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Abstract—We put forward a new framework that makes it
possible to re-write or compress the content of any number
of blocks in decentralized services exploiting the blockchain
technology. As we argue, there are several reasons to prefer an
editable blockchain, spanning from the necessity to remove in-
appropriate content and the possibility to support applications
requiring re-writable storage, to ‘“‘the right to be forgotten.”

Our approach generically leverages so-called chameleon
hash functions (Krawczyk and Rabin, NDSS ’00), which allow
determining hash collisions efficiently, given a secret trapdoor
information. We detail how to integrate a chameleon hash
function in virtually any blockchain-based technology, for both
cases where the power of redacting the blockchain content is in
the hands of a single trusted entity and where such a capability
is distributed among several distrustful parties (as is the case
with Bitcoin).

We also report on a proof-of-concept implementation of a
redactable blockchain, building on top of Nakamoto’s Bitcoin
core. The prototype only requires minimal changes to the way
current client software interprets the information stored in the
blockchain and to the current blockchain, block, or transaction
structures. Moreover, our experiments show that the overhead
imposed by a redactable blockchain is small compared to the
case of an immutable one.

1. Introduction

The cost of the bankruptcy of Lehman Brothers in
2008 to the United States is estimated in trillions [55] and
triggered a chain of events that sent several countries into
economic recession or depression. One contributor to the
crisis was the centralized payment and monetary system
based on clearinghouses that act as intermediaries between
buyers and sellers and take on the risk of defaults. Unfortu-
nately, clearinghouses add a significant cost to any interbank
transactions and do not always operate transparently.

Bitcoin is an innovative technology that may allow banks
to settle accounts among themselves without relying on
centralized entities. It is considered the first decentralized
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currency system that works on a global scale. It relies on
cryptographic proofs of work, digital signatures, and peer-
to-peer networking to provide a distributed ledger (called
the blockchain) containing transactions. Digital currency is,
however, the simplest application of the blockchain tech-
nology. Bitcoin includes a scripting language that can be
used to build more expressive “smart contracts,” basically
cryptographically-locked boxes that can be opened if certain
conditions are verified. In addition, transactions can store
arbitrary data via the OP_RETURN mechanism.

The blockchain technology promises to revolutionize the
way we conduct business. Blockchain startups have received
more than $1bn [20] of venture capital money to exploit this
technology for applications such as voting, record keeping,
contracts, etc. Conventional services are centralized and do
not scale well. The blockchain allows services to be com-
pletely decentralized. There is no need to rely on, or trust,
a single organization. It is a disruptive technology that will
change the way money, assets and securities are currently
managed. Business agreements can be encoded as smart
contracts which in turn can handle their executions automat-
ically along with the arbitration of disputes, thus reducing
cost and providing more transparency. From a technology
point of view, the blockchain is equally revolutionary. It
provides for the first time a probabilistic solution to the
Byzantine generals problem, where consensus is reached
over time (after confirmations), and makes use of economic
incentives to secure the overall infrastructure.

Two approaches have emerged to facilitate the use of the
blockchain technology to implement decentralized services
and applications (what is referred to as Bitcoin 2.0). The
first “overlay” approach is to rely on the existing Bitcoin
blockchain and build a new framework on top of it. This
is done through transactions with OP_RETURN outputs
which are unspendable and do not need to be stored in
the UTXO database. The rationale of this approach is that
the Bitcoin blockchain already exists and is adopted by
many, which makes it inherently more secure and resilient.
However, certain constraints and constants set by the creator
of Bitcoin (Satoshi) impede some (but not all) applications.

@) CO‘ pute
1(!) I
& SOCIety



For instance, blocks are mined every 10 minutes on av-
erage, and the Bitcoin scripting language is not Turing-
complete. This works perfectly for the currency, but forces
other applications to get around these limitations through
cumbersome hacks. The second approach is to build an
alternative blockchain with all the desired features. This
approach is gathering momentum (see, e.g., Ethereum [25]),
and promises full decentralization. It enables very expressive
smart contracts that achieve a high degree of automation.

1.1. Motivation

The append-only nature of the blockchain is essential
to the security of the Bitcoin ecosystem. Transactions are
stored in the ledger forever and are immutable. This fits
perfectly with the currency system. However, we argue
that an immutable ledger is not appropriate for all new
applications that are being envisaged for the blockchain.
Whether the blockchain is used to store data or code (smart
contracts), there must be a way to redact its content in
specific and exceptional circumstances. Redactions should
be performed only under strict constraints, and with full
transparency and accountability. Some examples where a
redactable blockchain is desirable are outlined below.

(i) The ability to store arbitrary messages has already
been abused, and now the Bitcoin blockchain contains child
pornography, improper content, and material that infringes
on intellectual rights (see e.g., [31]). The intent of these
abuses is to disrupt the Bitcoin system, since users may
not be willing to participate and download the blockchain
for fear of being prosecuted for possession of illegal or
improper content on their computers. There are currently
only 8-10K full nodes that store the entire blockchain, and if
this number declines, the Bitcoin ecosystem may be severely
disrupted. Besides, improper content (gossip, pictures, etc.)
may affect the life of people forever if it is not removed
from the blockchain. Thus, appending new information is
not an option when old records become a liability.

(i1) Bitcoin 2.0 applications require re-writable storage.
Smart contracts and overlay applications may not work or
scale if the blockchain is immutable. A smart contract is
essentially a sequence of instructions that a miner is going
to run in exchange for compensation. Amending a contract
or patching code, by appending a new version of it, does
not scale and wastes precious resources.

(iii) Is our society ready for permanent storage or
perfect accountability? We believe it is not and indeed
much effort is spent to promote the “right to be forgotten.”
New blockchain applications promise to store files, notarize
documents, manage health records, coordinate IoT devices,
administer assets, etc. But records should be expunged in
case they contain errors or sensitive information, or when it
is required by law. Even encryption may not help as keys
are notoriously difficult to manage and are often leaked.

(iv) Several financial institutions are exploring the bene-
fits of blockchain-based solutions to reduce cost and increase
trust in interbank interactions. Budgets, transactions, and
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Figure 1: Redaction operations on a redactable blockchain.
In the top blockchain, all padlocks are locked resulting in
an immutable blockchain. In the middle blockchain, the
padlock from block B;.; to block B; is open, meaning
that the content of block B; can be redacted. In the bottom
blockchain, the block B; was redacted (resulting in block
B!) and all the padlocks are once again locked, making the
blockchain immutable.

financial results are routinely consolidated to create mean-
ingful reports while allowing entities to maintain distinct
accounting structures. Consolidation is hard to achieve with
immutable blockchains since it is impossible to consolidate
past transactions without affecting any subsequent blocks.

1.2. Our Contributions

We propose an approach to make the blockchain
redactable; by redaction we mean one of the following
actions (and any combination of those): re-writing one or
more blocks, compressing any number of blocks into a
smaller number of blocks, and inserting one or more blocks.
Redactions can be made only by authorized entities and
under specific constraints; moreover, redactions are publicly
auditable by existing miners, since they must approve the
new blockchain and have access to its old copies. However,
new miners are oblivious, given that the blockchain in our
design is implemented as a history-independent data struc-
ture in the sense introduced by Naor and Teague [39]. That
is, no information can be deduced about the past from the
current view of the blockchain (also called anti-persistence
in [39]).

All blockchain designs rely on a hash chain that connects
each block to the previous one, to create an immutable
sequence. The immutability comes from the collision resis-
tance property of the hash function. The best way to grasp
the concept of a redactable blockchain is to think of adding
a lock to each link of the hash chain (see Figure 1): Without
the lock key it is hard to find collisions and the chain
remains immutable, but given the lock key it is possible
to efficiently find collisions and thus replace the content
of any block in the chain. With the knowledge of the key,
any redaction is then possible: deletion, modification, and
insertion of any number of blocks. Note that if the lock key
is lost or destroyed, then a redactable blockchain reverts to
an immutable one.



The main idea of our design is to employ a special
hash function that is collision-resistant unless a trapdoor
is known. This special hash is an evolution of a standard
chameleon hash. Indeed, in a standard chameleon hash,
collisions must be kept private since the trapdoor can be
extracted from a single collision. In our improved design, it
is safe to reveal any number of collisions.

Our contributions include:

o A new design for a redactable blockchain which is
compatible with all popular blockchain proposals (cf.
Section 3). Our blockchain is history-independent in
the sense introduced by Naor and Teague [39]. The
main feature of our system is that it is compatible with
current blockchain designs, i.e., it can be implemented
right now and requires only minimal changes to the
way current client software interprets the information
stored in the blockchain (more on this later), and to the
current blockchain, block, or transaction structures. We
believe compatibility is an important feature that must
be preserved.

o Improved chameleon hash design (cf. Section 4). Tradi-
tional chameleon hashes have the key exposure prob-
lem as observed in [10], except for the scheme pro-
posed in [10], but which relies on the generic group
model. It was left as an open problem to find similarly
enhanced chameleon hashes in the standard model. We
first generalize the definition of chameleon hash to
make it more relevant in practice and then provide new
constructions in the standard model through a generic
transformation.

o Implementation (cf. Section 5). We developed a re-
dactable blockchain prototype on top of the Bitcoin
core. We ran experiments where several blocks were
modified or removed from a Bitcoin blockchain, thus
showing the feasibility of our approach.

