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Abstract—In this paper, we provide the first methodology for
reasoning about liveness properties of cryptographic protocols
in a machine-assisted manner without imposing any artificial,
finite bounds on the protocols and execution models. To this
end, we design an extension of the SAPiC process calculus so
that it supports key concepts for stating and reasoning about
liveness properties, along with a corresponding translation
into the formalism of multiset rewriting that the state-of-the-
art theorem prover Tamarin relies upon. We prove that this
translation is sound and complete and can thereby automati-
cally generate sound Tamarin specifications and automate the
protocol analysis.

Second, we applied our methodology to two widely in-
vestigated fair exchange protocols – ASW and GJM – and
to the Secure Conversation Protocol standard for industrial
control systems, deployed by major players such as Siemens,
SAP and ABB. For the fair exchange protocols, we not only
re-discovered known attacks, but also uncovered novel attacks
that previous analyses based on finite models and a restricted
number of sessions did not detect. We suggest fixed versions of
these protocols for which we prove both fairness and timeliness,
yielding the first automated proofs for fair exchange protocols
that rely on a general model without restricting the number
of sessions and message size. For the Secure Conversation
Protocol, we prove several strong security properties that are
vital for the safety of industrial systems, in particular that all
messages (e.g., commands) are eventually delivered in order.

1. Introduction

The security properties of cryptographic protocols are
commonly formalized in terms of trace properties (“all
protocol traces are secure”) or in terms of indistinguisha-
bility (“the adversary cannot distinguish two protocol ex-
ecutions”). Trace properties can be further partitioned into
safety properties (“bad things do not happen”) and liveness
properties (“eventually, good things happen”) [23].

An impressive number of symbolic analysis tools have
been developed for automated reasoning about trace prop-
erties such as authentication and weak forms of confiden-
tiality [25, 2, 14, 13, 27], and, more recently, also about

indistinguishability properties such as anonymity and strong
forms of confidentiality [6, 5, 10]. Reasoning about the class
of liveness properties of cryptographic protocols, has, how-
ever, received considerably less attention in the literature,
even though this class is vital for many security-sensitive
applications. Fair exchange protocols arguably constitute the
most widely known of these applications. These protocols
ensure that both participants eventually reach a state that is
fair, e.g., either they both receive a desired item, or no one
does [3]. Further examples comprise self-healing schemes
that ensure that the system eventually returns to a safe state
(e.g., by providing a revocation API that ensures that com-
promised keys will be turned invalid [12]) and the Secure
Conversation Protocol (SCP) – a security layer for industrial
control systems specified in the United Architecture (UA)
standard [24] that strives to ensure that all messages will
eventually be received in the correct order.

While a few previous attempts on the machine-assisted
verification of liveness properties exist (see the section on
related work for more details), they all face one of the
following two conceptual limitations.

First, the bulk of these attempts are restricted to finite
models and hence fail to adequately model the variety of
interactions that might arise in a protocol execution in
concurrent environments. So far, only a bounded (typically
one or two) number of concurrent sessions was considered,
sometimes with an additional bound on the size of messages.
Therefore, these approaches may miss common attacks that
rely on interweaving different sessions, and even more so
in cases of bounded message size.

Second, the only automated security protocol verifica-
tion tool that is capable of expressing liveness properties
without imposing such finite bounds onto the model is the
Tamarin prover [26, 27]. The protocol description language
of Tamarin relies on multiset rewriting, which constitutes a
rich formalism for expressing desired protocols but offers a
low level of abstraction. For instance, there is no abstract
notion of a local computation, of individual protocol parties,
or of the communication between two parties. This lack
of a suitable abstraction layer makes it cumbersome and
error-prone to express common assumptions imposed on
virtually all existing protocols: certain messages will be
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eventually delivered; honest protocol parties do not stall
computation; and the existence of a mechanism that prevents
protocol participants from waiting indefinitely for message
delivery. Stating these assumptions is a key requirement for
liveness properties in practice. Using an illustrative analogy,
this is akin to stating a condition on, and reasoning about,
objects within assembly code, compared to using a higher-
level language instead. A potential remedy to overcome
these limitations would be to provide a sound and complete
embedding from a suitable higher-level language into the
formalism of multiset rewriting. This would in particular
leverage the impressive potential of Tamarin. However, this
task contains formidable research challenges and no such
prior work exists.

1.1. Our Contribution

This paper makes the following two main contribu-
tions: (i) the first methodology for reasoning about liveness
properties in a machine-assisted manner without imposing
any finite bounds on the models and (ii) an application of
this methodology for verifying liveness properties in fair
exchange protocols and in a standardized communication
protocol for industrial control systems, discovering novel
attacks and proving fixed versions secure.

