Note that it is not possible to assign a specific value to
the probability pX(x = a) where x, a ∈ R since the integral
for a specific point is undefined. This will be of importance
in our inference later on, as we will not be able to get a
point estimate for the parameters we are interested in.

In order to describe real-world data and their correspond-
ing classes, we denote the observed values of real-world
inputs as D and assume that they are generated by some
random process with parameters θ. In our model, the real-
world data is represented by discrete variables, whereas θ
values are continuous. From a variation of Bayes’ rule with
input variables as continuous and output variable as discrete,
we have:

fΘ|D(θ|d) = pD|Θ(d|θ)fΘ(θ)∫
θ
pD|Θ(d|θ)fΘ(θ)dθ

The definition of a posterior distribution for θ is a unique
characteristic of Bayesian inference. In classical machine
learning, the model parameter θ is an unknown constant.
It has a single true value, – computed using the maximum
likelihood estimate (MLE) – which is a point estimate without
a notion of uncertainty. In Bayesian machine learning, θ is
a random variable and thus has an uncertainty associated
with it. If we have data for specific values of the input, our
uncertainty will decrease. In areas where there is insufficient
data, we will be uncertain about the values of θ.

It is an evidence of the strength of Bayesian inference
that simply by understanding the above equation and its
implications, one can perform all sorts of complex analyses
on different types of processes. At each iteration, more data
is seen and posterior beliefs about the model’s parameter
can be formed. This then forms the new prior and can be
used as a basis of future experiments. In order to get a
sense of the result that can be expected from the above,
consider the scenario in Figure 1. In the figure, we make no
assumption about the theta prior to beginning our experiment.
We therefore set the prior to a uniform distribution (θ ∼
Uniform(k = 0.1)). After having seen some data points, our
belief about θ changes to that of a normal distribution with
mean −2 and standard deviation of 1.5, i.e. θ ∼ N (μ =
−2, σ2 = 2.25). Notice that we are carrying the uncertainty
within the posterior distribution. This posterior then forms
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our new prior. From here on, we can assume that θ is
normally distributed and gather further evidence about it.
Looking at new data, we update our posterior and conclude
that distribution of θ is indeed centered around −2. The new
data only reduced our uncertainty, which is depicted by the
thinness of the peak. The final value of θ is now θ ∼ N (μ =
−2, σ2 = 0.56). It is this incremental process through which
we can not only preserve uncertainty information but also
increase our confidence through repeated experiments with
minimal overhead. This is in sharp contrast to the usual
‘frequentist’ models, where each experiment must incorporate
all information anew [8].

2.2.2. Posterior Distributions. The complication in use of
Bayesian machine learning comes from the integral that
has to be computed in order to arrive at a solution for the
marginal. If θ is a high-dimensional variable, it quickly
becomes intractable to compute the integral analytically or
numerically [23]. However, owing to the recent advances
in computation and in techniques of estimating marginals,
using Bayesian inference has become very feasible [25].
Below, we describe one of the most popular and powerful
methods of computing posteriors, Markov Chain Monte Carlo
(MCMC) [26], which has a strong foothold in terms of
available tools and precise algorithms.

2.2.3. Markov Chain Monte Carlo (MCMC) Methods.
Monte Carlo methods of simulation are fairly well-known.
They are simply the process of drawing samples from a
distribution. Given a large number of samples, it is possible
to generate a practically usable picture of the distribution.
However, as mentioned above, there are cases where such
sampling isn’t feasible (especially in random variables of
high dimensions). One way to simulate such sampling is to
use Markov chains [26].

A Markov chain is a type of process in which the outcome
of a given experiment can affect that of the next. The most
important property of a Markov chain is that (under certain
conditions) it is memory-less, i.e. the probability of the next
state depends only on the current state and not on how
we arrived at that state [26]. This is given by the Markov
property:

pXn+1
(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= pXn+1
(Xn+1 = j|Xn = i)

In other words, the computation does not involve the path to
a state, and the starting point does not matter. This greatly
improves the performance of computation. This property is
used by MCMC methods in cases where it is not possible to
draw random samples directly. In general, the way MCMC
methods work is to start at a random location and explore the
space of the random variable’s distribution. It moves from
the starting point in a random direction. It then computes
whether this new point satisfies some conditions, which are
specified through the observed data. If the new point matches
the observations, it is selected as a sample; otherwise it is
discarded. This way, the MCMC algorithm traverses the
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Figure 2: Graphical Model for Android Permission Analysis

terrain of the probability density function of the variable
being sampled and allows generation of a large number of
representative samples without attempting to sample directly
from the distribution.