1.3. Remarks

Proposing to affect the immutability of the blockchain
may seem an ill-conceived concept given the importance of
the append-only nature of the blockchain. However, hard
forks exist that can be used to undo recent transactions. As
for hard forks, we expect redactions to occur in rare and
exceptional circumstances.

“Why not applying a hard fork in the past?”’. Hard forks
can be seen as the Undo operation, and thus they make
sense only for recently mined blocks. Imagine making a
hard fork for a block added to the blockchain, say, five
years ago. All subsequent blocks will be rendered invalid
and all transactions from five years ago till now will have
to be reprocessed (this is costly regardless of the consensus
mechanism adopted). Thus, regenerating the blockchain will
take another five years assuming similar mining power.

“Would this redaction mechanism make sense for Bit-
coin?”. We target Bitcoin 2.0 applications, but we believe
Bitcoin can also benefit from our solution. Consider this
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trivial but effective attack against Bitcoin. (i) Divide objec-
tionable content (e.g., child or revenge pornography, sensi-
tive or private information, etc.) in packets as it is done with
TCP/IP. (ii) Store each packet within the OP_RETURN field
of several Bitcoin transactions. (iii) After several blocks are
mined, release a simple script or provide a web page where
the improper content can be reconstructed as with TCP/IP
packets. (iv) Wait for a lawsuit to be filed. If (when) this
happens, then Bitcoin could be legally shut down and the
blockchain removed for good. Notice that access to content
on the Internet can be controlled, filtered out, or made it
hard to find. On the other end, content in the blockchain
must always be available and stored locally at each node.

“Who can make redactions?”. We show how to make
redactions given the knowledge of a secret key. This key
could be in the hands of miners, a centralized auditor, or
shares of the key could be distributed among several author-
ities. The actual way the trapdoor key is managed depends
upon the requirements of specific applications; while we
provide some examples (see Section 3.5), we stress that
those are just a few possibilities out of many.

“Why can’t the blockchain be edited ’by fiat,’ relying
on meta-transactions?”. It is possible to create a block
revocation list that miners are instructed to check and avoid.
The problem, however, is that old blocks will still be there
with the information that was supposed to be redacted. Thus,
this approach is pointless. Another variant is to remove
blocks, creating ‘“holes” in the blockchain, and instruct
miners to ignore those blocks. This approach is even worse
since the blockchain is not valid anymore and exceptions
must be hardcoded in the software of each miner or made
available as an authenticated blacklist.

“Couldn’t the set of miners ’vote’ by their power, ’sign’
the new block and insert it into the correct position?”.
No, because this is essentially a hard fork and all subsequent
blocks will be invalid. Punching the blockchain makes it
invalid and can only be handled as described in the previous
point.

“If trusted authorities can redact the blockchain, can’t
you get rid of PoW-based consensus?”’. Redactions, as
hard forks, are supposed to happen very rarely, in case of
emergencies (e.g., the DAO attack [52]) or when sensitive
information is leaked (e.g., revenge porn). Editors do not
operate daily but only in exceptional circumstances. They
do not have the ability to run or maintain a blockchain.
Trusted authorities could be individuals, such as judges
or arbitrators, or/and organizations, such as the Interna-
tional Monetary Fund (IMF), the World Trade Organization
(WTO), Electronic Frontier Foundation (EFF), INTERPOL,
etc. They are not meant to operate blockchain infrastruc-
tures (as a simple analogy, consider that the Securities and
Exchange Commission (SEC) is not meant to run stock and
options exchanges or electronic securities markets but to
intervene to enforce federal securities laws). Thus, we must
rely on PoW-based consensus to run the blockchain.



“Does your approach work for other consensus algo-
rithms?”. Our technique works for all consensus mecha-
nisms because we simply replace the hash function, which is
a core component of all blockchains. Our intent is to propose
something that is compatible with current blockchain frame-
works and requires minimal changes. This applies to public
or permissioned blockchains where only specified actors
(banks, financial operators, individuals, etc.) can participate
and post transactions. We focused on PoW for simplicity, but
PoW does not make sense in a pure permissioned blockchain
where other consensus protocols are used (e.g., PBFT). A
solution that depends on the consensus mechanism is not
desirable since it is hard to anticipate what researchers will
devise and adopt next.

“Could redactions have helped with the DAO attack?”.
The DAO attack was resolved with a hard fork. Technically
there is no substantial difference between hard forks and
redactions for recent events. Our solution would help more
in case frauds or unintended errors are discovered much
later, when it is too late to apply a hard fork and efficiently
rebuild the blockchain (regardless of the consensus mecha-
nism adopted).

“Can’t I just store the hash of the data and avoid
redactions?”’. No. First, data must be held somewhere else,
and it is not clear then how to guarantee integrity and
reliability. Also, the hash is effectively a proof-of-existence
tag: Anyone with the original record can prove it was stored.
Finally, storing hashes is akin to storing metadata, e.g.,
phone numbers instead of entire conversations. However,
it is well known that private details can be easily recon-
structed from metadata alone. Storing metadata permanently
is plainly dangerous.

“But wouldn’t old copies of the blockchain contain the
redacted information?”. Yes, but the point is compliance
with regulations. There is no way to remove information
from a widely distributed database. If a blockchain node
is compliant, it will remove old copies of the blockchain
and pass the audit. With an immutable blockchain, it is not
possible to be compliant.

“Is blockchain immutability a chimera?”. The after-
math of the DAO attack shows that immutability is con-
tentious (DAO is dead, lawsuits are looming, two parallel
chains ETH/ETC were created, the future of Ethereum is
in question, etc.). Other than affecting privacy (see [54]),
immutability also affects scalability (see [23]). Our primary
intent is to provide a technical answer to the question:
“How can I make a redactable blockchain?”. However,
we do believe immutability of the blockchain should be
reconsidered if Bitcoin 2.0 applications are to be turned from
lab experiments into real deployments.

1.4. Further Developments

Our redactable blockchain proposal has evolved signif-
icantly since a draft of this paper was posted online in
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August 2016. We teamed up with Accenture [3] to develop a
prototype adapted and refined for permissioned and private
environments based on Hyperledger [1]. While the prototype
is based on ideas in this paper, it represents a significant
evolution and adopts new key management and tamper-
evident methods. The announcement of this invention made
international news and appeared in prestigious news outlets.
It also drew criticism since it challenges a core feature of
the blockchain. However, it is important to observe that,
with our invention, the blockchain remains immutable to
users, and bad actors won’t be able to make changes. Trusted
entities can edit blocks as long as they are acting on agreed
rules of governance. The key needed to open and edit a
blockchain can be divided up and given to multiple parties
so that unanimous agreement must be reached to make any
changes. The system also leaves an immutable “scar” to
indicate when any blocks have been altered [3], [41].

Recently, a “right to be forgotten” case has stalled
after the European Court of Justice found that a Dutch
man’s identity information was uploaded onto the Bitcoin
blockchain [37]. In addition, several new reports have also
been released that highlight the conflict between the im-
mutability of blockchains and people’s right to be forgotten
and the importance of redacting sensitive information under
various regulations. In particular, they often cite the General
Data Protection Regulation (GDPR), signed into law in
2016, with a compliance deadline of 2018, and the Gramm-
Leach-Bliley Act and the U.S. Security and Exchange Com-
mission’s (SEC) Regulation S-P. Both regulations deal with
the control of customer data and set penalties for infractions.
For instance, under GDPR, privacy violations will lead to
hefty fines: 4 percent of a company’s annual revenue or €20
million, whichever is larger.

The Open Data Institute (ODI) Report [53] investigates
issues arising when storing personal information in the
blockchain and provides several concrete examples. It con-
cludes that: “Immutable data storage in blockchains may be
incompatible with legislation which requires changes to the
‘official truth’.” and “Even if personal data is not stored on
a blockchain, metadata can be sufficient to reveal personal
information.”

The European Union Agency for Network and Infor-
mation Security (ENISA) Report [26] identifies potential
privacy violations when storing data into the blockchain and
recommends the Industry, in cooperation with the regulators
to: “Define what to be kept confidential in order to remain
compliant with regulatory requirements, such as General
Data Protection Regulation, as well as sector or local
regulations.” and “Identify or develop standard methods for
removing data from a ledger.”

The European Securities and Markets Authority (ESMA)
Report [48] remarks that: “The DLT that was originally de-
signed for Bitcoin created immutable records, meaning that
transactions once validated cannot be modified, cancelled
or revoked. While this immutability had clear benefits in
a permissionless DLT framework, it appears ill-suited to
securities markets, e.g., operational errors may necessitate
the cancellation of some transactions.”



