
Towards Practical Attacks on Argon2i and Balloon Hashing

Joël Alwen

IST Austria

Jeremiah Blocki

Purdue University

Abstract—The algorithm Argon2i-B of Biryukov, Dinu and
Khovratovich is currently being considered by the IRTF
(Internet Research Task Force) as a new de-facto standard
for password hashing. An older version (Argon2i-A) of the
same algorithm was chosen as the winner of the recent
Password Hashing Competition. An important competitor
to Argon2i-B is the recently introduced Balloon Hashing
(BH) algorithm of Corrigan-Gibs, Boneh and Schechter.

A key security desiderata for any such algorithm is
that evaluating it (even using a custom device) requires
a large amount of memory amortized across multiple
instances. Alwen and Blocki (CRYPTO 2016) introduced
a class of theoretical attacks against Argon2i-A and BH.
While these attacks yield large asymptotic reductions in
the amount of memory, it was not, a priori, clear if
(1) they can be extended to the newer Argon2i-B, (2)
the attacks are effective on any algorithm for practical
parameter ranges (e.g., 1GB of memory) and (3) if they
can be effectively instantiated against any algorithm under
realistic hardware constrains.

In this work we answer all three of these questions
in the affirmative for all three algorithms. This is also
the first work to analyze the security of Argon2i-B. In
more detail, we extend the theoretical attacks of Alwen
and Blocki (CRYPTO 2016) to the recent Argon2i-B
proposal demonstrating severe asymptotic deficiencies in
its security. Next we introduce several novel heuristics for
improving the attack’s concrete memory efficiency even
when on-chip memory bandwidth is bounded. We then
simulate our attacks on randomly sampled Argon2i-A,
Argon2i-B and BH instances and measure the resulting
memory consumption for various practical parameter
ranges and for a variety of upperbounds on the amount of
parallelism available to the attacker. Finally we describe,
implement, and test a new heuristic for applying the
Alwen-Blocki attack to functions employing a technique
developed by Corrigan-Gibs et al. for improving concrete
security of memory-hard functions.

We analyze the collected data and show the effects
various parameters have on the memory consumption of
the attack. In particular, we can draw several interesting
conclusions about the level of security provided by these
functions.

• For the Alwen-Blocki attack to fail against prac-
tical memory parameters, Argon2i-B must be in-
stantiated with more than 10 passes on memory
— beyond the “paranoid” parameter setting in
the current IRTF proposal.

• The technique of Corrigan-Gibs for improving
security can also be overcome by the Alwen-Blocki
attack under realistic hardware constraints.

• On a positive note, both the asymptotic and con-
crete security of Argon2i-B seem to improve on
that of Argon2i-A.

1. Introduction

The goal of key-stretching is to protect low-entropy
secrets (e.g., passwords) against brute-force attacks. A
good key-stretching algorithm should satisfy the prop-
erties that (1) an honest party can compute a single in-
stance of the algorithm on standard hardware for a mod-
erate cost, (2) the amortized cost of computing the al-
gorithm on multiple instances on customized hardware
is not (significantly) reduced. The first property ensures
that it is possible for honest parties (who already know
the secret) to execute the algorithm, while the later
property ensures that it is infeasible for an adversary
to execute a brute-force attack with millions/billions of
different guesses for the user’s secret. Key-stretching
techniques like hash iteration (e.g., bcrypt) fail to
achieve the later property as the cost of evaluating hash
functions like SHA256 can be dramatically reduced
by building Application Specific Integrated Circuits
(ASICs).

Memory hard functions (MHFs), first explicitly in-
troduced by Percival [Per09], are a promising key-
stretching tool for achieving property two. In particular,
MHFs are motivated by the observation that the cost
of storing/retrieving items from memory is relatively
constant across different computer architectures. Data-
Independent Memory Hard Functions (iMHFs) are an
important variant of MHFs due to their greater resis-

2017 IEEE European Symposium on Security and Privacy

© 2017, Joël Alwen. Under license to IEEE.

DOI 10.1109/EuroSP.2017.47

142

tance to side-channel attacks1 making them the recom-
mended type of MHF for password hashing. Indeed,
most of the entrants to recent Password Hashing Com-
petition [PHC] which had the stated aim of finding a
new password hashing algorithm, claimed some form
of memory-hardness.

Finally, to accommodate a variety of devices and
applications an MHF is equipped with a “memory
parameter” (and sometimes also a “timing parameter”)
which fix the amount of memory (and computation,
respectively) used by the honest evaluation algorithm.
Ideally, the necessary amortized memory (and compu-
tation) of an adversary should also scale linearly in
these parameters. Thus they can be thought of as natural
security parameter(s) for the MHF.

In this work we focus on three of the most promi-
nent iMHFs from the literature:

1) The winner of the PHC, which we call Argon2-
A [BDK15].

2) A significantly updated version which we refer
to as Argon2i-B [BDKJ16] which is currently
being considered by the Cryptography Form
Research Group (CFRG) of the IRTF as their
first proposal of an MHF for wider use in
Internet protocols.

3) A prominent competitor algorithm to Argon2
called Balloon Hashing (BH) [BCGS16].

We remark that an important part of IRTF proposal is
a recommendation for how to choose the parameters
when instantiating Argon2. In particular, it describes
how to select a memory parameter σ and timing pa-
rameter τ with the effect that the honest algorithm for
evaluating Argon2i-B builds a table of size σ in memory
and iterates over it τ times.

1.1. Attacking an MHF

In the context of an MHF an “attack” is an evalu-
ation algorithm with lower (possibly amortized) com-
plexity then the honest evaluation algorithm. The qual-
ity of such an attack is the ratio between the honest
algorithms complexity on a single instance and the at-
tack’s (amortized) complexity. We refer to an evaluation
algorithm with quality greater than 1 as an attack.

Historically, the “complexity” of an attack has re-
ferred to the product of the total runtime and the largest
amount of memory used at any given point during the
execution as this often believed to be a good estimate of
the AT (Area x Time) complexity of implementing the
execution in hardware [Per09], [AS15], [BK15] which

1. Standard MHFs (e.g., Argon2d [BDK16], scrypt [Per09]) are
potentially vulnerable to security and privacy compromises due to
cache-timing attacks [Ber], [FLW13].

in turn provides an estimate for the cost of constructing
the hardware [Tho79]. In this work, we have instead
measured the energy complexity [AB16] of an execu-
tion which approximates the energy consumed by the
attack. As discussed in [AB16] this approximates the
running cost of hardware implementing the execution.2

Never-the-less, for the class of attacks considered in this
work, energy complexity also tightly approximates the
(amortized) AT complexity of the attack. [AB16].

1.1.1. Argon2 History. The Argon2 specifica-
tion [BDK16] has already undergone 4 reversions since
its first publication with, at times, non-trivial changes
to the underlying graph structure. Unfortunately any
of these versions are regularly referred to simply as
“Argon2” with out further specification. In particular,
between Argon2i-A (Version 1 in [BDK16]) and
Argon2i-B (Version 1.3 in [BDK16]) the edge
distribution (which describes how intermediary values
relate to each) has been altered twice. However the
edge distribution is probably the single most important
feature of any MHF in determining its memory-
hardness, i.e. its security. In particular, altering the
edge distribution of an MHF can make the difference
between optimal security and being completely broken.
Thus, we have made an effort to distinguish between
the original edge structures in the PHC Argon2i-A
and the edge structure used in the IRTF proposal
Argon2i-B.

To the best of our knowledge there are three known
attacks against Argon2-A and none on Argon2-B. While
the first attack was against Argon2-A [BK15] the two
more recent ones took aim at Argon2i-A [BCGS16],
[AB16].3

1.1.2. Balloon Hashing History. One of the most im-
portant alternative proposals to Argon2i is the Balloon
Hashing (BH) algorithm of [BCGS16]. To date the only
known attack on BH is [AB16].4 Another interesting
contribution of the same authors appeared in an earlier
version of that work [CGBS16] where they introduced
a new technique for constructing iMHFs which we refer

2. While the construction cost of the hardware is a one-off cost
which can be amortized across all evaluations ever performed on the
device, the running cost is a recurring charge per instance and so
seems at least as important from the point of view of an attacker
evaluating the effectiveness of the attack.

3. Due to the frequent naming collision between versions it not
possible to unambiguously determine the precise version considered
in these attacks. However all results seem to have appeared before the
newest edge structure, used in Argon2-B, was published [BDK16] and
definitely before the IRTF proposal was made [BDKJ16]. Thus the
history presented here reflects the best guess of the authors based on
the dates of revisions and when the different attacks were published.

4. Roughly, BH is a special case of the “random graph” family of
iMHFs considered in [AB16] where indegree δ = 3.

143

to as the XOR-and-high-indegree method. They showed
how it could be used to overcome the new attack on
Argon2i-A described in the same work. The technique
was also instantiated in the BH-Double-Buffer (BH-
DB) iMHF of [CGBS16].