Below, we describe how we have used these concepts
for applying Bayesian inference to model and analyze the
Android malware dataset.

3. Bayesian Machine Learning for Android
Permissions

In order to compute and reason with uncertainties associ-
ated with classification of Android apps, we begin by defining
a simple logistic regression model. This logistic regression
model captures the relationship between the features of an
application and the label of the application – benign or
malicious. In order to keep the focus on the model itself,
we begin by formally defining the model first and later turn
our attention to how we gathered the real-world data to train
the model.

In generalized linear model (GLM) [26] formalism, the
logistic regression relationship is defined as:

hθ = θX + ε

Y = δ(hθ)

where Y and X are data inputs and class labels respectively,
θ terms are called the weights or parameters of the model, ε is
the measurement noise – assumed to be normally distributed
– and δ is the activation function. For activation, we use the
invlogit function given by: δ(z) = ez(1 + ez)−1

The Bayesian reformulation of this model is in terms of
random variables and their interplay.

Y ∼ Bernoulli(δ(hθ))

Hence, Y is a Bernoulli random variable with probability of
δ(hθ). The θ terms are themselves expected to have a normal
distribution since they may take on positive or negative
values:

θi ∼ N (μi, σ
2
i )

Notice that in this new formulation, we only have a
weak assumption about the prior of the model’s parameters
i.e. that they are normally distributed. The parameters of
this distribution itself are treated as unknowns and it is
possible to retrieve their posterior probabilities the same way
as we would compute the posterior of Y . Assuming that
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parameter values are normally distributed around 0 acts like
a regularizer.

More importantly, our model does not assume indepen-
dence between the features Xi. The intractability arising
from removal of this assumption is taken care of through
the use of MCMC.

After having computed the Maximum Apriori Point
(MAP) using the efficient Powell’s method [27], we initialize
our MCMC sampling algorithm (NUTS [25]) using this MAP
and sample from the posterior distribution of the output
variable Y . We refer the reader to the very interesting original
NUTS paper [25] for details. Here, it suffices to say that
NUTS is a state-of-the-art and extremely efficient sampling
technique. It has few parameters that need tuning and it
can find optimum values for these without requiring expert
intervention. This makes it an extremely easy-to-use black-
box for performing sampling of intricate spaces such as the
one required here.

NUTS begins exploring the space of the posterior dis-
tribution from the MAP point and collects samples which
match the observed values, i.e. the real-world dataset of
Android application features and maliciousness labels. As
it progresses, it collects samples which have a higher and
higher probability of belonging to the posterior distribution,
until it ‘converges’. The concept of convergence in MCMC
means that the samples are within the range of uncertainty
threshold dictated by the posterior distribution. This is not
a point estimate and as such does not converge to a single
point as is the case in traditional machine learning techniques.
Instead, a converged MCMC returns a distribution that
encodes the uncertainty associated with the learned weights
of the parameters.

After the collection of posterior distribution samples for
the model’s parameters, it is possible to make predictions
about the class of new data points through a technique
similar to the posterior predictive check method [23]. The
strength of MCMC is that it returns a complete trace of the
posterior distribution of the model’s parameters. Hence, the
posterior of the output variable (before applying a prediction
threshold) can be computed simply using the form: s(i) =
δ(θ(i)X) where θ(i) are different samples from the posterior
distribution of θ, and i is the number of samples drawn by
NUTS. According to the law of large numbers, as i increases,
the distribution represented by s(i) reaches the true posterior
distribution of the output variable s. Note that s is normally
distributed as opposed to the Bernoulli distributed Y .

The uncertainty in the posterior distribution in Bayesian
inference is a much cleaner concept than that of confidence
intervals [8] in the frequentist school of thought. Given the
posterior distribution, a Bayesian confidence interval of α is
simply the range around the mean that gathers (1− α) of
the total mass.

The interpretation of this uncertainty is important for our
prediction technique. Given a contiguous interval [φx1, φx2]
and an α, the probability that the actual value φx of the
given variable x lies within the range is (1− α).