1.5. Related Work

Several papers have analyzed the properties and ex-
tended the features of the Bitcoin protocol (see, e.g., [6],
[11], [8]). Bitcoin has also found several innovative applica-
tions far beyond its initial scope, e.g., to achieve fairness in
secure multi-party computation [7], [5], to build smart con-
tracts [12], to distributed cryptography [4], and more [35],
[33], [46]. Blockchain based technologies, and the properties
they achieve, were also studied in recent work, both for the
synchronous [27] and asynchronous [42] network model.

2. Notation

For a string x, we denote its length by |z|; if X is a
set, |X| represents the number of elements in X. When «
is chosen randomly in X, we write z <—s X. When A is an
algorithm, we write y +—s A(x) to denote a run of A on input
x and output y; if A is randomized, then y is a random
variable and A(z;r) denotes a run of A on input x and
randomness r. An algorithm A is probabilistic polynomial-
time (PPT) if A is randomized and for any input x,r €
{0,1}* the computation of A(x;r) terminates in at most
poly(|z|) steps.

We denote with x € N the security parameter. A function
v : N — [0,1] is negligible in the security parameter (or
simply negligible) if it vanishes faster than the inverse of
any polynomial in &, i.e. v(k) = k=<1,

For a random variable X, we write P[X = z] for the
probability that X takes on a particular value x € X (where
X is the set where X is defined). Given two ensembles X =
{X:}weny and Y = {Y, }xen, we write X =Y to denote
that the two ensembles are identically distributed, and X =~
Y to denote that they are computationally indistinguishable.

3. Redacting the Blockchain

In this section we introduce our framework, explaining
how to modify current blockchain technologies in order
to obtain a redactable blockchain. We start with a brief
description of a blockchain abstraction, due to Garay, Ki-
ayias and Leonardos [27], in Section 3.1. In Section 3.2 we
recall the concept of chameleon hash functions. We then put
forward two new algorithms that can be used to re-write the
content of the blockchain, both in the centralized setting,
where a trusted party is in charge of rewriting the blocks
(in Section 3.3), and in the decentralized setting, where no
such trusted party is available (in Section 3.4). Finally, in
Section 3.5, we comment on how the chameleon hash keys
can be managed in a few concrete scenarios.

3.1. Blockchain Basics

We make use of the notation of [27] to describe the
blockchain. A block is a triple of the form B = (s, z, ctr),
where s € {0,1}*, € {0,1}* and ctr € N. Block B is
valid if

validblock.’ (B) = (H(ctr,G(s,z)) < D)A(ctr < q) = 1.
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s! = H(ctr, G(s, z; 7)) G\ s = H(ctr!, G(s', 2'; "))
HashPrev (s) HashPrev (s’)
Transactions (x) Transactions (z’)

’ Nonce (ctr) ‘ ’ Nonce (ctr’) ‘

| Randomness (r) | | Randomness (r') |

Figure 2: The redactable blockchain structure (using a
public-coin chameleon hash). The field s of a block stores
the value shown in the top white field of the previous block.
We note that the top white field is not stored in the block.
The bottom darker field (Randomness) is updated when
the block is redacted (i.e., a collision is computed).

Here, H : {0,1}* — {0,1}" and G : {0,1}* — {0,1}" are
collision-resistant hash functions, and the parameters D € N
and ¢ € N are the block’s difficulty level and the maximum
number of hash queries that a user is allowed to make in
any given round of the protocol, respectively.

The blockchain is simply a chain (or sequence) of
blocks, that we call C. The rightmost block is called the
head of the chain, denoted by Head(C). Any chain C with
a head Head(C) := (s, z, ctr) can be extended to a new
longer chain C' := C||B’ by attaching a (valid) block
B’ :=(s',a’, ctr’) such that s’ = H(ctr, G(s,x)); the head
of the new chain C’ is Head(C’) = B’. A chain C can also
be empty, and in such a case we let C = . The function
len(C) denotes the length of a chain C (i.e., its number of
blocks). For a chain C of length n and any k& > 0, we denote
by CI* the chain resulting from removing the k rightmost
blocks of C, and analogously we denote by *1C the chain
resulting in removing the k leftmost blocks of C; note that
if k> n then C'* = ¢ and ¥1C = e. If C is a prefix of C’
we write C < C’. We also note that the difficulty level D
can be different among blocks in a chain.

The work of [27] models the Bitcoin protocol in a
setting where the number of participants is always fixed and
the network in synchronized. They show that the protocol
satisfies consistency in this model, meaning that all honest
participants have the same chain prefix of the blockchain. A
more recent work by Pass, Seeman and shelat [42] analyzes
the case where the network is asynchronous and the number
of participants can dynamically change. We point out that
our framework is independent of the network type in these
models.

3.2. Chameleon Hash Functions

The concept of chameleon hashing was put forward by
Krawczyk and Rabin [34], building on the notion of cha-
meleon commitments [17]. Informally, a chameleon hash
is a cryptographic hash function that contains a trapdoor:
Without the trapdoor, it should be hard to find collisions,
but knowledge of the trapdoor information allows collisions
to be generated efficiently.



Secret-coin hashing. We start by introducing a generaliza-
tion of the standard concept of chameleon hashing to make
it more relevant in practice. Our generalization is referred
to as “secret-coin” and includes standard chameleon hashes
as a special case (now referred to as “public-coin”).

Definition 1. A secret-coin chameleon hash function is a
tuple of efficient algorithms CH = (HGen, Hash, HVer,
HCol) specified as follows.

o (hk,tk) +—sHGen(1%): The probabilistic key genera-
tion algorithm HGen takes as input the security param-
eter k € N, and outputs a public hash key hk and a
secret trapdoor key tk.

e (h,&) +—s Hash(hk, m): The probabilistic hashing algo-
rithm Hash takes as input the hash key hk, a message
m € M, and implicit random coins r € Ry,sh, and
outputs a pair (h,&) that consists of the hash value h
and a check string &.

o d = HVer(hk,m, (h,)): The deterministic verification
algorithm HVer takes as input a message m € M, a
candidate hash value h, and a check string &, and re-
turns a bit d that equals 1 if (h, ) is a valid hash/check
pair for the message m (otherwise d equals 0).

o ' s HCol(tk, (h,m,£), m'): The probabilistic colli-
sion finding algorithm HCol takes as input the trapdoor
key tk, a valid tuple (h,m,&), and a new message
m’ € M, and returns a new check string £’ such that
HVer(hk, m, (h,&)) = HVer(hk,m’, (h,&')) 1. If
(h,€) is not a valid hash/check pair for message m
then the algorithm returns L.

Correctness informally says that a pair (h, &), computed
by running the hashing algorithm, verifies with overwhelm-
ing probability.

Definition 2. Let CH = (HGen, Hash, HVer, HCol) be a se-
cret-coin chameleon hash function with message space
M. We say that CH satisfies correctness if for all m €
M there exists a negligible function v : N — [0, 1] such
that

P[HVer(hk,m, (h,£)) =1: (h,§) s Hash(hk,m);
(hk, tk) <—s HGen(1%)] > 1 — v(k).

Public-coin hashing. In the definition above the hashing
algorithm is randomized, and, upon input some message
m, it produces a hash value h together with a check value
& that helps verifying the correct computation of the hash
given the public hash key. The random coins of the hashing
algorithm are, however, secret. A particular case is the
one where the check value £ consists of the random coins
r used to generate h, as the hash computation becomes
completely deterministic once m and r are fixed; we call
such a chameleon hash function public-coin and we define
it formally below. Since the verification algorithm simply re-
runs the hashing algorithm, we typically drop the verification
algorithm from CH in the case of public-coin chameleon
hashing.
Definition 3. A public-coin chameleon hash is a collection
of efficient algorithms CH = (HGen, Hash, HVer, HCol)
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specified as in Definition 1, with the following differ-
ences:

o The hashing algorithm Hash, upon input the hash key
hk and message m € M, returns a pair (h,r), where
r € Rhash denote the implicit random coins used to
generate the hash value.

o The verification algorithm HVer, given as input the
hash key hk, message m, and a pair (h,r), returns 1
if and only if Hash(hk, m;r) = h.

Collision resistance. The main security property satisfied
by a secret/public-coin chameleon hash function is that of
collision resistance: No PPT algorithm, given the public
hash key hk, can find two pairs (m,&) and (m/,&’) that
are valid under hk and such that m # m’, with all but
a negligible probability. Furthermore, for the applications
we devise in this paper, it is important that the above still
holds even after seeing arbitrary collisions generated using
the trapdoor key tk corresponding to hk. We refer the reader
to Section 4 for formal security definitions, and for a generic
construction achieving such a strong form of security.