1.2. How Practical is AB16?
While there seems to be less debate about the

effectiveness and practical consequences of [BK15],
[BCGS16] the same can not be said for [AB16]. On
the one hand the authors of [AB16] proved that the
asymptotic complexity of their attack is far lower then
that of the honest evaluation algorithm as a function
of the memory and timing parameters (not solely for
Argon2i-A but also for the other candidate iMHFs
including a precursor to BH, BH-DB and others). In
other words, the quality of their attack grows quickly
in the natural security parameters of Argon2i-A (and
BH) indicating severe problems with those construc-
tions from a theoretical perspective.

However, as observed by the Argon2
authors [BDK16], τ ≥ 4 passes on memory seems
to suffice to thwart this attack in practice (e.g., even
if the memory parameter is as large as σ = 220).5

Moreover it has been observed that [Kho16], a
straightforward implementation of the [AB16] attack
in hardware would require several times the amount
of memory bandwidth currently possible with modern
technology. Thus it may seem, as claimed by the
Argon2 authors [BDK16] and others [Aum16], that
the [AB16] attack does not present a threat to the
real world security of Argon2-B (or BH). Indeed,
in contrast to the attacks of [BK15], [BCGS16]
the [AB16] attack is omitted from the security analysis
in the IRTF proposal [BDKJ16].

However, despite these observations, there may yet
be reasons for concern that [AB16] could behave far
better in practice.

1) Due to the rigors imposed by proving state-
ments, in [AB16] several pessimistic assump-
tions (detailed in Section 6) were made poten-
tially resulting in far worse cost estimates for
their algorithm then might be exhibited in any
actual instantiation.

2) The algorithm of [AB16] is equipped with a
variety of variables and parameters. Due to
the focus on asymptotics no effort was made
to optimize them. Instead asymptotically opti-
mal values were used. However for any given
concrete instance of Argon2i it is likely that
the asymptotic optimal settings do not actually

5. Increasing the number of passes τ slows down the evaluation of
an iMHF without increasing the memory required to evaluate it.

result in the lowest complexity of the resulting
evaluation algorithm.

3) The authors did not attempt to investigate any
heuristics for improving concrete complexity.
Indeed, many such heuristics are far easier to
implement (and test) then to analyze in theory
making them bad candidates for that work but
potentially still a concern in practice.

4) No work was done to examine the behavior of
the attack in models of bounded (e.g. practical)
parallelism or memory bandwidth.

In fact, it is perhaps somewhat surprising (not to men-
tion disconcerting) that despite all of these omissions
and pessimistic assumptions such undesirable asymp-
totics where still displayed against both Argon2i-A and
BH.

Ultimately we are left with a rather incomplete
understanding of the practicality of [AB16], especially
with respect to Argon2i-B and the CFRG proposal (not
to mention the other iMHFs considered in [AB16]).

1.3. Our Contribution

In this work we attempt to make progress on this
front. The results in this work can be summarized as
follows:

• We analyze the asymptotic complexity of the
Alwen-Blocki attack [AB16] when applied to
Argon2i-B demonstrating its strong asymptotic
effectiveness.

• We introduce two definitive improvements to
the attack of [AB16], which apply to Argon2i-
A, Argon2i-B and BH. The first improvement
reduces the size of the depth-reducing set S in
the attack. Here, the depth-reducing set is a set
S of nodes such that by removing these nodes
from G, the a directed-acyclic graph (DAG) rep-
resenting data-dependencies between the mem-
ory blocks produced during the evaluation of the
iMHF, the depth of the resulting DAG is small.
The second improvement reduces the number
of ‘expensive’ steps necessary to execute the
attack.

• We give new details about the resources (e.g.,
bandwidth, #cores) necessary to implement the
attack of [AB16] in a custom device. This helps
determine for which parameter spaces the attack
is feasible using modern fabrication technology.

• We implement a simulation of the [AB16] attack
in C for the case of Argon2i-A, Argon2i-B
and BH together with several new heuristics for
decreasing its concrete complexity.

• We implement two methods optimizing the pa-
rameters and internal variables of [AB16] so as

144

to obtain minimal complexity for given target σ
and τ . The first method may utilize arbitrary
parallelism while the second method aims to
minimize attack costs subject to an upper-bound
on the available parallelism.

• We measure the resulting complexity of the
simulation for a variety of practical parameter
ranges and bounds on parallelism and we de-
scribe and analyze these results. In particular
we highlight some several concerns with the
parameter choices in the CFRG proposal. We
also highlight several new questions spurred by
our results.

2. Preliminaries

We begin by establishing some notation followed
by a brief review of Argon2i-A, Argon2i-B, BH and
the evaluation algorithm of [AB16].

All three iMHFs can be viewed as a modes of opera-
tion over a hash function. We use the language of “graph
labeling” to describe the functions (as in [DKW11],
[AS15], [AB16] for example). That is for a given
memory and time parameters σ and τ respectively each
iMHF is given by a directed acyclic graph Gσ,τ =
(V,E) on n = σ ∗ τ nodes. We number the nodes
according to V = {1, 2, . . . , n} = [n] and for a ≤ b we
denote the interval {a, a + 1, . . . , b} with [a, b]. Each
node represents an intermediary value in the computa-
tion of the iMHF. For a given input we refer to such a
(k-bit) value as the “label” of the node. By deriving a
random string from public parameters we effectively
fix such a graph Gσ,τ from a particular distribution
characterizing the iMHF. For a node v we denote by
parents(v) the set of nodes with an edge leading to u.
More generally for S ⊆ V we write parents(S) for the
set of nodes with an edge leading to a node in S.

2.1. The iMHFs

All three algorithms support an extra parallelism
integer parameter p > 0 in order to better support honest
users with multi-core machines. We now describe the
case with p = 1. For a discussion for the more general
case we refer to section Section 6.8.

In all three cases, all nodes in V = [n] are initially
connected by a path {(i, i + 1) : i ∈ [n − 1]} running
through the entire graph. For Argon2i-A, each node v ∈
V \ {1} receives an additional incoming edge from a
uniform random and independently chosen predecessor
u←[max{v− σ, 1}, v− 1]. Similarly, for BH we add 2
such uniform and independently chosen random edges.

In the case of Argon2i-B the distribution of the
random edges is somewhat more complicated. However,

for the purpose of this work, it suffices that the follow-
ing property holds (which can be easily verified from
the specification [BDK16]). For any node j ≤ σ and
c ≥ 1 we have that

Pr [parents(j) ∈ [j − j/c, j − 1]] ∝ 1/
√
c

while for j > σ and c ≥ 1 we have that

Pr [parents(j) ∈ [j − σ/c, j − 1]] ∝ 1/
√
c.

Given a fixed graph and input we can now compute
the corresponding iMHF. First the input (password, salt,
etc) is hashed once to produce the label of node 1.
Each subsequent label is computed by applying the hash
function to the labels of the parents of the node. The
final output of the iMHF is then obtained from the label
of node n.

For further details on each of these algorithms we
refer the interested reader to the original specifications.

2.2. The AB16 Algorithm

We describe an evaluation algorithm for an
iMHF using the language of graph pebbling [HP70],
[DKW11], [AB16]. Placing a pebble on a node denotes
the act of computing the “label” of v. That is the inter-
mediary value represented by the node v which is com-
puted by applying the hash function to the intermediary
values of all nodes with outgoing edges leading to v.
Keeping a pebble on node v at iteration i denotes storing
the label of v in memory at step i. Conversely, removing
a pebble from a node denotes freeing the corresponding
memory location. Clearly a pebble can only be placed
at an iteration i if all parent nodes of v already have
a pebble on them at the end of iteration i − 1.6 Since
we are considering evaluations in a parallel model of
computation we allow for multiple pebbles to be placed
simultaneously as long as each node receiving a pebble
already has all its parents pebbled at the beginning of
that iteration. In a model with an upperbound of U ∈ N

on parallelism we only permit up to U pebbles to be
placed simultaneously in any given iteration.

Using this language, an evaluation algorithm for
Argon2i is given by a pebbling of Gσ,τ , that is a
sequence P = (P0, P1, P2, . . . , Pz) of subsets of V
(denoting which nodes contain a pebble at the end of
each iteration) such that every:

1) P0 = ∅
2) ∀v ∈ Pi \Pi−1 it holds that parents(v) ∈ Pi−1

3) n ∈ Pz .

To determine the quality of an evaluation algorithm we
must establish a complexity measure. For this we use

6. Indeed, an intermediary value can only be computed if all the
necessary inputs to the hash function are already stored in memory.

145

the energy (pebbling) complexity (EC) [AS15] which is
parametrized by the core-memory energy ratio R. This
is the ratio between the cost of evaluating one call to
the hash function and storing one label for an equivalent
amount of time.7 For a given ratio R, the EC is defined
to be

ecR(P) :=
∑
i∈[z]

|Pi|+R ∗ |Pi \ Pi−1|.