For the calculation of uncertainty in s, i.e. the values of
φs1 and φs2, we use symmetric confidence interval, which

ensures that there is an equal amount of probability mass on
either side of the mean, instead of trying to make the two
ends of the range equidistant from the mean:∫ φs1

−∞
fΦs

(φs|D; θ)dφs =

∫ ∞

φs2

fΦs
(φs|D; θ)dφs =

α

2

The larger the range [φs1, φs2] – called the highest probability
density (HPD) interval – the more uncertain we will be about
the true value of s. This corresponds to the posterior prob-
ability being wider (cf. Figure 1). Through these intervals,
we get an easy way to visualize the uncertainty in the model
parameters as well as in our predictions of the class of test
points. Below, we describe how we have incorporated the
concept of uncertainty to improve prediction accuracy as
compared to non-Bayesian models.

4. Incorporating Uncertainty for Model Predic-
tion

We defined our model using the linear relationship:
hθ(X) = θX and the logistic activation function: s =
δ(hθ(X)). We first ran our logistic regression model without
the concept of uncertainty to get weights for the parameters.
We split our dataset into training and test sets as per the
standard practice. The training set was used to learn the
parameter weights and the test set was used for evaluation
of the model’s goodness-of-fit.

The metrics most commonly used for this purpose
are area under the curve (AUC) of a receiver operating
characteristics (ROC) curve as well as the triad of accuracy
(number of correct answers), precision (how many of the
samples identified by the model as malware were actually
malware) and F score. F score is the geometric mean of
precision and recall (of all the malware samples in the dataset,
how many were identified as being such). It penalizes a model
with either a very low precision or very bad recall. All of
these were calculated using the concept of true positives (TP),
false positives (FP), false negatives (FN) and true negatives
(TN), where positive is equivalent to being labeled malicious
and negative to benign. Details of the results of this step are
provided in Section 7.

In order to extend the model with the concept of uncer-
tainty learned from Bayesian inference, we introduce two
new classes of results: Uncertain Positive (UP) – where the
true class of the data point was positive but the prediction
was uncertain about the label – and Uncertain Negative (UN)
– where the true class was negative but the model failed to
provide a label as output.

Predicted :

Actual Positive Actual Negative[ ]
P TP FP
N FN TN
U UP UN

We define the concept of coverage as:

coverage = 1− UP + UN

‖data points‖
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which is the number of concrete decisions as a ratio of the
total number of test points. Ideally, the coverage should be
1, but due to uncertainty in the results, it will fall within
the range [0, 1]. We propose two methods for augmenting
prediction with the concept of uncertainty.

4.1. Naı̈ve Discard (M1)

For the first method – labeled M1 in the following text
– we return the value of ‘uncertain’ for any data points
which have a large uncertainty in their posterior distribution
regardless of the value of the point’s mean. The rule for
prediction is given by:

y =

⎧⎪⎨
⎪⎩
U |φs2 − φs1| > λ

P h ≥ η

N otherwise

where [φs1, φs2] is the HPD interval for s, λ is the uncertainty
threshold and η is the prediction threshold.

4.2. HPD Augmented Prediction Threshold (M2)

As an alternative to the naı̈ve method, we augment the
prediction threshold with the upper and lower values of
the HPD range. For the sake of simplicity, we refer to this
method as M2. The rule for prediction in this method is
given as:

y =

⎧⎪⎨
⎪⎩
P (h ≥ η) ∧ (η − φs1 < λ)

N (h < η) ∧ (φs2 − η < λ)

U otherwise

The first rule dictates that the mean of the predicted
value must be higher than the prediction threshold η and the
lower limit of the HPD range must not be farther away than
λ from η. This ensures that the combined effect of the mean
and uncertainty will not be too far away to the left of the
prediction cut-off point. Similarly, the second rule ensures
that in case of a negative prediction, the mean and the upper
HPD limit will not be too far off to the right of η. If neither
of these conditions are met, the uncertainty is too large to
predict either way and we return the decision of ‘uncertain’.

For each of these two methods, we find the optimum
values for λ and η using grid search, i.e. we calculate
different goodness-of-fit metrics for different values of λ
and η drawn from range [0, 1] and pick the best result. The
results of these experiments are discussed in Section 7.

5. Experimental Setup

In order to reason with Android malware, we required a
large dataset to get high values of certainty for the probability
distributions in different steps. We started with the base
collection of 5000 malicious Android applications kindly
made available to us by the Drebin project [3]. This set
includes the Android Malware Genome project [21] samples
as well as others identified as malicious by VirusTotal. We

augmented this dataset with about 1800 malicious apps from
the Contagio Mobile site [28] bringing the total number of
malicious apps to 6737. We picked 7500 benign applications
from the Drebin dataset at random bringing the total to
14,237. We intentionally kept benign applications to a small
number in order not to skew the final dataset towards the
benign class. Moreover, our initial experiments showed that
increasing this number significantly hampered the time taken
to perform analysis without improving detection rates.