3.3. Centralized Setting

The main idea behind our approach is to set the inner
hash function (i.e., the function G), used to chain the
different blocks in the blockchain, to be a chameleon hash
function. Intuitively, re-writing the content of each block is
possible by finding collisions in the hash function (without
modifying the outer hash function H). Below, we detail this
idea in the simple setting where only a single (trusted) cen-
tral authority is able to redact the blockchain; see Section 3.5
for concrete examples where this case applies.

In order for the above to work, we require some mod-
ifications to the previously defined block. A block is now
a tuple B := (s, z, ctr, (h,£)), where the components s,z
and ctr are the same as before, and the new component
(h,&) is the hash/check pair for a chameleon hash. The
function G is defined to be a secret-coin chameleon hash
CH = (HGen, Hash, HVer, HCol), and the validation predi-
cate for a block is now equal to

validblock” (B) := (H((ctr,h) < D)
A (HVer(hk, (s, x), (h,€))) A (ctr < q) = 1.

Given a chain C with head Head(C) := (s, =z, ctr, (h,§)),
we can extend it to a longer chain by attaching a (valid)
block B’ := (s',2', ctr’, (K, £)) such that 8" = H(ctr, h).

Notice that the domain of the chameleon hash can
be easily adjusted to the proper size by first hashing the
input of Hash with a regular collision-resistant hash of the
desired output size. We also stress that the verification of a
chameleon hash value needs to be computed by its own
verification function (i.e., by running HVer), and not by
simply recomputing the hash, as it is done with standard
(deterministic) hash functions.

The case where the chameleon hash is public-coin can be
cast as a special case of the above. However, note that there



is no need for storing the hash value h, as this value can be
computed as a deterministic function of the chameleon hash
function’s input and randomness. Thus, in this case, a block
has a type B := (s, z, ctr,r), where r is the randomness
for the chameleon hash. The validation predicate for a block
becomes

validblock’ (B) = (H(ctr,Hash(hk, (s, z);7)) < D)

A(etr <q)=1.
Finally, given a chain C with head Head(C) := (s, z, ctr, ),
we can extend it to a longer chain by attaching a
(valid) block B’ (s',a', ctr’,r") such that &'
H(ctr,Hash(hk, (s,x);r)). See Fig. 2 for a pictorial rep-
resentation.

Rewriting blocks. Next, we define a chain redacting algo-
rithm (see Algorithm 1) that takes as input a chain C to be
redacted, a set of indices that represents the positions (in
the chain C) of the blocks that are going to be redacted, and
another set with the new z’’s values for each of the blocks to
be redacted. The algorithm also takes as input the chameleon
hash trapdoor key ¢k. The intuition behind it is that, for each
block to be redacted, we compute a collision for the hash of
the block with its new content x’. A new chain C’ is created
by replacing the original block with its modified counterpart.
We note that at the end of the execution of Algorithm 1, the
central authority should broadcast the new redacted chain
as a special chain, meaning that every user of the system
should adopt this new redacted chain in favor of any other
chain, even longer ones. The way this is achieved depends
on the actual system in use.!

Algorithm 1: Chain Redact

input : The input chain C of length n, a set of block
indices Z C [n], a set of values {z}};cz, and
the chameleon hash trapdoor key tk.
output: The redacted chain C’ of length n.
C'+C;
Parse the chain C' as (By, -+, By,);
for::=1,...,n do
if i € 7 then
Parse the i-th block of C’ as
Bi = <Si, Xy, Ct?”i, (hl, €Z)>,
f,i <— HCOl(tk, (hl, Sl| I‘T“ fz), (SZHJ,‘;)),
B,Z = <Si7 x;7 Ctria (hla 6;))’
C C/(n7i+1||Bz/_||ﬂc/;
end

end
return C’

Note that each time a block is redacted using Algo-
rithm 1, a collision for the underlying chameleon hash

1. For instance, it’s enough to broadcast just the blocks that were
modified and instruct nodes to update their local copy of the blockchain.
In a permissioned blockchain, the list of changes can be authenticated via
digital signatures. There is no need to download or broadcast the entire
blockchain.
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function is exposed. Hence, it is important that the ability to
see arbitrary collisions does not expose the secret trapdoor
key, as otherwise unauthorized users might be able to rewrite
arbitrary blocks in the chain. In Section 4 we explain
how to generically leverage any standard collision-resistant
chameleon hash function into one additionally meeting such
a key-exposure freeness requirement.

Shrinking the chain. Another possibility with redactable
blockchains is to completely remove entire blocks from a
chain. This can be essential for scalability purposes, such
as saving disk space and computational power necessary
when handling larger chains. We present an algorithm (see
Algorithm 2) for such a “chain shrinking” functionality. The
intuition behind it is that in order to remove the block B; it is
necessary to redact the block B;y; by assigning s;41 < s;.
A collision then needs to be computed for B;;; producing
the new block B, that is inserted in the chain in place of
the block B;;1, leaving the chain in a consistent state. As
in Algorithm 1, we also note that at the end of the execution
of Algorithm 2, the central authority should broadcast the
new shrinked chain as a special chain, meaning that every
user of the system should adopt this new redacted chain in
favor of any other chain, even longer ones.

Algorithm 2: Chain Shrink
input :

The input chain C of length n, a set of block
indices Z C [n] and the chameleon hash
trapdoor key tk.

output: The new chain C’ of length n — |Z|.

C'+C;
Parse the chain C’ as (By,---,By);
for i :=1,...,n do

if i € 7 then
Parse the i-th block of C’ as
B, = (s;,x, ctrs, (hq, &));
Parse the 7 + 1-th block of C’ as
Bt = (siv1, Tiy1, ctripy, (hiv1, &iv1))s
i1+ HCol(tk, (hiv1, sivallmivt, Sit1),
(sillzit1));
B, = (si, i1, ctriga, (hiv1,§,1))s
O« Cl[”_i||B£+1Hi+1]C/;

end
end
return C’

We note that in Algorithm 2, if the set Z contains only
indexes to successive blocks, the execution can be optimized
to essentially one execution of the for loop. This is because
in order to remove blocks By to By, ;, it is sufficient to
redact only block By, ;41 (i.e., the next remaining block).

3.4. Decentralized Setting

Below, we explain how to adapt our framework to
the decentralized setting, where there is no central trusted
authority. The main idea is to have the trapdoor key be



Key Generation Functionality:

1) After receiving the “start” signal from all honest par-
ties, run (hk, tk) <—s HGen(1%) and send hk to the
adversary.

We assume a secret sharing scheme (Share, Rec) is
given, with which the trapdoor key ¢k can be secret-
shared. For each dishonest party P;, receive a share 7;
from the adversary.

Construct a complete set of shares (rq,---,7,) for
the trapdoor key tk taking into consideration all the
dishonest shares sent by the adversary. We note that
it is always possible to construct such a set of shares
since all the dishonest parties form an unqualified set
for the secret sharing scheme. Send 7; to each honest
party P;.

2)

3)

Figure 3: The ideal functionality for the distributed key
generation

secretly shared among some fixed set of users that are in
charge of redacting the blockchain. When a block needs to
be redacted, the users from this set engage in a secure multi-
party computation (MPC) protocol to compute Algorithm 1
and Algorithm 2 in a fully distributed manner.

3.4.1. Ideal Functionalities. During the set up of the sys-
tem, we fix a subset I/ of cardinality n, containing the users
that will be in charge of redacting the blockchain content.
We remark that the actual choice of the subset &/ can be
completely dependent on the application and on the system
requirements; we discuss some examples in Section 3.5.

Following the common practice in the setting of MPC,
we now define two ideal functionalities that aim at capturing
the security requirements for generating the hash keys and
for redacting the blockchain in the decentralized setting.
These functionalities will later be realized by concrete MPC
protocols, in both cases of semi-honest and fully malicious
corruptions.

Key generation. When the system is set-up for the first
time, we need to run the key generation algorithm HGen for
the underlying chameleon hash function, obtaining a public
hash key hk and a secret trapdoor key tk. Since no user is
allowed to know the trapdoor key, the idea is to have each
player P; in the set U/ obtain a share 7; of tk. This is the
purpose of the ideal functionality described in Fig. 3, which
is parametrized by a secret sharing scheme (Share, Rec).
Recall that a t-out-of-n secret sharing scheme
(Share, Rec) consists of a pair of algorithms such that: (i)
The randomized algorithm Share takes as input a target
value = and returns a sequence of n shares 7y,...,7,; (ii)
The deterministic algorithm Rec takes as input n shares
Ti,...,Tn and returns a value x or an incorrect output
symbol L. The main security guarantee is that any subset of
t shares (a.k.a. an unqualified set) reveals no information on
the shared value z; on the other hand, any subset of ¢ + 1
(or more) shares allows to efficiently recover z. We refer
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Collision-Finding Functionality:
1) Receive the shares 7; from each party P, and recon-
struct the trapdoor key tk := Rec(7,---,7,). Note
that the shares of the dishonest parties are chosen by
the adversary.
Upon receiving a “compute collision” signal for the
pair ((h,m,§),m’) from all honest parties, compute
&'+ HCol(tk, (h,m,&),m’) and send (h,m,¢) and &'
to the adversary.
Upon receiving an “OK” signal from the adversary
forward the value £’ to all honest parties, otherwise
forward L to all honest parties.