Intuitively it captures the total amount of energy con-
sumed (to store memory and evaluate the hash function)
during the execution. As shown in [AS15] EC scales
linearly in the number of instances being evaluated.
Moreover, in the case of the [AB16] attack, it also turns
out to be very close to the amortized AT complexity
of the algorithm. In particular, when computing several
instances in parallel, it is easy to implement [AB16]
such that essentially all memory cells and all hash
function circuits are almost always in use.8

2.2.1. Quality of an Algorithm. In order to evaluate
the quality of an evaluation algorithm (and in particular
to determine if it is an attack) we compare to the EC
of the honest (reference) algorithm N (e.g. the one
proposed in [BDK16]). The quality of an attack A is
given by the ratio

E-quality(A) = ecR(N)

ecR(A) .

Fortunately, for all three algorithms we consider, the
honest algorithm is quite simple. It computes one label
at a time storing them in a table of σ values. It iterates
over the table τ times updating the values as it passes
over them. Thus, in each case the final EC is ecR(N) =

σ2(τ − 1) +
∑
i∈[σ]

i + R ∗ τσ. Ideally, a secure iMHF

should have E-quality(A) as small as possible for any
attacker A and ecR(N) as large as possible. The first
constraint ensures that an attacker cannot do (much)
better than running the naive algorithm and the second
constraint ensures that it is prohibitively expensive for
the attacker to execute the naive evaluation algorithm
millions or billions of times.

2.2.2. The AB16 Strategy. The evaluation algorithm
of [AB16] is parametrized by a node set S ⊂ V and

7. In our implementations we used a ratio of R = 3000 which
is given in [BK15] as the Argon2 author’s estimate for the case of
the hash function used in their design. Regardless, the results in this
work are not particularly sensitive the precise value of R as the calls
to the hash function represent only a comparatively small proportion
of the total cost.

8. For a more formal treatment of these notions and algorithms we
recommend looking at [AS15], [AB16].

integer g ≥ d where d = depth(Gσ,τ−S) is the number
of edges in the longest (directed) path in the graph
obtained by removing S (and incident edges) from
Gσ,τ . The algorithm consists of two main subroutines;
the light phase and balloon phase. Each light phase lasts
for g iterations and upon completion a new light phase
is immediately started. During the final d iterations of
each light phase the algorithm also executes a balloon
phase in parallel.

Intuitively the purpose of the j th light phase is to
pebble target nodes Tj = [(j − 1)g + 1, jg] ⊆ V in
sequence one iteration at a time. That is, in any given
iteration i, only a single pebble is placed due to the light
phase, namely on node i ∈ Tj . Let node set Rj,i =
parents(Tj ∩ [i, n]). In iteration t during the j th light
phase all pebbles are removed from the graph except
from nodes in the set S and in Rj,t+1. To see why all
pebbles placed during a light phase are done so only
when their parents already contain pebbles we consider
property Pj which holds if at the end of the time step
just before the j th light phase begins (i.e at time (j−1)g)
all nodes in u ≤ (j − 1)g with u ∈ Rj,1 contain a
pebble. Notice that if Pj holds then any node pebbled
in the j th light phase is guaranteed to have their parents
pebbled. Either parent p < v is such that p ≤ (j − 1)g
in which case they are pebbled during all of that light
phase until v is pebbled. Or p ∈ [(j−1)g, v−1] in which
case it is pebbled during the light phase. Either way,
once p contains a pebble, the pebble is never removed
(at least) until v is pebbled.

Trivially property P∞ holds. So it remains only to
ensure that ∀j > 1 property Pj holds. This is done by
running a balloon phase in parallel with the final d steps
of each light phase. That is, setting j′ = jg−d+1, the
j th balloon phase runs during interval [j′, jg] During
these steps the algorithm never removes any pebbles
from the graph. Moreover at each step it greedily peb-
bles any node it possibly can. We claim that that at
the end of iteration jg all nodes in [jg] ⊂ V contain
a pebble. (If this is true it is trivial to ensure Pj

simply by removing all pebbles except those in (S and)
Rj,1.) To see why recall that pebbles are never removed
from the set S. So at the end of iteration j′ − 1 all
nodes in S ∩ [j′ − 1] are pebbled. But that means that
G′−(S∩[j′−1]) contains no path longer than d (where
G′ is the graph obtained from G by removing all nodes
except those in [j′ − 1]). That means by the end of d
steps of the balloon phase all nodes in [j′ − 1] ⊆ V
contain a pebble. But parallel to that balloon phase, the
final d iterations of the (j − 1)th light phase were also
executed. Thus nodes [j′, jg] ⊆ V were also pebbled.

For the formal definition of the algorithm we refer
the reader to Algorithm 1 and Algorithm 2 in the
appendix while further details (including its correctness

146

and complexity) can be found in [AB16].

2.3. Outline of the Results

We describe the hardware constraints of implement-
ing the attack in Section 3. The analysis of the asymp-
totic quality of the [AB16] attack applied to Argon2i-B
can be found in Section 4.

To explore the practicality of this strategy we im-
plemented it in C. That is, for a given σ and τ , the
code first samples a fresh Argon2i graph (and builds
lists of all parents and children of nodes in the graph).
Then it constructs a depth-reducing set S ⊂ [n] for G
and selects appropriate integer g. The precise method
for this is described below and depends on whether
an additional parallelism bound U is given as input.
Next the code simulates an execution of the [AB16]
algorithm keeping track of the energy complexity of
the execution.9

We also implemented several heuristics new
to [AB16] for improving the complexity of the exe-
cutions with the following intuitive goals:

1) Choose the S in a smarter way (Section 5.1).
2) Reduce the cost of a Balloon Phase by main-

taining a tighter upper-bound on the number of
steps needed to complete each balloon phase
(Section 5.2).

3) Reduce the cost of a Light Phase by combin-
ing the [BCGS16] attack with [AB16] (Sec-
tion 5.3).

We analyze the results from the executions in Sec-
tion 6. In particular the multi-lane variants (where
p > 1) of Argon2i are discussed in Section 6.8. Finally
we implemented and tested the XOR-and-high-indegree
counter measure of [CGBS16] to determine its effec-
tiveness at preventing the [AB16] (Appendix 3).

3. Parallelism

In this section we give an example showing how to
translate concrete parameters for the [AB16] attack into
requirements on the hardware used to implement it. We
consider various aspects such as chip size and memory
bandwidth. As a reference point, we also give some
specifications of consumer grade hardware currently
available on the market. We show that the requirements
imposed by the [AB16] attack (even for the case of

9. We remark that the cost of sampling the graph, set S and g as
well as building the parent and children lists is not included in the
final complexity. This reflects the fact that such a computation need
only be performed a single time and the result can be reused for
each subsequent input (e.g. password guess) making the amortized
contribution of those steps tend quickly towards 0.

unbounded parallelism) is either already feasible or else
will be so in the near future. At the very least we see
that upperbounds on parallelism used in some of our
more strict experiments, which never-the-less resulted
in attacks on practical parameters of the iMHFs, can
quite readily be realized with modern semiconductor
technology.

3.1. Chip Area and Memory Size

The attacks of [AB16] require parallel computation
of the underlying compression function H during the
balloon phase. In particular, [AB16] divides the nodes
in the DAG into layers, and each layer is divided then
into segments of consecutive nodes. Within each layer
each segment is re-computed in parallel (the depth-
reducing set S eliminates in layer edges so that it is
possible to pebble each segment in parallel). Thus, to
implement this attack on chip one would need one core
(e.g., a Blake2b core) for each segment in a layer. In
the theoretical analysis of [AB16] the graph was divided
n1/4 layers each of size n3/4. Each layer in turn was
divided into

√
n segments of n1/4 consecutive nodes.

Thus, we would need 211 cores to attack τ = 4-pass
Argon2i-A with n = 222 nodes (1KB × n/τ = 1GB
of memory).

The underlying compression function for both ver-
sions of Argon2i are based on the Blake2b hash function
(though they do differ somewhat from each other). A
Blake2b implementation on chip is estimated [BDK16]
to take about 0.1mm2 of space and DRAM takes about
550mm2 per GB. Thus, 5, 500 Blake2b cores would
occupy approximately the same amount of space on
chip as 1GB of DRAM. Thus, we would have space
to fit 211 < 5, 500 Blake2b cores needed for the
[AB16] attack τ = 4-pass Argon2i with memory 1GB.
However, as parallelism increases so does the required
on-chip memory bandwidth (we need to send each core
the appropriate values to be hashed during each cycle).

In all of the Argon2i-B instances we evaluated the
optimal attack parameters never required more than
1, 323 cores (even without explicitly controlling for
parallelism). Thus, space for Blake2b cores does not
appear to be a bottle-neck for our attacks. However,
as parallelism increases so does the required memory
bandwidth. Thus, parallelism would be bounded by the
maximum memory bandwidth of our chip.

As we show, it is possible to modify the [AB16]
attack to control for the amount of parallelism when
constructing the depth-reducing set S.

3.2. Memory Bandwidth

In general we will use bw to denote the bandwidth
required to keep a single Blake2b core active. Thus, if

147

we need p cores to instantiate the balloon phase then
the chip must have total bandwidth at least p × bw or
else memory bandwidth will become a limiting bottle-
neck. Implemented on a 4 core machine with 8 threads
Argon2i-B uses memory bandwidth 5.8GB/s [BDK16,
Table 4]. This suggests that we would need memory
bandwidth bw ≈ (5.8GB/s)/4 = 1.45GB/s for each
Blake2b core to keep pace. While this number may vary
across different architectures, we will use 1.5GB/s as
a reference point in our discussion.