The features of each application included the permissions
requested in its manifest as well as those which were found
through static analysis to actually have been used by the
app code. Other metrics included the intents filtered by the
target, the activity list in its manifest, API calls raised in the
code and services registered. The Drebin dataset included
the URLs opened by the apps as well but we omitted these
as they doubled the number of features for each app without
improving the detection rate.

We used standard 10-fold cross validation on this dataset
to perform training and testing. Posterior probability distri-
butions of the model’s parameters were calculated using the
training set and posterior predictive checks were carried out
on the test set. For the MCMC run, we chose a sample size
of 10,000 which led to a convergence of all the unknown
variables. Recall, though, that convergence does not mean the
removal of all uncertainties from the values. It simply means
that the posterior distribution’s terrain stopped changing.

5.1. Environment and Tools

In order to run the analysis in an interactive and powerful
environment, LUNA uses the popular Python language
along with several data science packages. Two of the
most important ones were: Theano [29], which generates
highly optimized implementations of mathematical functions
involving high-dimensional tensors and PyMC3 [9]. This is
a Python implementation of probabilistic programming in
general and MCMC algorithms in particular and has a very
easy to use API for specifying Bayesian models and then
performing inference on them. PyMC3 code that can be used
to reproduce our experiments can be seen in Figure 3.

Running MCMC simulations is a computation-intensive
task. Training the model on our dataset for a large number of
samples consumes a lot of time. It was therefore not feasible
to run the simulations on a commodity desktop PC. We ran
our MCMC sampling algorithms on an Intel Core i7-4770K
fourth-generation processor with 8 cores clocked at 3.5GHz
and with 32GB of on-board memory. The sampling was done
on the NVIDIA Tesla K40c GPU with 2,880 cores thanks to
the transparent interface provided by Theano. Note, however,
that after the training is done and posterior distributions of our
parameters are available, the posterior predictive check that
has to be carried out for each individual target application is
a fairly straightforward task. It only takes a few microseconds
with optimized and vectorized implementations of matrix
multiplication easily available in all mainstream languages.
These predictive steps can be easily deployed even on a
low-end Android smartphone.
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1 import theano.tensor as t
2 from pymc3 import *
3
4 # n_predictors = number of input features/permissions
5 # predictors = tensor of feature values
6 # Y = observed Y values
7
8 def tinvlogit(x):
9 return t.exp(x) / (1 + t.exp(x))

10
11 model = Model()
12 with model: # all model-definitions need to be within the model context
13
14 # Priors for unknown model parameters
15 theta = Uniform(’theta’, lower=-10, upper=10, shape=(1, n_predictors))
16 epsilon = Normal(’alpha’, mu=0, sd=10, shape=(1, n_predictors))
17
18 # expected probability
19 p = tinvlogit(sum(theta * predictors, 1) + epsilon)
20
21 # Likelihood (sampling distribution) of observations
22 Y_obs = Bernoulli(’Y_obs’, p=p, observed=Y)

Figure 3: Bayesian Machine Learning Model Represented in pymc3

6. Descriptive Analysis

After the MCMC run and the calculation of the posterior
probabilities of all parameters, the first result we get is a
collection of the density functions of the different model
parameters. The takeaway from these densities is that while
there is some certainty achieved for several parameters (e.g.
applications accessing the network), a lot of them are still
very wide and spread out in the [−10, 10] range chosen as the
prior. This means that for all the features with a very wide
corresponding density function, there is very little certainty
about how they contribute to the maliciousness status of the
application. On the other hand, the features with very narrow
density functions have a high level of certainty as to how
they contribute to a target app being labeled malicious.

In our view, this is an important contribution of our work
and indeed of Bayesian inference in general. We not only
perform machine learning-based prediction of the class labels,
but also provide underlying reasons for why the model works
and which parts of the inputs to the model contribute to the
final decision. This theme will be carried forward throughout
the rest of the paper.

6.1. Uncertainties in Weights Associated with Per-
missions

Since it is not possible to show the detailed view of the
posterior probabilities of all the parameters of the model,
we have chosen to show a forest plot of the most often
used permissions in Figure 4. Recall that a permission being
used means that static analysis unearthed API calls in app
code associated with that permission. We have numbered
permissions in the plot so that we may easily refer the reader
to them. The numbers are assigned based on the frequency
of apps using these permissions. 0:INTERNET is therefore
the most frequently used permission. The values plotted are

the means and HPD intervals of the posterior distributions
of model weights associated with the respective permission.