2)

3)

Figure 4: The ideal functionality for the distributed collision-
finding algorithm

the reader, e.g., to [13] for more details on secret sharing;
some examples are also discussed below.

Chain redaction. When a block B := (s, z,ctr, (h,§))
needs to be redacted into a modified block B’
(s, o', ctr,(h,&")), each user in the set U needs to inspect
its own blockchain and find block B. Hence, the players
need to execute Algorithm 1 in a distributed manner. In
particular, each player P; is given as input its own share 7;
of the chameleon hash trapdoor key, and they all need to
run the collision-finding algorithm HCol on common input
((h, s||z,£), s||z’), in order to obtain the modified check
value &'

This is the purpose of the ideal functionality described
in Fig. 4, which is again parametrized by a secret sharing
scheme (Share, Rec) (in fact, the same secret sharing scheme
as for the functionality of Fig. 3). For simplicity, we de-
scribed the functionality for the general case where the goal
is to find collisions between arbitrary messages m and m’.
Note that actively corrupted players might submit incorrect
shares, and the secret sharing scheme needs to cope with
such a possibility. Also note that after each player receives
the modified value &' for the new block B’, each of the
users in U constructs a new chain by replacing block B with
block B’. Thus, the redacted chain is broadcast to all users
in the system as a new special chain that should replace
any other chain, even longer ones. Although the latter needs
to be done in an application-specific manner, we point out
that in practice the redaction operation is not going to be
performed very often, but only in case there is a need to
redact undesirable content from a given block.

The decentralized version of Algorithm 2 is similar to
the one described above, the only difference being that
instead of redacting a block B;, a new chain is built without
the block B; in it. To keep the chain valid, the block B,
needs to be redacted, as detailed in Algorithm 2. The latter
can be achieved using the same ideal functionality as in
Fig. 4, by simply adjusting the input messages from the
users.



3.4.2. Concrete Instantiations. We now present concrete
protocols for securely realizing the ideal functionalities de-
scribed in the previous section. For the sake of concreteness
and practicality, we chose to work with the (public-coin)
chameleon hash function introduced by Ateniese and de
Medeiros [10]; this construction satisfies enhanced collision
resistance (cf. Definition 4) in the generic group model,
based on the Discrete Logarithm assumption. After present-
ing the hash function, we deal separately with the setting in
which the corrupted players within the set I/ are assumed
to be semi-honest (i.e., they always follow the protocol but
try to learn additional information from the transcript) and
fully malicious (i.e., they can arbitrarily deviate from the
protocol description).

The hash function. Let p, g be prime such that p = 2g +
1, and let g be a generator for the subgroup of quadratic
residues QR,, of Zy. Consider the following public-coin cha-
meleon hash function (HGen, Hash, HCol).

e (y,x) <= HGen(1"): The trapdoor key tk is a random
value « € [1,q — 1], and the hash key hk is equal to
y=g".

e h:=Hash(y,m;r,s): To hash a message m € {0, 1}*,
pick random 7, s <—s Z,, and return h := r — (yHmlIr).
¢° mod p) mod ¢ where H : {0,1}* — Z; is a
standard-collision resistant hash function.

e (1',8") <=s HCol(z, (h, m,r, s), m’): To compute a col-
lision for message m’, pick a random k € [1,q — 1]
and compute 7’ := h + (¢¥ mod p) mod ¢ and s’ :=
k — H(m/||r") - x mod ¢. Return (7', s’).

Semi-honest setting. As a warm up we consider the case
of passive corruption, where up to t players in the set
U are semi-honest. For this setting, we will rely on the
following simple secret sharing scheme (Share,Rec): (i)
Upon input a value = € Z,, algorithm Share samples
random 7y, ... 7T,—1 s Zy, Sets 7, 1= T — Z;:ll 7; mod g,
and returns (7q,...,7,); (ii) Algorithm Rec takes as input
Ti,...sTn € Z4 and returns = = Z?:l 7; mod q. The
above is easily seen to be an (n — 1)-out-of-n secret sharing
scheme.

Next, we describe two simple MPC protocols II}, and
12, for securely realizing the functionality of Fig. 3 and
Fig. 4 (respectively).

« Consider the following n-party protocol II} . Each
player P; picks a random 7; € Z, and then all players
engage into a semi-honest MPC protocol for computing
y = [1i—, g™ mod p; each player outputs (y, 7;). This
protocol is easily seen to realize the functionality of
Fig. 3 under semi-honest corruption of up to n—1 play-
ers. Indeed, as long as one of the players is honest, the
value y (with corresponding trapdoor z := Y. | 7;)
will be uniformly distributed, as required.

« Consider the following n-party protocol II% , on com-
mon input ((h,m,r,s), m’). First, each player P; cho-
oses a random k; <—s Z, and then all players engage
into a semi-honest MPC protocol for computing ' :=

h+ (th=1 g" mod p) mod ¢. Second, the players en-
gage into a semi-honest MPC protocol for computing
S ki—H(m!||r")->""_, 7 mod ¢, where the private
input of P; is defined to be (k;, ;). Finally, each player
outputs (17, s).

The above protocol can be easily seen to securely re-
alize the functionality of Fig. 4 under semi-honest cor-
ruptions. The number of tolerated corruptions depends
on the semi-honest MPC protocols for performing the
computations described above. Suitable protocols, for
the setting where at least half of the players are honest,
are described, e.g., in [14], [9].

Malicious setting. We briefly explain how to extend the
previous protocol to the setting of active corruptions. The
main difficulty here is that malicious players can now use
incorrect shares. In order to ensure that the correct trapdoor
is re-constructed, we rely on the so-called robust secret
sharing. Informally, a secret sharing scheme (Share, Rec)
is d-robust if an adversary adaptively modifying at most ¢
shares computed via Share can cause the output of Rec to
be wrong with probability at most J. See, e.g., [45], [15]
for a formal definition.

Before adapting the protocols, we recall the standard
secret sharing scheme due to Shamir [49]: (i) Upon input
a value x € Z,, algorithm Share picks random coeffi-
cients aq,...,oq—1 € Zg and defines 7, == x + a7 -
i+ -+ a1 i7"t modgq for all i € [n]; (ii) Upon
input ¢ shares (7,...,7:), algorithm Rec interpolates the
polynomial a(X) = ag+ay - X +---+ay_1- X'~ and
returns «(0). Shamir’s secret sharing can be made robust
against corruption of at most ¢ < n/3 shares when used
in tandem with Reed-Solomon decoding during the recon-
struction procedure. Alternatively, for tolerating a higher
threshold ¢ < n/2 (which is also the maximal threshold for
such schemes [36]) one could use Shamir’s secret sharing
in conjunction with information-theoretic message authenti-
cation codes, as proposed by Rabin and Ben-Or [44]. This
results in shares of sub-optimal size p+O(n- k), where p is
the bit-size of the message, and « is the security parameter
ensuring § = 27"; robust schemes with almost optimal share
size have recently been designed in [15].

Below is a sketch of how the protocols IT), and II2
described above can be adapted to the malicious setting,
where for simplicity we use Shamir’s secret sharing in
tandem with Reed-Solomon decoding.

« Consider the following n-party protocol II! ;. Each
player P; samples uniformly at random z; := (af, al,
Al )€ Zg. Hence, the players engage in an MPC
protocol for computing the function (z1,...,2,) —
((y,a(1)),..., (y,(n))), where y = g*(© and

n n n
a(X) = Zaé—l—Zofi -X—l—---—l—Zai_l SXL
i=1 i=1 i=1

« Consider the following n-party protocol II2 ;. The pro-
tocol proceeds similarly to I3, with the following dif-
ferences. In the first step the random value k is shared



among the players using Shamir’s secret sharing (as
done in IT. ); denote by 3(X) the corresponding poly-
nomial, and by (3() the share obtained by player P;. In
the second step the players engage in an MPC protocol
for computing the value 7’ = h+(g”(*) mod p) mod g,
where the polynomial 3(X) is reconstructed by using
the (possibly corrupted) shares 3(i) from the players,
via the Berlekamp-Welch [56] algorithm. In the third
step the players engage in another MPC protocol for
computing s’ = B(0) — H(m/||r"") - &(0) mod ¢, where
the private input of each player P; is («a(i), 5(i))
and &(X), B(X) are again reconstructed by using the
(possibly corrupted) shares «(7), (i) from the players,
via the Berlekamp-Welch algorithm.

Note that the above protocols rely on auxiliary MPC pro-
tocols with malicious security, for computing arithmetic
functions in Z,. Suitable MPC protocols for the above tasks,
for the setting where at least two thirds of the players are
honest, are described, e.g., in [14], [9], [22].