At the time that Argon2i-A was developed the
maximum bandwidth achieved by modern GPUs
was 400GB/s. Currently, the AMD Radeon R9
Fury graphics cards have a memory bandwidth of
512GB/s [Wal15]. However, recently Samsung has be-
gan production of its High Bandwidth Memory 2
(HBM2) chips which will allow for memory bandwidths
of well over 1TB/s [Wal16]. Thus, it would be possible

to support parallelism up to p = 666 ≈ 1TB/s
1.5GB/s on a

current GPU and even p = 1000 in the near future.
In both versions of Argon2i the balloon (and light)

phase memory read patterns are pseudo-random but
deterministic (i.e. predictable). This potentially allows
for significantly leverage prefetching techniques. Fur-
thermore, the memory write pattern is deterministic and
has very good locality.10

4. Theoretical Analysis of Argon2i-B

Alwen and Blocki [AB16] presented an attack on
Argon2i-A, but their paper does not analyze the newest
version Argon2i-B — the version from the IRTF pro-
posal [BDKJ16]. In this section we show how to extend
the attacks of [AB16] to Argon2i-B. More specifically,
Theorem 4.1 achieves attack quality Θ

(
N0.2

)
by tuning

our attack parameters appropriately.

Theorem 4.1. Let Argon2i-B parameters τ = O(1) and
p = O(1) be given and let N = τσ then there
is an attack A on Argon2i-B with E-quality(A) =
Θ

(
N0.2

)
.

PROOF. (sketch) For simplicity we assume τ = 1 and
p = 1 though the ideas in our analysis easily extend to
any constant values τ and p. By [AB16] it suffices to
show how to construct a set S of size |S| = θ

(
N4/5

)
such that depth(G − S) = N3/5. Then we can simply
run the algorithm GenPeb(G,S, g, d) with parameters
g = N4/5 and d = N3/5. GenPeb has complexity
|S|N +gN +dN2/g = O

(
N1.8

)
[AB16] so the attack

has quality: O
(

N2

N1.8

)
= O

(
N0.2

)
.

10. In particular balloon phases spend most of their time simply
walking along segments in the graph. Only comparatively rarely do
they traverse an edge leading to a new layer.

To construct the set S we partition the nodes
1, ..., N into equal sized layers L1, ..., LN2/5 each con-
taining N3/5 consecutive nodes. For each node j ≤ N
we add j to the set S if either j ≡ 0 mod N1/5 or if
both of j’s parents are in the same layer as j. We have
Pr[parents(j) ∈ Li] ∝ 1√

i
thus

E [|S|] ≤ N4/5 +

N2/5∑
i=1

∑
j∈Li

Pr[parents(j) ∈ Li]

= N4/5 +N3/5O

⎛
⎝

N2/5∑
i=1

1√
i

⎞
⎠ = O

(
N4/5

)
.

Now any path p in G−S contains at most N1/5 nodes
from each layer Li. Thus, depth(G− S) ≤ N3/5. �

5. The Implementation

In this section we describe our implementation
of [AB16] detailing the various optimization techniques
and heuristics we implemented.

5.1. Improved Depth-Reducing Construction
for Argon2i Graph

The core of the attacks of [AB16] on Argon2i rely
on a construction of a small set S of nodes such
that removing S from Gσ,τ results in a graph with
only short (directed) paths. In a bit more detail, the
number depth (Gσ,τ − S), of edges traversed by the
longest path in the remaining graph is small. Before
describing our improvements we review the construc-
tion of [AB16]. To construct S [AB16] divides the
N = στ nodes into

√
d = N1/4 layers L1, . . . , L√

d

each containing N/
√
d = N3/4 consecutive nodes.

They further divided each layer Li into N/d =
√
N

segments Li
1, . . . , L

i
N/d of

√
d consecutive nodes each.

S is now constructed in two steps. First add the last
node in every segment Li

j to S for all i ≤ √
d and

j ≤ N/d. Then, for each layer Li and for each node
v ∈ Li for which parents(v) ∈ Li we add v to the set S.
That is we add v if and only if both of v’s parents are in
the same layer. By removing nodes in S from the graph
we ensure that for each layer Li each of the segments
Li
1, . . . , L

i
N/d in that layer are disconnected from each

other . Thus, any path in Gσ,τ stays in layer Li for at

most
√
d − 1 step. We have depth(Gσ,τ − S) ≤ d as

there are
√
d layers. [AB16] analyzed Argon2i-A and

showed that when d =
√
n the set S will have size

|S| = O(n3/4 lnn).
Our first optimization is based on the observation

that in Step 2 we do not always need to add v to the

148

set S even if both of v’s parent are in the same layer as
v. Instead we only need to add v if these parent edges
fail to make progress within a segment. Suppose that
v is the a’th node in segment Li

j and that v’s parent u
is the b’th node segment Li

j′ (j′ < j). If b < a then
we say that the edge (u, v) makes progress in layer Li.
Otherwise if b ≥ a, we say that the edge (u, v) does not
make progress (note that edges (v− 1, v) always make
progress within a segment so we only need to worry
about the pseudorandomly chosen parents). This simple
optimization allows us to reduce the size of the set S by
a factor of (almost) 2 because (approximately) half of
the edges (u, v) will make progress! Furthermore, this
optimization does not increase the depth of Gσ,τ − S.
Each edge in p either makes progress within a layer Li

or moves to a higher layer. As before the path p can
only make progress

√
d−1 times within each layer Li.

Our second optimization is a heuristic one. We use
two different parameters gap and #layers before we
divide our N nodes into layers L1, . . . , L#layers of size
N/#layers and we divide each layer into segments
Li
1, . . . , L

i
N/(#layers(gap+1)) of size gap + 1 each. We

can follow the same construction to find S such that
depth(Gσ,τ − S) ≤ gap × #layers. [AB16] fixed

#layers = (gap + 1) =
√
d to maximize asymptotic

performance, but in practice we achieve better attack
quality by allowing the two parameters to differ.

5.1.1. Controlling Parallelism. In the GenPeb
attack of [AB16] each of we the segments
Li
1, . . . , LN/(#layers(gap+1) is re-pebble in parallel.

Thus, parallelism p = N/(#layers(gap + 1)) is
sufficient to execute our attack. If we have an upper
bound U on parallelism then we can select the
parameters #layers and gap subject to the condition
that (gap+ 1)#layers ≥ N/p.

5.2. Dynamic Reduction of Balloon Phase Costs

Recall that the balloon phase is used in [AB16]
to recover pebbles that were discarded during the last
light phase. Balloon phases, unlike light phases, can
be memory intensive. Therefore, to minimize cumu-
lative memory usage it is imperative to minimize the
running time of the balloon phase. In [AB16] each
balloon phase is (pessimistically) assumed to run for
exactly d steps, where d ≥ depth(Gσ,τ − S). We use
a simple observation to reduce the cost incurred during
balloon phases. The observation is that most balloon
phases never need to run for the full d steps to recover
the necessary pebbles for the next light round. If we
begin a balloon phase on round i, where node i is in
layer Lj with j = � i×#layers

N �, then we only need to
recover pebbles on nodes in layers L1, . . . , Lj during

the balloon phase. If we remove nodes in the set S and

layers L>j =
⋃N/#layers

k=i+1 Lk from the graph then we

have depth
(
Gσ,τ − S − L>j

) ≤ j × gap. Thus, the
balloon phase will only need to run for j × gap steps.
On average a balloon phase will only needs to run for
about d/2 steps.

5.3. Incorporating Memory-Reducing Attack

Our second observation is that the attacks of [AB16]
can be combined with the opportunistic memory-
reducing attacks of [BCGS16]. The attack of [BCGS16]
was based on the simple observation that you could
discard the pebble on node v as soon as we finish
pebbling the last of v’s children. While this attack only
reduces memory consumption by a constant factor (in
contrast to the asymptotic reductions in [AB16]), the
constant factors were large enough that Argon2i was
updated in response. In Argon2i-B each new block that
is being stored in memory is first XORed with the
existing block in memory that is being replaced. In the
language of graph theory this means that each node
v > σ has an additional parent v − σ, where σ is the
size of the memory window. This modification ensures
that in the attack of [BCGS16] we cannot discard a
pebble early (e.g., for each node v we will not finish
pebbling v’s children until the exact moment that v is
outside the memory window).

However, if we are running the attack of [AB16]
the current memory window will be ‘interrupted’ by a
balloon phase. We can potentially discard the pebble on
v well before we have pebbled the last of v’s children
if we know that we have an opportunity to recover v
before it is needed again. In particular, if we know that
we can recover a pebble on node v during the next
balloon phase we can discard the pebble on node v as
soon as it is no longer needed for the current light phase
or as soon as we finish pebbling the last of v’s children
that we need to pebble in the current light phase. More
formally, if the light phase starts at time t and ends at
time t+ g− 1 then we can discard a pebble from node
v /∈ S during round t′ < t+ g− 1 if ∀u ∈ [t′, t+ g− 1]
we have v /∈ parents(u).