One of the most notorious permissions which is vital for
violating privacy of a user is access to the internet. Google’s
latest release of Android (Marshmallow) allows restricting an
app’s permissions, but excludes the INTERNET permission
from this choice. Google’s stance is that if an application is
restricted from accessing any sensitive resources, allowing
access to the internet should be harmless. While we do not
agree with this line of thought, the data speak against the
blacklisting of this permission.

In the forest plot, 0:INTERNET has a short bar with the
mean on the negative side of the weight axis. This means
that, according to our model and results, the relationship
between using the INTERNET permission and being malicious
is inversely proportional. Keeping all other factors constant,
if an application uses the INTERNET permission, it is more
likely to be benign than malicious. (Of course, all the other
factors are seldom constant. We return to a discussion of
permission combinations presently.)

Similarly, 3:READ_PHONE_STATE has a very high valued
mean, which suggests a positive relationship between using
this permission and being malicious. We draw a similar
conclusion about 6:RECEIVE_BOOT_COMPLETED, which is
a permission commonly used by many spyware-type apps.

9:SEND_SMS and 11:READ_SMS are no surprise, but
confirm the intuition that these two contribute substantially
(with little uncertainty) to the malicious label.

Results of 12:RECEIVE_SMS are counter-intuitive, how-
ever: it is generally believed that malicious apps try to steal
data by snooping on incoming SMSs. However, looking at
the bigger picture, it seems that this permission contributes
more towards a benign status than a malicious one. We
believe the reason might be the existence of several ‘good’
messaging apps, as well as SMS-based registrations prevalent
nowadays.

210



−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10

126: MASTER CLEAR

118: BRICK

117: BIND DEVICE ADMIN

103: WRITE HISTORY BOOKMARKS

102: READ HISTORY BOOKMARKS

100: REBOOT

69: SET PREFERRED APPLICATIONS

65: NFC

63: ACCESS MOCK LOCATION

56: READ CALL LOG

55: WRITE CALENDAR

52: READ CALENDAR

50: RECEIVE WAP PUSH

43: RECEIVE MMS

41: FLASHLIGHT

38: BLUETOOTH ADMIN

36: MOUNT UNMOUNT FILESYSTEMS

35: PROCESS OUTGOING CALLS

33: BLUETOOTH

31: RECORD AUDIO

29: WRITE APN SETTINGS

26: INSTALL PACKAGES

23: WRITE CONTACTS

22: SET WALLPAPER

21: CAMERA

19: CALL PHONE

17: CHANGE WIFI STATE

16: GET TASKS

15: WRITE SMS

14: READ CONTACTS

13: GET ACCOUNTS

12: RECEIVE SMS

11: READ SMS

10: ACCESS FINE LOCATION

9: SEND SMS

8: ACCESS COARSE LOCATION

6: RECEIVE BOOT COMPLETED

5: WAKE LOCK

3: READ PHONE STATE

2: WRITE EXTERNAL STORAGE

0: INTERNET

Figure 4: Forest Plot of Interesting θ Values and their Associated Uncertainties. (Right is malicious, left is benign.)

Another interesting result is that of 21:CAMERA. Mali-
cious apps have little interest in this permission. The mean
for the weight associated with this permission is as low as
2.5, with quite a small uncertainty. To us, this seems quite
counter-intuitive, especially when coupled with the result for
31:RECORD_AUDIO since both of these might be a privacy
nightmare (or goldmine depending on one’s perspective).

Peng et al. [4] identified 26:INSTALL_PACKAGES as
a critical permission in their work, and our results seem
to agree with them, given the very high weight of the
parameter associated with this permission. However, we note
that 29:WRITE_APN_SETTINGS has an even higher weight
and, even correcting for the uncertainty, should be a highly
critical metric for identification of an app as being malicious.

On the flip side, 56:READ_CALL_LOG and 65:NFC are
two permissions which are highly representative of the benign
app set and as such should also be considered when modeling
the classes as a function of usage of sensitive resources.

Finally, at the bottom of the figure, we see a few

permissions such as 102:READ_HISTORY_BOOKMARKS and
103:WRITE_HISTORY_BOOKMARKS that have so much un-
certainty associated with them that we cannot make any
meaningful decisions based on these.