3.5. On Key Management

Although we view the technical tools that make redac-
tions possible as the main contribution of this work, a natural
question that may arise is how the trapdoor key for the
chameleon hash function is managed. We stress that the
answer to this question is entirely application dependent,
but we still provide some examples. Below, we briefly
describe three types of blockchains that occur in real-world
applications [18], and clarify how the trapdoor key could be
managed in each case.

« Private blockchain: In this type of blockchain, which
is widely used by the financial sector [43], the write
permissions are only given to a central authority, and
the read permissions may be public or restricted. In
this case, the key management becomes simple; the
trapdoor key could be given to the central authority
that has the power to compute collisions and therefore
redact blocks. This scenario is described in Section 3.3.
Consortium blockchain: In this type of blockchain the
consensus is controlled by a predetermined set of par-
ties (i.e., a consortium). In this case, the trapdoor key
can be shared among all the parties of the consortium,
and redactions can be realized using MPC, as described
in Section 3.4.
Public blockchain: This type of blockchain is com-
pletely decentralized, and all parties are allowed to
send transactions to the network and have them in-
cluded in the blockchain (as long as the transactions
are valid). The consensus process is decentralized and
not controlled by any party. The best example of a
public blockchain is Bitcoin. In this case, we have two
options to manage the trapdoor key (both using MPC,
as described in Section 3.4).
1) The trapdoor key can be distributed among all the
parties (full miners) of the network. The drawback
of this solution is that, if the number of parties in
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the network is too big (e.g., > 200), it might not be
very efficient due to performance issues of the MPC
protocol.

The trapdoor key can be distributed among a care-
fully chosen subset of the parties. For example, in
Bitcoin, it is well known that the majority of the
network hashing power is actually controlled by a
small number of parties (e.g., the top 7 mining pools
control almost 70% of the network total hashing
power [32]). Although we acknowledge that the con-
centration of hashing power to a small number of
parties can be unhealthy to the system, this solution
does not change the existing Bitcoin trust assumption
(i.e., Bitcoin already assumes trusted majority).

2)

4. Chameleon Hash Transform

We start by formally defining collision resistance of
public/secret coin chameleon hash functions, in Section 4.1.
Section 4.2 introduces the main ingredients required by our
generic transformation, which is described in Section 4.3.

4.1. Enhanced Collision Resistance

A collision for a secret-coin or public-coin hash function
is a tuple h, (m, &), (m/, &) such that m # m’, and (h, &)
and (h,&’) are valid hash/check pairs for m and m’ (re-
spectively). For a chameleon hash function we require the
following security property, which intuitively says that it
should be hard to find collisions for the hash function even
given access to the collision finding algorithm (returning
collisions for adaptively chosen hash values). We call such
a property enhanced collision resistance, and we define it
formally below.

Definition 4. Let CH = (HGen, Hash, HVer, HCol) be a (se-
cret-coin or public-coin) chameleon hash function. We
say that CH satisfies enhanced collision resistance if for
all PPT breakers B, the following quantity is negligible
in the security parameter:

(HVer(hk,m, (h,§)) = HVer(hk,m’, (h,£)) = 1) |
Am #m') A (h & Q) '

(h, (m, &), (m,€")) <= BO»0) (hk)
(hk, tk) <—s HGen(1%) ’

where the set Q is the set of all hash values queried by
B to its oracle, and oracle Oy, ¢ is defined as follows:
Upon input a collision query of the form ((h,m, &), m’),
run HVer(hk,m, (h,£)) := d; if d = 1 return the output
of HCol(tk, (h,m,£),m’), otherwise return L. In case
B is not allowed to query oracle Oy, 1, we simply say
that CH is collision-resistant.

P

Discussion. Any standard chameleon hash (e.g., the ones
considered in [21], [50]) is easily seen to imply a public-
coin collision-resistant chameleon hash as specified in Def-
inition 3. Let us stress, however, that secret-coin chameleon
hash functions can be used for the very same applications



as public-coin ones, in particular for constructing chameleon
signatures [34] and online/offline signatures [50]; the only
difference is that one needs to store the check value &
(instead of the randomness r) in order to verify a hash value,
and the hash verification does not in general consist of re-
computing the hash.

Unfortunately, as observed by Ateniese and de
Medeiros [10], collision resistance is not sufficient for most
of the applications of chameleon hash. The reason is that,
while the hash function is indeed collision-resistant, any
party seeing a collision for the hash function would be able
to find other collisions or even recover the secret trapdoor
information. This “key exposure” problem makes chameleon
hashes not applicable in many contexts. Enhanced collision
resistance, as defined above, precisely addresses such issue
as it requires that it should be hard to find collisions even
after seeing (polynomially many) collisions.

Yet another flavor of chameleon hashing consists of so-
called “labeled” hash functions, where the hash algorithm
takes as input an additional value A called the label. Some
of these constructions, e.g. the ones in [10], [19], do not
suffer from the key exposure problem, as they satisfy the
property that it should be unfeasible to find collisions for
a “fresh” label \*, even given access to an oracle that
outputs collisions for arbitrary other labels A # A*. How-
ever, labeled chameleon hash functions are not useful for
constructing online/offline signatures and for the type of
application considered in this paper.

4.2. Ingredients

4.2.1. Public-Key Encryption. A Public-Key Encryption
(PKE) scheme is a tuple of efficient algorithms PIE =
(KGen, Enc, Dec) defined as follows. (i) The probabilistic
algorithm KGen takes as input the security parameter x €
N, and outputs a public/secret key pair (pk, sk). (ii) The
probabilistic algorithm Enc takes as input the public key
pk, a message m € M, and implicit randomness p € Rpke,
and outputs a ciphertext ¢ = Enc(pk,m; p). the set of all
ciphertexts is denoted by C. (iii) The deterministic algorithm
Dec takes as input the secret key sk and a ciphertext ¢ € C
and outputs m = Dec(sk, ¢) which is either equal to some
message m € M or to an error symbol L.

Correctness. A PKE scheme meets the correctness property

if the decryption of a ciphertext encrypting a given plaintext

yields the plaintext.

Definition 5. We say that PKE satisfies correctness if for all
(pk, sk) <—s KGen(1") there exists a negligible function
v : N — [0,1] such that that P[Dec(sk, Enc(pk, m))
=m| > 1 — v(k) (where the randomness is taken over
the internal coin tosses of algorithm Enc).

Semantic security. The standard security notion for PKE
schemes goes under the name of security against chosen-
plaintext attacks (CPA), and informally states that no ef-
ficient adversary given the public key can distinguish the
encryption of two (possibly known) messages [28].
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Definition 6. Let PKE (KGen, Enc, Dec) be a PKE
scheme. We say that PKE is CPA-secure if for all PPT
adversaries A the following quantity is negligible:

b s A(pk, c); c s Enc(pk, my)
b<s{0,1}; (mo, my) <s A(pk)
(pk, sk) <—s KGen (1)

Plb=b:

4.2.2. Non-Interactive Zero-Knowledge. Let R : {0,1}* x
{0,1}* — {0,1} be an NP relation on pairs (z,y), with
corresponding language L := {y : Jz s.t. R(z,y) = 1}.
A non-interactive argument for R allows a prover P to
convince a verifier V that a common element y belongs to
the language L (where both P and V are modeled as PPT
algorithms); the prover P is facilitated by knowing a witness
x fory € L.

Definition 7. A non-interactive argument for an NP relation
R is a tuple of efficient algorithms N'ZA = (I,P,V)
specified as follows.

e w s 1(17): The probabilistic algorithm | takes as input
the security parameter x € N, and outputs the public
common reference string (CRS) w.

o <3 P(w,x,y): The probabilistic algorithm P takes as
input the CRS w and a pair z, y such that R(z,y) = 1,
and returns a proof 7 for membership of y € L.

e d = V(w,y,7): The deterministic algorithm V takes
as input the CRS w and a pair (y,7), and returns a
decision bit d € {0, 1}.

Completeness. The completeness property states that a
honest prover (holding a valid witness x) should always be
able to convince the verifier that y € L.

Definition 8. Let NITA = (I,P,V) be a non-interactive
argument for an NP relation R. We say that NZTA
satisfies completeness if for all pairs (z,y) such that
R(z,y) = 1, the following probability is overwhelming:

PV(w,y,m) =1: 7<sP(w,z,y);w s I(17)].

Zero-knowledge. The zero-knowledge property informally
says that a possibly malicious verifier cannot acquire any
knowledge on the witness that it couldn’t acquire by itself.
Non-interactive zero-knowledge (NIZK) was first formalized
by Blum, Feldman and Micali [16].

Definition 9. Let NTA = (I,P,V) be a non-interactive
argument for an NP relation R. We say that N'Z.A
satisfies zero-knowledge if there exists a PPT simula-
tor S := (S1,S2) such that for all adversaries A the
following quantity is negligible:

b s Alw, T, m)
o <8 P(W7Z‘,y)

m1 <=3 So(7,y); b < {0, 1}
(z,y) s Alw,T)
(w,7) s S1(1%)

Plb=V":



Simulation extractability. The soundness property states
that it is hard for a malicious prover to generate an accepting
proof 7 for an element y ¢ L. Below, we review a strictly
stronger formulation of the soundness requirement which is
known as simulation extractability, and informally says that
soundness still holds even if the malicious prover can access
simulated proofs for true statements.