5.4. Attack Implementation

We developed C code to simulate the [AB16] attack
on randomly generated Argon2i-A, Argon2i-B and BH
instances. Our code is available at GitHub repository
https://github.com/ArgonAttack/AttackSimulation.git.
Our implementation includes the additional
optimizations described in this section. Specifically,
our code base includes the following procedures:

149

1) GenerateRandom()DAG. Procedures to sam-
ple a random Argon2i-A, Argon2i-B or BH
DAG Gσ,τ given memory parameter σ and the
parameter τ specifying the number of passes
over memory.

2) SelectSetS. A procedure to select the depth
reducing set S for an input DAG Gσ,τ given
input parameters gap and #layers.

3) Attack. Procedures to simulate the optimized
[AB16] attack. Specifically, Attack simulates
one iteration at a time and measure cumula-
tive energy costs (memory usage + calls to
hash function). Attack takes as input the DAG
Gσ,τ , the depth reducing set S along with the
associated parameters gap and #layers and a
parameter g which specifies the length of each
light phase. The procedure returns an (upper
bound11) on the cost of the optimized [AB16]
attack.

4) SearchForg. A procedure to search for the
best g value. The procedure takes as input a
DAG G, the depth reducing set S along with
the associated parameters gap and #layers.
The procedure then uses an iteratively refin-
ing grid search heuristic to search for the
optimal parameter g to use in the attack.
In more detail, we start with a large range
[gMin, gMax] of potential g values containing
the point g = n3/4 (the value of g used in
the theoretical attacks of [AB16])12. In the
first iteration we repeatedly run Attack to
measure attack costs when we instantiate g
with each value in the set {gMin, gMin +
gStep, . . . , gMin + 8 · gStep, gMax} where
gStep = gMax−gMin

9 . Suppose that the value
g = gMin+ i ·gStep yielded the lowest attack
cost. Then in the next iteration we would set
gMin = max{gMin, gMin + (i − 1)gStep}
and we would set gMax = min{gMax, (i +
1)gStep}. We repeat this process 6 times in
total and return the best value of g that we
found.

11. While the real-world attack would be carried out on a massively
parallel machine the simulations were carried out on a single-threaded
process. To make the Attack simulation as efficient as possible
we allowed the Attack procedure to overestimate the cost of the
attack in order to improve efficiency. In particular, the procedure
could occasionally double count the number of pebbles on (up to)
depth

(
Gσ,τ−S

)
parent nodes during a balloon phase. These double

counted costs comprise a very small fraction of the total energy cost.
Thus, we may overestimate the cost of the attack, but only very
slightly. In any case double counting these few pebbles can only
cause us to underestimate attack quality.

12. We also require that gMin ≥ gap × #layers so that we
ensure that the depth of the graph does not exceed the length of a
balloon phase.

5) SearchForSParameters. A procedure to
search for the best pair of parameters gap
and #layers which control the construction
of the set S. The procedure takes as input
the DAG G and a parameter g. The pro-
cedure SearchForSParameters is similar to
SearchForg except that the iteratively refining
grid search is carried out in two dimensions.
For each pair of parameters (gap,#layers)
we must run SelectSetS(gap,#layers) to
construct the depth-reducing set S before we
can call Attack to simulate the attack.

6) SearchForSParametersWithParallelism.
Similar to SearchForSParameters except
that the procedure additionally takes as input a
parallelism parameter. The parameters gap and
#layers are chosen subject to the constraint
that p ≈ N/(#layers(gap + 1)) so that
the attack uses parallelism p. The iteratively
refining grid search is carried out in one
dimension13.

5.4.1. Advantages of Simulation Over Theoretical
Analysis. By simulating the [AB16] attack we need
not rely on pessimistic assumptions to upper bound
attack costs. For example, in the theoretical analysis
of [AB16] they assume that the pebbling algorithm has
to pay to keep pebbles on every node in the depth-
reducing set S during every pebbling round (total cost:
n|S|). While this assumption may be necessary for a
theoretical analysis (the set S is only defined once we
specify a specific instance G), it overestimates costs
paid during many pebbling rounds (especially during
early pebbling rounds when we will have very few
pebbles on the set S).

6. Analysis & Implications

In the simulation of [AB16], after fixing iMHF
parameters τ and n = στ we first generated a random
instances of the Argon2i-A (resp. Argon2i-B, BH) DAG
Gσ,τ . We then temporarily set g = n3/4 (the value
of g used in the theoretical analysis from [AB16])
and used the procedure SearchForSParameters (2-
dimensional iteratively refined grid search) to find good
values for the attack parameters #layers and gap. Once
we have #layers and gap we then ran SearchForg
(1-dimensional iteratively refined grid search) to find a
good value for the attack parameter g. Once we have all
of the attack parameters g, gap,#layers we sampled 9
additional random Argon2i-A DAGs (resp. Argon2i-B,

13. Once we fix one of the parameters (e.g., #layers) the other
parameter (e.g., gap) is fully specified.

150

BH), ran SelectSetS to generated a depth reducing
set S for each DAG and measured using our simulation
algorithm Attack. In addition to recording attack costs
for each iMHF instance we also recorded the optimal
attack parameters, required parallelism and the size of
the depth reducing sets constructed.

6.1. Memory Consumption and Runtime

Recall that memory parameter σ denotes the table
size used by the honest algorithm and τ denotes the
number of passes over that table. Then n = στ is
(roughly) the number of calls the honest algorithm
makes to the hash function and so is a reasonable
approximation of the runtime of the honest algorithm.

For the Argon2i-B and BH iMHFs we simu-
lated our attack for each of pair of parameters
n ∈ {217, 218, 219, 220, 221, 222, 223, 224} and τ ∈
{1, 3, 4, 6, 10, 20}. We denote the label size (in bytes)
by B. For example the Black2b based hash function of
Argon2 has an output of size B = 1024 while BH we
use B = 512 as this is the output of all considered
hash functions in that work (with the exception of
SHA3 where a B = 1344 is used). Note that the
actual memory usage (by the honest algorithm) is then
M = Bσ = Bn/τ . Thus for Argon2i-B, when τ = 1,
then n = 224 nodes corresponds to M = 16GB of
memory usage, but when τ = 10, n = 224 nodes
corresponds to M = 1.6GB of memory usage. We
also simulated our attack on τ -pass Argon2i-A for
τ ∈ {1, 3, 4} to compare Argon2i-A and Argon2i-B.

6.2. Argon2i-B

Figure 1 shows attack quality against Argon2i-B for
different memory parameters σ.14. The plots demon-
strates that the attacks are effective even for “pes-
simistic” parameter settings (e.g., at τ = 6 passes over
1GB of memory the attack already reduces costs by a
factor of 2). To prevent any attack at 1GB of memory
we would need to select τ > 10. While attack quality
decreases with τ , we stress that it is undesirable to
pick larger values of τ in practice because it increases
running time by a factor of τ . Human users are not
known for their patience during authentication. If we
select a larger value of τ then we must select σ small
enough so that we can make τ passes over memory
before the user notices or complains (e.g., after 1–2
seconds).

14. Each data point measures the average attack quality over 10
random samples. We do not include error bars because attack cost
was showed minimal variation across all 10 samples in all iMHF
instance that we tried. For example, the energy cost of our attack on
all 10 graphs matched on first 2-3 significant digits.

The IRTF proposal [BDKJ16] selects τ as follows:
First determine the maximum memory usage M that
each instance of Argon2i-B can afford (setting σ =
M/B) as well as the maximum allowable running time
t that each call can afford. Then select the maximum
τ such that we can complete τ passes through M
memory in time t. This procedure could easily result
in the selection of the parameter τ = 1 pass through
memory (e.g., in settings where lots of memory is
available and/or users are less patient). In this case
attack quality is approximately 5 at 1GB of memory
and approximately 9.3 at 16GB (the latter data point is
outside the visible range of Figure 1).

At first glance our analysis may seem to suggest that
one should select τ large since E-quality(A) increases
as τ decreases. However, we stress that maximizing
total cost ecR(A) for an attacker is not necessarily
equivalent to minimizing attack quality E-quality(A).
In particular, E-quality(A) simply measures the ratio
between the cost of our attack and the cost of the naive
evaluation algorithm where the latter cost increases as
τ decreases. When memory is not a limited resources
it may be reasonable to simply set τ to maximize the
cost of the attack ecR(A) = ecR(N)/E-quality(A)
subject to the constraint that τσ = n (e.g., in a setting
where total running time is limited by user patience,
but memory is not a limiting factor). We have

ecR(A) ≈ n2

(
1
τ − 1

2τ2

)
E-quality(A)

so that it is not necessarily optimal to maximize τ .
Figure 2 plots ecR(A)/n as τ varies for n ∈

{218, 220, 222}. When n = 216 we achieve the maxi-
mum value of ecR(A) when τ = 4 and when n = 222

the maximum value is achieved when τ = 10.