Note that this process is different from typical feature se-
lection algorithms. Our methodology not only helps identify
which features contribute the most to the malicious label but
also gives us a quantified measure of how certain we are about
the contribution. For instance, 100: REBOOT has a high
weight and would be picked by a feature selection algorithm
as an important feature. However, Bayesian analysis shows
that it has a high level of uncertainty and as such might not
be a good feature to base the decision on.

6.2. Joint Probabilities: Interplay between Re-
quested and/or Used Permissions

After we analyzed the probability distributions of the
different model parameters in detail, we also decided to
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Figure 5: Joint Probability Distributions of θ Values for Different Combinations of Permissions

study their joint probabilities with the hope of uncovering
more interesting patterns. For this purpose, we computed
the joint probabilities of the requested and used permissions.
We then separated the combinations which had a significant
correlation and plotted their joint probability distributions
in the form of a scatter plot along with a regression line
showing their relationships. Some of the more interesting
plots are shown in Figure 5. The axes prefixed with (USE)
represent permissions that were found to have been actually
used by an app whereas (REQUEST) axes mark permissions
included in the manifest file.

The plots show that there are a few pairs which have
an inverse correlation in terms of their corresponding model
parameters. For instance, Figure 5a shows the joint probabil-
ity plot between BLUETOOTH_ADMIN and BLUETOOTH. The
interpretation of this plot is that in cases where an application
uses one of these permissions but not the other, it is much
more likely to get assigned a higher maliciousness hypothesis
value – thus making it more likely to be malicious. On the
other hand, if an application uses both permissions or neither,
it is more likely to be a benign app. While this is reminiscent
of the rules created by Kirin [12], it is much more concrete
as not only do we have a relationship, we also have a way

to quantify it.

After looking through the high correlation pairs, we
realized that most of them, with the advantage of hind-
sight, seem intuitive. For instance, it appears that a be-
nign app would use both WRITE_SMS and READ_SMS (cf.
Figure 5b), but a malicious app would be more likely
to use only one of them and not the other. We found
similar relationships between several other pairs, such
as: WRITE_CONTACTS and READ_CONTACTS, SEND_SMS
and RECEIVE_SMS, INTERNET and ACCESS_NETWORK_-
STATE, READ_SMS and READ_CONTACTS, FLASHLIGHT and
CAMERA, KILL_BACKGROUND_PROCESSES and RESTART_-
PACKAGES.

Another interesting finding is the relationship between
applications requesting certain permissions and using them.
For example, Figure 5d shows that there is a negative
correlation between applications requesting the INTERNET
permission and using it. One interpretation of this is that
malicious applications usually don’t include this permission
in the manifest file. Rather, they rely on root access to bypass
Android’s permission mechanism to utilize network access.
Similar correlations were found in joint probabilities of sev-
eral other request-use pairs such as SEND_SMS (cf. Figure 5e)
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Figure 6: False Positives and False Negatives as a Result of Ignoring Uncertainty in the Model

and CHANGE_WIFI_STATE (cf. Figure 5f). This can form a
strong indicator of the maliciousness of an application. In
the future, we aim to analyze such combinations in detail
and generalize our study from pairs to n-tuples.

7. Prediction with Uncertainty

Before starting with Bayesian machine learning, we
performed learning on our dataset using basic logistic
regression and kept track of the evaluation metrics. We
also experimented with large-margin classifiers and non-
linear hypotheses (including SVMs, decision trees, random
forests etc.) but saw little improvements in accuracy of the
results. This is owing to the fact that there is already a clear
decision boundary between the two classes and adding more
complex models does not improve classification. We therefore
chose to model the much simpler logistic regression model
in the Bayesian framework to reduce the complexity and
performance overhead. We achieved an accuracy of 0.951, an
F1 score of 0.944 and an AUC of 0.929 for this base model.
We kept track of the false positives and false negatives of
prediction for later comparison with the Bayesian results.

During the run of our Bayesian learning pipeline and after
having completed our sampling for the posterior distributions
of the model parameters, we ran the posterior predictive
checks to calculate the posterior probability distributions of
the output variable in our test set. We then compared the
results of our base logistic regression model and manually
analyzed the plots of posterior distributions of the test points
for which we had a false positive or false negative in the
basic non-Bayesian logistic regression.