This leads to the concept of true-simulation extractable
(tSE) NIZK, as defined by Dodis, Haralambiev, Lopez-Alt,
and Wichs [24].

Definition 10. Let NZA = (1,P,V) be a NIZK for an NP
relation R, with zero-knowledge simulator S = (S4, S2),
and let f be an efficiently computable function. We say
that N'ZA satisfies true-simulation f-extractability (f-
tSE for short) if there exists a PPT extractor E such
that for all PPT adversaries A the following quantity is
negligible:

P y € AN (V(wy*, 1) = 1)
AVz* s.t. f(z*) = z*(R(z*,y*) = 0)
2* +s E(1,y*

(w, T) +sS1(1%)

where oracle O takes as input pairs (z;,y;) and returns
the same as Sy(7,y;) as long as R(z;,y;) =1 (and L
otherwise), and Q is the set of all values y; asked to
oracle O,.

Note that in the above definition the adversary is only al-
lowed to see simulated proof for true statements. A stronger
variant (which is not needed in this paper) requires that
simulation extractability holds even if the adversary is al-
lowed to see simulated proofs for possibly false statements.
The latter property is also known under the name of robust
NIZK [47], [29].

As noted in [24] tSE NIZK are significantly more effi-
cient to construct, indeed they can be generically obtained
combining any standard NIZK (such as the powerful Groth-
Sahai NIZK [30]) with a CCA-secure PKE scheme.

4.3. Generic Transformation

To the best of our knowledge, the only construction of a
chameleon hash function satisfying enhanced collision resis-
tance is due to [10]; the construction is ad-hoc and relies on
the Nyberg-Rueppel signature scheme [40] (whose security
can be shown under the Discrete Logarithm assumption in
the generic group model [51]).

Previously to our work it was unknown whether en-
hanced collision resistance can be achieved in a non ad-
hoc fashion, based on different complexity assumptions in
the standard model. We answer this open question in the
affirmative, by exhibiting a generic transformation from any
public-coin collision-resistant chameleon hash to a secret-
coin chameleon hash satisfying the stronger enhanced col-
lision resistance requirement. The transformation is based
on a CPA-secure PKE scheme (cf. Section 4.2.1) and on a
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tSE NIZK [24] (cf. Section 4.2.2), and is presented in detail
below.

The transformation. Let CH = (HGen, Hash, HCol) be a
public-coin chameleon hash function (with message space
Muash and randomness space Ruash), let PKE = (KGen,
Enc, Dec) be a PKE scheme (with message space Rpash
and randomness space Rpke), and let NZA = (I,P,V) be
a non-interactive argument system for the language

LCH = {(pk7ca hka hvm) : 3("", p) S.t.

h = Hash(hk, m;r) A ¢ = Enc(pk,r;p)}. M

Consider the secret-coin chameleon hash function CH* =
(HGen™, Hash™, HVer™, HCol™) specified as follows.

e HGen"(1%): Run (hk,tk) <—sHGen(1%), sample
(pk, sk) <—s KGen(1%), and w <—s|(1"). Return the
pair (hk™, tk*), such that hk* (hk,w, pk), and
tk™ = (tk, sk).

o Hash™(hk™,m): Sample a random value r € Rpash
and run Hash(hk,m;r) := h. Sample a random value
p € Rpke and run ¢ := Enc(pk,r; p). Compute the
proof 7 s P(w,z,y), where = := (r,p) and y
(pk, c, hk, h,m), and return (h, ) such that £ := (¢, 7).

o HVer*(hk™,m, (h,£)): Parse & = (¢, ) and return the
output of V(w,y, ) where y = (pk, ¢, hk, h,m).

o HCol*(tk*, (h,m, &), m’): First run HVer(hk™, m, (h,
€)) = d; if d = 0 then output L, otherwise, decrypt
the randomness r := Dec(sk,c), compute a colli-
sion ' <—s HCol(tk, (h,m,r),m’), sample a random
p' € Rpke and encrypt the new randomness ¢’ :=
Enc(pk,r’; p’). Compute the proof 7’ s P(w,2’,y’),
such that ' = (v/, p') and ¢’ := (pk, c, hk, h,m’), and
return &' = (¢, 7).

The correctness property follows readily from the cor-
rectness of the underlying building blocks. As for security,
we show the following result, whose proof appears in the
full version of this paper.

Theorem 1. Assume that CH is a public-coin collision-
resistant chameleon hash function, that PKE is a CPA-
secure PKE scheme, and that NZA is an f-tSE-NIZK
for the language of Eq. (1), where for any witness (7, p)
we define f(r,p) = r. Then the above defined secret-
coin chameleon hash function CH* satisfies enhanced
collision resistance.

Concrete instantiations. In the full version of this paper
we explain how to instantiate the above transformation
under standard hardness assumptions, both in the random
oracle model (ROM) and in the plain model. We obtain the
following results.

Corollary 1. Let G be a group with prime order ¢g. Under
the DDH assumption in G there exists a secret-coin
chameleon hash function satisfying enhanced collision
resistance in the ROM, such that the hash value consists
of a single element of G, whereas the check value
consists of 12 elements of G plus 7 elements of Z,.



Corollary 2. Let Gy, G2, Gy be pairing based groups, and
let K > 1. Under the K -Linear assumption there exists a
secret-coin chameleon hash function satisfying enhanced
collision resistance in the standard model, such that the
hash value consists of a single group element, whereas
the check value consists of 4K2+9K +5 group elements.
In particular, the size of the check value is 18 group
elements under the SXDH assumption and 39 group
elements under the DLIN assumption.

S. Integration with Bitcoin

We start by giving a short overview of Bitcoin and
its main components, in Section 5.1. Section 5.2 contains
a detailed explanation of how to integrate our framework
within the Bitcoin infrastructure. Lastly, in Section 5.3, we
report on a proof-of-concept implementation developed on
top of Bitcoin core [38] (initially developed by Satoshi
Nakamoto).

5.1. Bitcoin Basics

Bitcoin is a peer-to-peer (P2P) electronic cash system.
It has three main components, namely the P2P network
among clients, the distributed consensus, and the selection
of the node responsible for creating the next block. The P2P
network allows Bitcoin clients to communicate reliably and
distribute effectively transactions among all users.

The structure of the Bitcoin blockchain can be cast as
a special case of the abstraction described in Section 3.1,
where a block is represented by the tuple B := (s, z, ctr).
In Bitcoin, the s value consists of the block header (minus
the nonce), shown in Table 1. The value x contains all the
transactions within a block, and the value ci¢r is the nonce
value. The hash functions H and G used for the validation
of the block are the SHA-256 hash function.”

A block can be identified by its hash, which consists
of the result of hashing twice the block header using SHA-
256. The height of a block is its position in the blockchain
starting from 0. More blocks can have the same height as
forks are possible in the blockchain. The height is not stored
in the header of a block. The miner will add only six fields
in a block header for a total of 80 bytes (see Table 1).

The rest of the block contains a list of transactions
identified by their hashes. Unlike blocks, the hash of a
transaction is computed on the entire content, including
everything from the header to the input and output scripts. A
bitcoin transaction specifies the input transactions that have
to be redeemed and the output addresses, along with input
and output scripts.

Bitcoin proof of work. A proof of work is hard to compute
but easy to verify. Its difficulty must be adjustable and
should not be linearly computable. Proof of work must

2. There is no technical justification of the double hashing design used in
Bitcoin, but it is said that Satoshi was afraid of length-attacks on Merkle-
Damgard derived hashes.
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behave as a decentralized lottery. Anyone can win with a
single ticket, but the probability of winning increases as the
number of tickets possessed gets higher.

Bitcoin uses a proof-of-work mechanism to implement
a special lottery system where one or more miners are
selected essentially at random and can propose their blocks
to be included in the blockchain (basically providing a
probabilistic solution to a variant of the Byzantine generals
problem). The nonce inside the block header is incremented
until the hash of the block header returns a number less
than the target. Because the target has several leading 0’s,
the hash must have several 0’s as prefix. If the nonce is
not enough, a miner can change the coinbase transaction
(there is a field in there which can take arbitrary values)
and generate a new Merkle root. Bitcoin specifies a target
which we denote by D. The proof of work is successful if
a miner finds a block such that the hash of its header is
smaller than D.

5.2. Integrating our Framework

Our framework proposes to replace the G function (from
the blockchain abstraction of Section 3.1) with a (enhanced
collision resistant) chameleon hash function. In Bitcoin,
this means that the inner SHA-256 function is replaced
by a chameleon hash function, and its output is then used
as the input to the outer SHA-256 function. The Bitcoin
block header needs to be extended to accommodate the
randomness of the chameleon hash (or the hash/check pair in
case of a secret-coin chameleon hash), as shown in Table 1.