6.3. Argon2i-A vs. Argon2i-B

Figure 3 compares attack quality against both ver-
sions of Argon2i. On a positive note the results show
that the updated version of Argon2i is indeed somewhat
less susceptible to the attacks of [AB16]. On a negative
note the attacks on Argon2i-A, the version from the
password hashing competition, are quite strong. For
example, even at τ = 4 passes through memory (which
increases running time by a factor of 4) we get an attack
with quality > 4. Meaning that the adversary can reduce
his energy costs by a factor of 4.
Comparison with [AB16]. To make an explicit com-
parison with [AB16] consider Argon2i-A with τ = 3-
passes and look at [AB16, Figure 1] (similar com-
parisons apply for 1,4,7,10 passes). [AB16] achieves
E-quality(A) = 2 around n = 223 (equivalently,

151

σ = 223/3 memory blocks or 2.8GB). By compari-
son, we achieve E-quality(A) = 2 against Argon2i-
A for n ≈ 3 × 216 (equivalently,σ = 216 memory
blocks or 66MB). We believe this to be a signifi-
cant reduction in the memory size for which attack
E-quality(A) ≥ 2! Arguably, in practice one would very
rarely use >2.8GB of memory for password hashing,
but one would always want to use at least 66MB. As we
previously noted [AB16] does not analyze Argon2i-B
so we cannot draw explicit comparisons. However, we
note that our attack on Argon2i-B still achieves attack
quality ≥ 2 around n ≈ 3×218 (equivalently,σ = 218 or
262MB). Thus, our attack A on the improved Argon2i-
B achieves higher attack quality E-quality(A) than the
[AB16] attack on Argon2i-A.

6.4. Balloon Hashing

Figure 4 shows attack quality against the BH iMHF
scheme of [BCGS16] as memory usage M varies. We
remark that the design of BH is flexible and that it
can be instantiated with many different hash functions.
Consequently, the block size may vary depending on
the instantiation. As mentioned above we use label size
of B = 512B to generate our plots (i.e., instantiated
with Blake2b)15 and that we assume that the indegree
parameter δ = 3. Thus, when τ = 1, setting n = 224

corresponds to M = 8GB of memory usage in com-
parison to M = 16GB for Argon2i-B with the same
parameters. The attacks of [AB16] perform particularly
well when the block size is small. In particular, the
(potentially) smaller blocksize of BH is a disadvantage
(in comparison with Argon2i-B) as it means that we
need to select a higher value of σ to achieve the same
memory usage and the attack quality of [AB16] increase
rapidly with n. This would make BH less resistant to
the attacks than Argon2i-B.

6.5. Attack Parameters
Table 1 shows how the parameters of our attack

(e.g., g,#layers, gap parallelism p) vary with memory
usage M and τ . A few interesting trends emerge. First,
the maximum level of parallelism needed for any of the
Argon2i-B instances that we tried was 1, 324 (τ = 1-
pass Argon2i-B with M = 16GB) and for Argon2i-A
parallelism never exceeded 1, 496 (τ = 1-pass Argon2i-
A with M = 16GB). In Section 6.6 we explore
how attack quality is affected if we explicitly upper
bound parallelism. Second, the amount of parallelism p
needed tends to increase with σ, but decreases as we

15. If BH was instantiated with a hash function that works over
B = 512 bit block sizes then the graphs would be shifted left three
places. Similarly, if BH was instantiated with block size B = 1KB
then the graph would be right shifted one place.

12 14 16 18 20 22
0

1

2

3

4

5

Memory Parameter: log2(σ) (M = σKB)

A
tt

ac
k

Q
u
al

it
y

τ = 1

τ = 3

τ = 4

τ = 6

τ = 10

τ = 20

Figure 1: Argon2i-B Attack Quality

increase the number of passes through memory τ . For
example, τ = 4-pass Argon2i-B at M = 1GB only
uses parallelism 400. Interestingly, the size |S| of the
depth reducing set did not seem to vary much as τ
increases (holding n = στ constant)16. Interestingly,
the procedure SearchForSParameters tends to select
the parameters #layers and gap so that #layers is
several times larger than gap (in the theoretical analysis
of [AB16] these parameters were equated). As expected
the attack parameters gap, L and g all seem to increase
with n = στ , the number of nodes in the DAG Gσ,τ .
The Bandwidth-On-Chip column estimates the amount
of memory bandwidth on chip necessary to support p
cores (under the assumption that we need 1.5GB/s
per core). In the worst case (M = 1GB and τ = 1
memory passes) we need on-chip bandwidth of about
2 TB/s, a value that may be plausibly achieved in
the near future (there is currently a chip that achieves
memory bandwidth of 1 TB/s). In most other instances
the required bandwidth is significantly reduced (e.g.,
0.6TB/s for 4-pass Argon2i-B at 1GB).

6.6. Controlling Parallelism

We now explore how attack quality is affected
when parallelism is limited (e.g., due to limitations
on on-chip bandwidth). We run two experiments. The
first involves Argon2i-A and Argon2i-B and the sec-
ond involves Argon2i-A. In the first experiment we

16. |S| does seem increase slightly with τ , but this trend is hidden
because Table 1 only reports the two most significant digits of |S|.
Furthermore, we observed the opposite trend (|S| decreases slightly
with τ) for the BH iMHF. It is also worth noting that for each iMHF
instance (τ, σ) that we tested we sampled 10 distinct graphs Gσ,τ

and we had to sample different sets S for each graph. We found
that the size of the |S| never varied greatly across these 10 different
random instances. In fact, if we only consider the two most significant
digits then the size of |S| was always the same.

152

iMHF N τ M g #layers gap p |S| Bandwidth-On-Chip (TB/s)

Argon2i-B 24 1 16GB 381, 376 264 47 1, 324 1.0e6 1.986 TB/s
Argon2i-B 22 4 1GB 93, 237 228 45 400 3.1e5 0.6 TB/s
Argon2i-B 24 4 4GB 220, 808 388 47 901 1.0e6 1.352 TB/s
Argon2i-B 24 6 2.7GB 223, 702 512 47 683 1.0e6 1.025 TB/s
Argon2i-B 24 10 1.6GB 218, 137 512 78 415 1.0e6 0.6225 TB/s
Argon2i-A 20 4 256MB 65, 555 113 36 251 4.7e4 0.376 TB/s
Argon2i-A 22 4 1GB 155, 394 156 47 561 1.4e5 0.8415 TB/s
Argon2i-A 24 4 4GB 357, 096 233 75 948 3.8e5 1.422 TB/s

BH 24 1 8GB 357, 096 170 65 1, 496 4.2e5 2.244 TB/s
BH 24 4 2GB 215, 223 233 75 948 3.8e5 1.422 TB/s
BH 24 10 0.8GB 192, 915 388 78 548 3.7e5 0.822 TB/s

TABLE 1: Best Attack Parameters Found (Selected Argon2i-A,B and BHLin Instances).

0 5 10 15 20
0

1

2

3

4

·105

Memory Parameter: τ = n/σ

A
tt

ac
k

C
o
st

ec
R
(A

)/
n

. n = 218

n = 220

n = 222

Figure 2: Argon2i-B Attack Cost

16 18 20 22 24
0

2

4

6

8

10

Memory Parameter: log2(σ) (M = σKB)

A
tt

ac
k

Q
u
al

it
y

Argon2i-A

Argon2i-B

τ = 1

τ = 3

τ = 4

Figure 3: Argon2i-A vs. B.

fix memory M = 1GB (σ = 220) and select p ∈
{25, 50, 100, 200, 500, 750, 1000} and τ ∈ {1, 4, 7, 10}
and generate a random Argon2i-B (resp. Argon2i-A) in-
stance Gσ,τ . Once again fixing g = n3/4 we use the pro-
cedure SearchForSParametersWithParallelism to
find good attack parameters gap and #layers, subject
to the condition that (gap+ 1)#layers = n/p so that
the attack uses parallelism exactly p. We then use the

12 14 16 18 20

1

2

3

4

5

Memory Parameter log2(σ) (M = 2σKB)

A
tt

ac
k

Q
u
al

it
y

τ = 1

τ = 3

τ = 4

τ = 6

τ = 10

τ = 20

Figure 4: Balloon Hash Attack Quality

0 200 400 600 800 1,000

1

2

3

4

5

Parallelism

A
tt

ac
k

Q
u
al

it
y

Argon2i-A

Argon2i-B

τ = 1

τ = 4

τ = 7

τ = 10

Figure 5: Argon2i Attacks with Bounded Parallelism
(M = 1GB)

procedure SearchForg to find a good parameter g.
Finally, we generate 10 instances of graphs Gσ,τ , run
SelectSetS to generate the depth-reducing set S for
each instance and run Attack to find the cost of each
attack. Figure 5 shows the results of this experiment.