Figure 6 shows some of the interesting posterior distri-
butions from this experiment. Figures 6a and 6c show false
positives of the base logistic regression model. As can be

seen, the mean is near the threshold of 0.5 but the confidence
interval is very high (denoted by the vertical dashed lines
near the edges of the plot). This means that there is so much
uncertainty in the results that we should not be able to make
a prediction based on this result. In Figure 6c, the mean is
far higher than the threshold but again, there is so much
uncertainty that the mean cannot reasonably be used to make
any prediction. However, since in the non-Bayesian view
of machine learning, the uncertainty in prediction is lost,
this information is not taken into consideration, thus leading
to an incorrect classification of these benign apps to the
malicious set. Similarly, Figures 6e and 6f show examples
from the false negative set. These malicious apps also had a
large margin of uncertainty, but ignoring this margin led to
them being classified incorrectly.

7.1. Uncertainty-Augmented Prediction

Learning from these and several other examples, we
proposed the use of uncertainty during model prediction.
In the rest of this section, we provide details of the results
achieved as a result of the enhancements proposed to the
basic logistic regression model for classification of Android
applications as benign or malicious. The model itself was
detailed in Section 4. We ran grid search for finding the best
values of model hyperparameters λ and η with both values
ranging from 0.0 to 1.0 in 100 steps each and calculated
different metrics for each run.

Recall that the metric measuring the ratio of concrete
prediction to the number of total test points was defined as
coverage with the rest of the points being marked as uncertain.
Figure 7a shows the contour plot of the coverage for M1
(cf. Section 4). Note that since the uncertainty decision in
this method does not depend on the prediction threshold, the
contour lines are parallel to the y-axis. For M2, the picture
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Figure 7: Coverage Achieved with Different Uncertainty
Threshold Values

is slightly more complicated. This is depicted in Figure 7b.
Here, the coverage changes as a result of both uncertainty
threshold changes and prediction threshold perturbations.
Based on these plots and further results described below, we
identified the sweet spot as corresponding to the uncertainty
threshold of 0.2 for M1 and 0.05 for M2. This allows us
to achieve a coverage of 93.7% for M1 and 97.6% for M2
while improving upon the results of the existing efforts in
terms of accuracy, precision and AUC.

We also used grid search to evaluate our model with
different values of the hyperparameters and measured the
accuracy, precision and F1 Scores. Note that, for a particular
threshold value (i.e. domain specific results), it is better to
report the F1 scores instead of the AUC since the ROC
metric leaves it up to the user to make a judgment about
the threshold value. We do however report the AUC values
later when comparing to previous work in order to enable
the reader to evaluate our work in light of existing literature.
Moreover, accuracy alone is not a sufficient measure of
goodness-of-fit of an algorithm for skewed classes. For
instance, it is possible to achieve an accuracy of 98% in
cases where 98% of the real-wold data points belong to
the malicious class simply by predicting all data points
as malicious. The F1 score metric counters this issue by
incorporating precision into the calculation as well. Hence,
we begin our discussion by reporting the F1 scores of
our model at different levels of uncertainty and prediction
thresholds.

These results are plotted in Figure 8a. An uncertainty
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Figure 8: Grid Search based on Uncertainty and Prediction
Thresholds

threshold of 1 means that any uncertainty level is acceptable
and thus equates our model with the non-Bayesian logistic
regression. As we reduce the level of acceptable uncertainty
in prediction, we note that the number of false positives
and false negatives decreases, thus improving our F1 score.
At our chosen uncertainty level of 0.2 for M1, we see that
the F1 score is 0.996 for the prediction threshold of 0.5.
For M2, the optimum uncertainty threshold of 0.05 and
prediction threshold of 0.8 gives us an F1 score of 0.986.
Note also that, we are able to further improve our F1 score
by reducing the uncertainty threshold. However, reading this
plot in conjunction with Figures 7a and 7b, we conclude that
this would also decrease the coverage to an unacceptable
extent.

Finally, to provide a fine-grained view of our two models’
F1 scores as compared to each other, we plot the F1 score
of both as a function of the prediction threshold as shown in
Figure 8b. For these plots, we kept the uncertainty threshold
of M1 fixed at 0.2 and that of M2 at 0.05. The results support
our view that the prediction threshold of 0.5 performs the
best at the uncertainty level of 0.2 for M1, and the prediction
threshold of 0.8 gives the optimum results for M2 at the
uncertainty level of 0.05.
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TABLE 1: Comparison of Results with Existing Techniques

Metric Peng et al. [4] Drebin [3] Reveal Droid [5] LUNA with M1 LUNA with M2

Accuracy - - 0.858 0.998 0.989

Precision - - 0.892 0.993 0.982

F1 Score - - 0.874 0.996 0.986

Coverage 1.0 1.0 1.0 0.937 0.976

FPR - 0.01 - 0.002 0.002

Detec. Rate - 0.94 0.969 0.991 0.981

AUC 0.953 - - 0.993 0.987

7.2. Comparison with Existing Techniques

In order to put our model into perspective, we compare
the results of both M1 and M2 with those previously reported
in the literature. We compare our results with similar models
presented by Peng et al. [4], Drebin [3] and RevealDroid [5].
Table 1 shows a concise overview of this comparison. Values
marked as ‘-’ are not reported by the authors of the original
paper.