For the standard (immutable) Bitcoin operation, the re-
quired modifications involve only the creation and verifica-
tion of blocks. There are no changes on how transactions are
processed or other aspects are operated in Bitcoin. When a
block is being created (i.e., mined), the miner first selects
all the transactions that will be part of the block, and then
it starts to fill in the block header (with the data from
Table 1). Initially, the miner fills in the hash of the previous
block header, the root of the Merkle tree (summarizing all
transactions inside the block), the timestamp of the block
creation, and the current difficulty target. Hence, it sam-
ples fresh randomness® and computes the chameleon hash
function of the block header with the sampled randomness.
The output of the chameleon hash, together with a nonce
(or a counter), is used to solve the proof-of-work of the
block. Once the proof-of-work is solved, the miner fills in
the remaining fields of the block header, i.e., the randomness
and the nonce.

After the newly created block is broadcast, the other
Bitcoin nodes can verify the validity of the block by first
performing the usual verifications on the transactions, and
later by recomputing the chameleon hash using the ran-
domness stored in the block header, and hashing its output
together with the nonce (via SHA-256). If the block passes

3. For simplicity, we describe the integration using a public-coin
chameleon hash. The changes necessary for a secret-coin chameleon hash
are minimal, as suggested in Section 3.3.



Value Description

Version (4 bytes) protocol version.

Previous block (32 bytes) the hash (twice SHA256) of the header of the

previous block.

Merkle root (32 bytes) the hash of the root of the Merkle tree that
summarizes all the transactions in the block.
Timestamp (4 bytes) approximate creation time of the block (Unix

epoch).

Difficulty target (4 bytes) difficulty target for the block.

Nonce (4 bytes) the nonce used for the proof-of-work.

uint256 SerializeHash (const CBlockHeader& header)

uint256 hash;

uint1024 chash;

/I compute the chameleon hash of the first 76 bytes of the block header

ChameleonHash(header[0], 76, header.RandomnessR, header.RandomnessS,
&chash);

/Imow compute the SHA256 of the output of the chameleon hash with the
nonce

CHash256(chash, header.nNonce, &hash);

return hash;

Randomness the randomness used by the chameleon hash function. The

size of this field depends on the function used.

Table 1: The Redactable Bitcoin block header.

all verifications and the resulting hash is smaller than the
target difficulty, then the block is considered valid and will
be added to the chain.

To manipulate the blocks we propose the creation of
two new algorithms; one to remove blocks from the chain
and the other to replace the contents of existing blocks.
To validate the integrity of the blockchain, a verification
procedure, that checks that each block header contains the
hash of the previous block header, is performed on the
entire blockchain. Once a block is modified or removed,
this integrity becomes compromised. In order to keep the
integrity of the chain, a hash collision for the modified
block (in the case of the redaction algorithm) or for the
next block remaining on the chain (in the case of the shrink
algorithm) must be computed. The hash collision algorithm
(see Definition 1) computes a new randomness value that,
when hashed together with the block header, outputs the
same hash value as some other block (that is passed as a
parameter to the function). After a collision is found, the
randomness value in the block header is updated to the new
computed value. As a result, the integrity of the blockchain
is restored, and every node in the network can verify the
validity of the chain.

Proof-of-Concept Implementation. We developed a proof-
of-concept implementation of the redactable Bitcoin appli-
cation, built on top of version 0.12 of Bitcoin core [38]. The
algorithms to redact a block and to shrink the chain were
implemented in the centralized setting, where one special
node holds the chameleon hash trapdoor key, and therefore
can perform those special operations on the blockchain.*
We implemented the chameleon hash function described in
Section 3.2 using the Bignum library of OpenSSL [2].
Our code was developed in the same language used
in Bitcoin core (C/C++). We created three main func-
tions for the chameleon hash, namely GenerateKey,
ChameleonHash, and HashCollision; the first func-
tion generates the public parameters and the trapdoor key,
the second function takes a message and a random value
and computes its hash. The last function takes an initial

4. For test purposes, all the parameters of the chameleon hash function,
including the trapdoor key, are hard-coded in the redactable Bitcoin source
code.
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Figure 5: A simplified version of the overloaded Serialize-
Hash function that computes the hash of a block header.

message and its randomness and a new message; it outputs
a randomness value, such that the hash of this new message
and the returned randomness value is equal to the hash of
the initial message and its randomness.

The first step for the integration of the chameleon
hash on Bitcoin core was to extend the CBlockHeader
class, that stores the header of a block (see Table 1). We
added the members RandomnessR and RandomnessS
to the class, each of size 128—bytes,5 that holds the two
randomness values required by the chameleon hash func-
tion. To modify the computation of the hash of a block
header, we overloaded the function SerializeHash in
file hash.cpp and created a version of this function that
is only called when a block header is passed as input;
this way, when the same function is called to compute
the hash of different components of the protocol, such as
transactions, the correct version of the function is still called.
The reason we overloaded the function SerializeHash,
and not the more obvious function GetHash from the
CHashWriter class, is because we must have access to
the header structure before performing the hash operation,
while in the GetHash function the block header data is
already serialized. A simplified version of the code is shown
in Figure 5.

Next, we modified the function CreateNewBlock that
is called when a block is being created (file miner.cpp).
We added the generation of fresh random values for
RandomnessR and RandomnessS and stored them
in the block header. In this way, when the function
SerializeHash is called passing this block header as
input, the chameleon hash is computed using the ran-
domness values stored in the header of the block. Be-
fore having all the Bitcoin functionality operating in full,
we need to create a new genesis block (described in file
chainParams. cpp) that uses the new block header struc-
ture and the chameleon hash function. For the integration
to work on an already existing blockchain, an initializa-
tion procedure is necessary. This procedure would have to
reconstruct all the blocks in the chain (optionally already
removing and/or merging blocks) with the new block struc-
ture and using the chameleon hash function. In a produc-

5. The size of the randomness values (in bytes) can be significantly
reduced if the chameleon hash is implemented on an elliptic curve group.
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Figure 6: Performance evaluation of the redactable blockchain. The image on the left shows a comparison of block creation
time between the redactable Bitcoin and Bitcoin core. The image on the right shows the performance of the redact block

and shrink chain algorithms.

tion redactable Bitcoin system, this initialization procedure
would be run within a MPC protocol.

For the special operations that redact and remove
blocks, we implemented the methods RedactBlock and
RemoveBlock in the CChain class. The first method
takes as input the height of the block to be redacted and
the new content to put in the block, and the latter takes as
input the initial and final height of a sequence of blocks to
be removed.

5.3. Experiments

To perform the experiments (and to not pose any risk
to the Bitcoin main network) we used the regression test
network feature of Bitcoin core, where nodes can be simu-
lated and connected among each other creating a private test
network. We measured the time of block creation against the
unmodified Bitcoin core, and the time of redacting blocks
and shrinking the blockchain (removing blocks). For the
measurements, we utilize python’s function time . time ()
to measure the elapsed time from the start of the operation
until the end of the operation. We note that we only measure
the time to perform the operations in memory, and we
disregard the time of disk access operations. The block
creation experiment was performed with the block difficulty
target set to 0, in this way we can precisely measure the time
of the operation without the overhead of the proof-of-work.
All the transactions considered in the experiment are of type
Pay-to-PubkeyHash. The experiments were run on the
hardware and software specified below.

« Intel Motherboard Server S1400SP2.

¢ Intel Processor Xeon E5-2430 (2.20 GHz, 7.20 GT/s).
+ 48GB (6x8GB) RAM memory ECC 1333, DDR3.

e 2 x SSD KINGSTON SKC300S3B7A KC300 180 GB.
o Ubuntu 14.04.4 LTS (GNU/Linux).

e gcc 4.9.3, Python 2.7.6.

In Figure 6a we show a comparison of the time required
to create blocks in the redactable Bitcoin versus the Bitcoin
core application. We note that the overhead of the redactable
Bitcoin, due to the computation of a chameleon hash, is
negligible and almost constant compared to Bitcoin core.
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In Figure 6b and 6¢c we show the performance of the
operations of redacting one block and removing one block
from the chain, depending on the size of the block (number
of transactions). The experiment was conducted on blocks of
different sizes rather than on blockchains of different sizes
because the running time of Algorithms 1 and 2 clearly are
(almost) independent of the size of the blockchain. The only
relation is due to a linear search required to find the selected
block to be redacted/removed from the blockchain.

6. Conclusions

We have presented a framework to redact and compress
the content of blocks in virtually any blockchain based
technology. As we have argued, there are several reasons
why one could prefer a redactable blockchain to an im-
mutable one. Our approach is feasible, as implementing
a redactable blockchain requires only minor modifications
to the current structure of the blocks. Moreover, as our
experiments showed, the overhead imposed by having a
mutable blockchain is negligible.
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