The second experiment is similar except that we
use Argon2i-A and we fix runtime n = 224 instead of
memory. We select p ∈ {25, 50, 100, 200, 500, 1000}

153

0 200 400 600 800 1,000

1

2

3

4

5

Parallelism

A
tt

ac
k

Q
u
al

it
y

τ = 1

τ = 4

τ = 7

τ = 10

Figure 6: Argon2i-A (n = 224,M = n/τKB)

and τ ∈ {1, 4, 7, 10} and generate a random Argon2i-B
instance Gσ=n/τ,τ . We use the same procedures
SearchForSParametersWithParallelism and
SearchForg to find our attack parameters
g, gap,#layers before simulating our attack. Figure 6
shows the results of this second experiment.

6.7. Discussion

In Figure 6 attack quality (almost) monotonically
increases with parallelism (excluding the plot τ = 10-
pass which peaks at p = 500). Notice that attack quality
increases rapidly with p when p is small, but this rate of
increase slows dramatically as p increases. In Figure 5
attack quality for Argon2i-B peaks at around p = 200
and often starts to decrease as parallelism increases af-
ter this point. It may seem surprising that attack quality
decreases with parallelism, but remember the proce-
dure SearchForSParametersWithParallelism en-
sures that we construct the set S in such a way that
we need parallelism exactly p. Thus, the plots are sug-
gesting that the optimal attack will not use parallelism
p > 200 (whether or not we control for parallelism).
In this case the attack could be implemented on a chip
with only 300GB/s of memory bandwidth (using the
same assumption that we need 1.5GB/s of bandwidth
per core).

6.8. Multiple Lanes

Thus, far in our analysis of Argon2i-A and Argon2i-
B we have focused on the single-threaded version of the
iMHFs. In this section we discuss to possible ways that
an iMHF could be extended to support parallelism: a
trivial extension and the more-detailed approach taken
by Argon2i. Surprisingly, we find that the trivial exten-
sion offers better resistance to the [AB16] attacks.

6.8.1. Trivial Extension. Given a single-threaded
iMHF the easiest way to support parallelism p > 1

would have been evaluate p independent instances of
the iMHF in parallel and then hash the final block from
each iMHF instance. More specifically, given parame-
ters τ, σ and p each individual iMHF instance would
have memory parameter σ/p and make τ passes over
memory. This solution does give the adversary an easy
time-memory trade-off. Namely, an adversary with σ/p
memory could still evaluate the iMHF, but it would also
increase his running time by a factor of p so this attack
does not reduce overall energy costs or AT complexity.
Because energy complexity scales linearly with the
number of instances being computed, attack quality
against the multi-threaded iMHF with parameters τ, σ
and p will be equal to the attack quality on the single
threaded variant of the iMHF with parameters τ, σ/p.
Thus, increasing parallelism p will increase resistance
to the [AB16] attacks because their attack quality grows
with σ.

6.8.2. Argon2i Approach. In an attempt to avoid this
time-memory trade-off the Argon2i designers took a
different approach. They divide memory into p lanes
each with space for σ/p node labels and each lane
is further divided into 4 slices. Each thread will be
responsible for filling in one lane, but the value of a
node in one lane is allowed to depend on the values of
nodes in other lanes. In particular, to pick the parent of
a node v we first select a lane uniformly at random, and
then we pick a random parent from that lane according
to a non-uniform distribution that is specified in the
IRTF proposal [BDKJ16] (the exact specification of the
distribution is not important here). To prevent blocking
they further require that the i’th node in a lane cannot
be dependent on parent node from another slice if the
parent node is in the same ‘slice’ of memory, where
each memory slice contains σ/(4p) nodes in each lane.
Loosely, this means that if i’s parent is the j’th node
then i− j must be somewhat large (about σ/(4p)).

6.8.3. Analysis and Discussion. We observe that the
approach taken in the design of Argon2i can actually de-
creases resistance to the [AB16] attack when compared
with the trivial approach to supporting parallelism. Re-
call that during the construction of the depth-reducing
set S we do not need to add a node v to the set S if
its parent is in the same layer. However, the parent of
node v will come from a different lane with probability
(p − 1)/p and whenever we select v’s parent from a
different lane we are almost guaranteed that v’s parent
will not be in the same layer because the node must
occur in an earlier memory slice.17

As a concrete example we set τ = 4, σ = 217 and
p = 4 (n = 219 = τσ) and generated random Argon2i-

17. Typically, we will have n/#layers < σ/(4p) (the size of an
individual layer).

154

B DAGs. We achieve attack quality > 1.18 even with
minimal effort to optimize the parameters used in the
attack 18. By comparison, if Argon2i-B had followed
the trivial approach to support parallelism then [AB16]
would yield no attack against Argon2i-B with these
particular parameters (even with our optimizations).
Specifically, we would have had 4 independent 4-pass
Argon2i-B instances with memory parameter σ = 217.
The best attack quality we found in the previous section
on 4-pass Argon2i-B with σ = 217 was 0.89 < 1. We
conjecture that attack quality on multi-lane versions of
Argon2i-A and Argon2i-B can be further improved with
additional effort to optimize the parameters used in the
attack and the heuristics used to construct the depth-
reducing set S. We leave this an interesting challenge
for future research. In this paper we have chosen to
focus on the single-lane variations of Argon2i-A and
Argon2i-B since, combined with the trivial parallelism
approach, they lead to iMHFs that are more resistant to
the Alwen-Blocki attack.

7. Conclusions

We proved that the Alwen-Blocki attack [AB16]
on Argon2i-A can be extended to Argon2i-B, and we
provided several novel techniques to improve this at-
tack. It was previously believed that the Alwen-Blocki
attack [AB16], while it does yield large asymptotic
reductions in energy cost as σ grows large, was not
relevant for practical parameter ranges (e.g., ≤ 16GB
of memory). We use simulations to show that, with
our optimizations, the Alwen-Blocki attack [AB16] is
already relevant for practical parameter ranges. In fact,
even for ‘pessimistic’ parameter settings (τ = 6) the
attack can reduce costs by a factor of 2 when using
just 1GB of memory. We also showed that when on-
chip memory bandwidth limits parallelism we can ad-
just attack parameters accordingly without significantly
decreasing attack quality. However, our results show
that Argon2i-B offers better resistance to the attack
than Argon2i-A and than the balloon hashing algorithm.
Ultimately, there is a need for continued cryptanalysis
of iMHFs such as Argon2i-A and Argon2i-B as there
are many other attack heuristics which could potentially
yield additional cost reductions for the attacker in prac-
tice. Could our attack on Argon2i-B be improved in
the future? Can we lower bound the energy complexity
necessary to evaluate Argon2i-B?

In contrast to general cryptanalysis, in password
cracking for real world password distributions a small
reduction in cost can significantly increase the frac-
tion of cracked passwords. A rational adversary stops

18. We found the attack parameters gap = 32, #layers = 256
and g = 13, 970 by hand.

attacking when marginal guessing costs (i.e., cost to
evaluate iMHF) exceed marginal benefits (e.g., the value
of the cracked password times the probability that the
next password guess is correct). Reducing iMHF costs
(e.g., by a factor of 10) can greatly increase % of
compromised passwords in an offline attack (e.g., by
up to 60% [BD16, Figure 1]). It remains an interesting
direction for future research to understand the concrete
financial costs involved in implementing iMHF attacks
such as the Alwen-Blocki attack [AB16] in hardware.

References

[AB16] Joël Alwen and Jeremiah Blocki. Efficiently Computing
Data-Independent Memory-Hard Functions. In Advances
in Cryptology CRYPTO’16, pages 241–271. Springer,
2016.

[AS15] Joël Alwen and Vladimir Serbinenko. High Paral-
lel Complexity Graphs and Memory-Hard Functions.
In Proceedings of the Eleventh Annual ACM Sym-
posium on Theory of Computing, STOC ’15, 2015.
http://eprint.iacr.org/2014/238.

[Aum16] JP Aummason. What’s up argon2? BSidesLV 2016, 2016.
Slides Available at https://speakerdeck.com/veorq/whats-
up-argon2.

[BCGS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter.
Balloon hashing: Provably space-hard hash functions
with data-independent access patterns. Cryptology ePrint
Archive, Report 2016/027, Version: 20160601:225540,
2016. http://eprint.iacr.org/.

[BD16] Jeremiah Blocki and Anupam Datta. CASH: A cost
asymmetric secure hash algorithm for optimal pass-
word protection. In IEEE 29th Computer Secu-
rity Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, June 27 - July 1, 2016, pages 371–386, 2016.
http://arxiv.org/abs/1509.00239.

[BDK15] Alex Biryukov, Daniel Dinu, and Dmitry Khovra-
tovich. Fast and tradeoff-resilient memory-hard
functions for cryptocurrencies and password hashing.
Cryptology ePrint Archive, Report 2015/430, 2015.
http://eprint.iacr.org/2015/430.

[BDK16] Alex Biryukov, Daniel Dinu, and Dmitry Khovra-
tovich. Argon2 password hash. Version 1.3, 2016.
https://www.cryptolux.org/images/0/0d/Argon2.pdf.

[BDKJ16] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and
Simon Josefsson. The memory-hard Argon2 password
hash and proof-of-work function. Internet-Draft draft-irtf-
cfrg-argon2-00, Internet Engineering Task Force, March
2016.