For instance, Peng et al. [4] achieved an AUC of 0.953
with their best model of HMNB. We improve upon their
results by achieving an AUC of 0.987 with a high coverage
using M2. Our M2 detection rate of 0.981 is also an improve-
ment over Drebin. Moreover, we reduce the false positive
rate to 0.2% from Drebin’s 1% owing to the incorporation
of uncertainty in our results. We also improve significantly
upon the F1 score of RevealDroid [5] with both M1 and
M2. From our two models, we note that while the F1 score
achieved by M2 is slightly lower, its coverage is a major
improvement over M1. Hence, we believe that of the two,
M2 would be a better solution for a production environment.

7.3. False False-Positives

Last but not least, we discuss an interesting finding that
came out as a result of our analysis of the Bayesian model’s
accuracy. As mentioned above, there was a lot of uncertainty
in the predictions of quite a few false positives. However, we
noted a few points which were false positives but had a very
high level of certainty associated with them. This meant that
not only was our model classifying them as malicious, it
was also quite certain about its prediction. So, we decided to
manually scrutinize these applications. Posterior distributions
of four such apps are shown in Figure 9. We provide a brief
overview of these below:

Figure 9a shows the posterior distribution for the class
of an app titled, “Start Earning Free Money Now”. As can
be seen, it is predicted as being malicious with a high level
of certainty. We scraped this application from the Play Store
around June 2015 but it has since been removed from the
store, leading us to believe that Google’s Bouncer probably
also found some maliciousness in this app. Figures 9b
and 9c show posterior distributions associated with “State
Bank Freedom” and the self-proclaimed “Default Android
4.4 (KitKat) Messaging App” respectively; both of these
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Figure 9: False False-Positives Identified through Bayesian
Machine Learning

have been removed recently from the Play store. Finally, in
Figure 9d, we have the posterior probability of a flashlight
app that has not been removed from the Play Store (yet).
However, we did find an interesting review from a user there
asking, “Why does it require permission to access phone ID
and call information?”

We found several other applications along these lines (e.g.
us.tv.remote.control .all4fun) but since an analysis
of these apps requires manual labor, we were not able to
do it for a large set of apps. We do recognize that not all
false positives belonged to this class, since there will always
be noise in real-world datasets leading to inaccuracies in
prediction. However, with a cursory search, we were able to
find quite a few of these cases which leads us to believe that a
detailed analysis along these lines might produce interesting
results.

At the very least, this result shows that, even though
outlier detection was not one of our objectives, LUNA has
turned out to be robust to imperfections in training data.

8. Conclusion and Extensions

Android’s ecosystem has a very open nature. Anyone with
a developer account can upload applications to the official
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Play Store. The Play Store then relies, for the most part, on
crowd-sourcing to filter out bad apps. However, members
of the crowd mostly only evaluate applications based on
their utility. They are unable and ill-equipped to decide if
an app is malicious. There have been several attempts to
instead use machine learning techniques to find malicious
apps from within the Play Store through learning from the
available datasets. However, all the existing techniques have
used statistical methods that discard uncertainty from their
predictions.

In this paper, we have presented the application of
Bayesian machine learning to Android malware analysis to
take into consideration the uncertainty involved in prediction.
Our contributions in this paper have been to introduce
Bayesian machine learning and explore the model weights
to gain insights into how critical features actually affect pre-
dictions. We quantified uncertainty associated with different
features and explored their interplay for classifying an app as
malicious. We also introduced an uncertainty-incorporating
prediction model that was able to best the existing techniques
for malware prediction.

We note a limitation of our approach: in order to improve
the model, we reduced our coverage to 97.6%. This means
that for 2.4% of apps, we would not be able to predict a
class at all. We envision the incorporation of our model
in a larger setting where such apps would be flagged as
suspicious and would be analyzed in more detail through,
say, offline dynamic analysis to classify them concretely.

We also note that while we have presented our findings
related specifically to Android, the techniques and exploration
methods presented here can be expanded to other smartphone
domains and even to broader areas such as traditional
malware analysis on the desktop systems and in social
networks.
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