[Ber] Daniel J. Bernstein. Cache-Timing Attacks on AES.

[BK15] Alex Biryukov and Dmitry Khovratovich. Tradeoff crypt-
analysis of memory-hard functions. Cryptology ePrint
Archive, Report 2015/227, 2015. http://eprint.iacr.org/.

[CGBS16] Henry Corrigan-Gibbs, Dan Boneh, and Stuart Schechter.
Balloon hashing: Provably space-hard hash functions
with data-independent access patterns. Cryptology ePrint
Archive, Report 2016/027, Version: 20160114:175127,
2016. http://eprint.iacr.org/.

155

[DKW11] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs.
One-time computable self-erasing functions. In Yuval
Ishai, editor, TCC, volume 6597 of Lecture Notes in
Computer Science, pages 125–143. Springer, 2011.

[FLW13] Christian Forler, Stefan Lucks, and Jakob Wenzel.
Catena: A memory-consuming password scrambler. IACR
Cryptology ePrint Archive, 2013:525, 2013.

[HP70] Carl E. Hewitt and Michael S. Paterson. Record of the
Project MAC Conference on Concurrent Systems and Par-
allel Computation. chapter Comparative Schematology,
pages 119–127. ACM, New York, NY, USA, 1970.

[Kho16] Dmitry Khovratovich. Re: [Cfrg] Balloon-
Hashing or Argon2i. CFRG Mailinglist,
June 2016. https://www.ietf.org/mail-
archive/web/cfrg/current/msg08282.html.

[Per09] C. Percival. Stronger key derivation via sequential
memory-hard functions. In BSDCan 2009, 2009.

[PHC] Password hashing competition. https://password-
hashing.net/.

[Tho79] Clark D. Thompson. Area-time complexity for VLSI. In
Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch,
Walter A. Burkhard, and Alfred V. Aho, editors, Proceed-
ings of the 11h Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 81–88. ACM, 1979.

[Wal15] Mark Walton. Ars Technica Article: The R9 Fury is
AMD’ss best card in years, but just who is it for?
http://bit.ly/2aYrZ2j (Retrieved 8/5/2016), 2015.

[Wal16] Mark Walton. Ars Technica Article: Graphics cards with
1024GB/s bandwidth? Samsung begins HBM2 produc-
tion. http://bit.ly/2b0ryRE (Retrieved 8/5/2016), 2016.

Appendix

The [AB16] Algorithm

The following figures are taken almost verbatim
from [AB16] (after appropriate notational changes) and
gives the high level pseudo-code for the attack described
in that work and implemented in this one.

Here need and keep are defined in Algorithm 2
and Algorithm 3 respectively. The notation Li denotes
the ith layer of nodes as in Section 5.1 and these layers
are further divided into segments of gap+1 consecutive
nodes. Intuitively, the function need specifies that dur-
ing a balloon phase we will fill in each of these gaps in
parallel one node at a time moving on to layer Li+1 as
soon as we completely finish repebbling layer Li. The
function keep essentially allows us to discard pebbles
during a balloon phase as soon as they pass outside the
current memory window (e.g. every node in Li+1 is at
least σ nodes ahead of v then we can discard a node v
as soon as we finish re-pebbling layer Li).

Algorithm 1: GenPeb (G, S, g, d)

Arguments : G = (V,E), S ⊆ V ,
g ∈ [depth(G− S), |V |],
d ≥ depth(G− S)

Local Variables: n = |V |
1 for i = 1 to n do
2 Pebble node i.
3 l← �i/g� ∗ g + d+ 1
4 if i mod g ∈ [d] then // Balloon

Phase
5 d′ ← d− (i mod g) + 1
6 N ← need(l, l + g, d′)
7 Pebble every v ∈ N which has all

parents pebbled.
8 Remove pebble from any v �∈ K where

K ← S ∪ keep(i, i+ g) ∪ {n}.
9 else // Light Phase

10 K ← S ∪ parents(i, i+ g) ∪ {n}
11 Remove pebbles from all v �∈ K.
12 end
13 end

Algorithm 2: Function: need(x, y, d′)

Arguments: x, y ≥ x, d′ ≥ 0
Constants : Pebbling round i, g, gap.

1 j ← (i mod g) // Current Layer is
L�j/gap�

2 Return L�j/gap� ∩
{
i · gap+ j i ≤ n

gap

}

On the XOR-and-High-Indegree Trick

At a high level the current Balloon Hashing
DAG [BCGS16] has similar structure to the Argon2i
iMHFs (the underlying hash functions are different).
Both DAGs have indeg = 3. However, the original
version of the Balloon Hashing algorithm (BHLin)
[CGBS16] had indeg = 21. Besides v − 1 a node v
had 20 other parents chosen uniformly at random so
that the label of node v depends on up to 21 different
labels. Of course, applying an iterative Merkle-Damgard

Algorithm 3: Function: keep(x, y)

Arguments: x, y ≥ x
Constants : Pebbling round i, g, gap, #layers,

n, σ.
1 j ← (i mod g)
2 �← �(j/gap� // Current Layer
3 Return L≥�−	σ#layers

n

156

construction to hash these 21 labels would result in
a dramatic slowdown19 BH-DoubleBuffer [CGBS16]
avoided Merkle-Damgard by applying a cheap linear
operator (e.g., XOR) to the 21 labels before we apply
the underlying hash function.

It seems like this trick could potentially make at-
tacks of Alwen and Blocki [AB16] much less efficient
in practice. In particular, the attack keeps pebbles on all
of the parents of the next g nodes that we want to pebble
before the end of the light phase. However, there are up
to 20g parents so the memory costs could be quite high
in practice. The increased indegree will also increase
the probability that a node v needs to be included in
the depth-reducing set (v needs to be included if any of
the edges from its parents fail to make progress in its
layers). Does this XOR trick increase resistance to the
attacks of Alwen and Blocki [AB16]?

To address this question we introduce a new hypo-
thetical iMHF called iXOR. iXOR is Argon2i-A with
the modification that we pick 20 random parents for
each node v in addition to v − 1 and XOR the labels
together before applying the underlying hash function.
iXOR is similar in spirit to the old balloon hashing
algorithm BH-DoubleBuffer [CGBS16]. We evaluate
our attack on iXOR so that we can isolate the effect
of the XOR trick on attack quality. Our goal is in
this section is to evaluate the effect of the XOR trick
on attack quality as we evaluate attack quality on the
current balloon hashing algorithm paper.

Figure 7 plots attack quality vs. memory against
the iXOR construction when instantiated with the same
hash function used in Argon2. The dotted lines plot
attack quality when we implement the attacks of Alwen
and Blocki [AB16] along with the other optimizations
described earlier in the paper. These plots seem to
indicate demonstrate that the XOR hash trick dramati-
cally increases attack quality in practice. However, we
introduce an additional optimization called XOR hash
which dramatically improves attack quality.

1. XOR Compression

We can dramatically improve attack quality by using
a trick we call XOR hash. The basic observation is
that instead of storing the labels for up to 20g parents
we observe that we can compress these labels at the
end of the balloon phase. For each node v that we
want to pebble in the next light phase we do not need
to store the labels of all of v’s parents we can just

19. The newest version of the Balloon Hashing algorithm does
apply Merkle-Damgard, but because the newest Balloon Hashing
algorithm has indeg = 3 slowdown is less of an issue.

store the XOR of these labels20. While this optimization
doesn’t change asymptotic performance it significantly
improves attack quality for practical parameter ranges.

2. Discussion

For the purposes of comparison, the green line in
Figure 7 shows attack quality against Argon2ib. The
plot shows that attack quality against 3-pass iXOR
and 6-pass Argon2ib are roughly equivalent. The 3-
pass iXOR DAG has 3 · 2m nodes while the 6-pass
Argon2ib nodes has 6 · 2m nodes. Thus, the XOR trick
from [CGBS16] potentially has some benefit. If it takes
the same amount of time to label nodes in iXOR and
Argon2ib then 3-pass iXOR would be preferable to 6-
pass Argon2i since it runs twice as fast and consumes
the same memory. In practice, this may not always
be the case. To compute each new label in iXOR
we need to load 20 new 1KB blocks from memory
and XOR them before applying the hash function. For
Argon2ib we only need to load 1 new 1KB block from
memory before applying the hash function. If memory
bandwidth is not a bottleneck then 3-pass iXOR may
be preferable to 6-pass Argon2i. Otherwise, 6-pass Ar-
gon2i may actually run faster than 3-pass iXOR.

14 16 18 20 22

1

2

3

4

5

Memory Paremeter: log2(σ) (M = σKB)

A
tt

ac
k

Q
u
al

it
y

XOR Compression

No Compression

τ = 1

τ = 3

Argon2ib (τ = 6)

Figure 7: iXOR Attack Quality (indeg = 21)

20. It is possible that we won’t have all of these parent labels
available when the balloon phase finishes (i.e., because some of v’s
parents will be pebbled for the first time in the next light phase).
However, this is not a problem as we can simply store the XOR of
all known parent labels and XOR this block with the remaining parent
label(s) as they become available in during the light phase.

157