Methodology for reasoning about liveness properties.
We present the first verification toolchain for cryptographic
protocols that can handle liveness properties such as fairness
without the need to bound the number of sessions or the
message size. To this end, we have designed an extension
of the SAPiC process calculus [18, 19] such that it supports
key elements for stating and reasoning about liveness, see
below, along with a corresponding translation into multiset
rewriting as used by Tamarin. We prove the correctness of
the translation, retaining the completeness and soundness of
both SAPiC and Tamarin. We can only provide a glimpse on
this correctness proof in this paper due to space limitations,
but encourage the reader to inspect the full-fledged, 30-page
proof in the full version [4].

Our extension of SAPiC in particular supports three
important concepts: non-deterministic choice, local progress
and resilient channels. First, extending the calculus with (ex-
ternal) non-deterministic choice (NDC) is essential to model
scenarios in which a participant needs to either continue the
main protocol or execute one of the sub-protocols. As a
technical complication, we stress that, unlike internal NDC,
external NDC cannot be encoded using private channels.
Second, local progress ensures that honest participants exe-
cute their protocol as far as possible, which differs from
executions in traditional symbolic models. This is a key
aspect for reasoning about liveness properties of the form
“on all traces we eventually reach a state such that . . . ” in a
meaningful way, as we need to discard partial traces where
the participant would merely stop. Finally, resilient channels
ensure that a message will eventually be delivered, but may
be delayed by the attacker for an arbitrary amount of time.
For fair exchange protocols, the impossibility of achieving

fair exchange without a TTP [15] implies that a reliable
channels between the protocol participants and the trusted
third party (TTP) are strictly necessary.

We have implemented all our extensions in the SAPiC/-
Tamarin toolchain [18, 19]. The undecidability of the un-
derlying problem ensures that we cannot expect guaranteed
termination of our tool. However, the underlying Tamarin
prover allows to switch to interactive mode or to additionally
specify lemmas, which are proved automatically, and may
guide the tool. Interestingly, in our case studies, only one
such additional lemma was needed and all our proofs are
fully automatic. Implementing local progress turned out to
be surprisingly involved, as it interacts with branching and
operators for NDC that are possibly nested. Given a position
in the current process, the next position the process needs
to progress to is neither unique nor is there a dedicated set
of next positions: instead, a propositional formula describes
which positions have to be reached. Fortunately, we are able
to treat the original, comprehensive correctness proof for
SAPiC [19] in a blackbox manner, making the argument
more conveniently accessible and less prone to human error.

Application to liveness-sensitive protocols. We have used
our methodology and tool for modelling and analyzing two
widely investigated fair exchange / contract-signing proto-
cols: ASW [3] and GJM [16]. Moreover, we investigated a
toy example for motivating the need of the so-called timeli-
ness property. Our analyses not only re-discovered a known
attack on the ASW protocol, first found by Shmatikov and
Mitchell [29], but it additionally discovered a thus far un-
known variant of their attack. Whether these findings should
be considered attacks has been subject to discussions in the
literature already though, since they strongly depend on what
precisely should be considered a formal contract. If one
slightly relaxes the notion of what constitutes a contract, we
are able to prove both the fairness and timeliness properties
of these protocols. To the best of our knowledge, this yields
the first automated proof of fair exchange protocols that
considers a general model without restriction on the number
of sessions and message size. We finally show that our
methodology and tool is applicable beyond fair exchange
protocols by investigating the Secure Conversation Protocol
standard [24] for industrial control systems, employed, e.g.,
by Siemens, SAP and ABB. We formally prove several
strong security properties for this protocol that are vital for
the safety of industrial systems, pertaining to the content,
order, and number of messages (e.g., commands) transmitted
during communication.

1.2. Related work

Cederquist and Torabi Dashti [7] present a first symbolic
model with support for liveness properties. Their model
formalizes the resilient communication channel assumption,
by means of a fairness1 constraint: if a given message

1. Fairness in this context refers to the fairness property in temporal
logic, not to the security property of fair exchange protocols.
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delivery is enabled infinitely often, the message must even-
tually be delivered. However, they use the general purpose
algebra μCRL which does not have built-in support for a
symbolic, Dolev-Yao-style adversary; moreover, it does not
provide tool support for infinite state systems which would
be necessary to analyse protocols without bounding message
size or the number of sessions.

Liveness properties arise naturally in the study of opti-
mistic fair exchange protocols (see [20] for a survey) which
have been subject to many attempts of formal analyses.

Optimistic fair exchange protocols have been analysed
through complex hand proofs in general settings [8, 11, 28],
but these proofs have not been machine-checked. In [29],
Shmatikov and Mitchell analyse the ASW and GJM protocol
in the finite-state model checker Murφ [29], using an ad-hoc
encoding of processes in terms of finite-state machines. As
they use a finite-state tool their model requires to bound
both the message size and the number of sessions. They
define fairness as a state invariant that must hold in any final
state. However, they do not verify any liveness property,
such as timeliness. In their analysis, they discovered a
potential attack related to the precise definition of what is
a contract. In this work, we were able to find a similar
attack on their “fixed” protocol, which was surprisingly
overlooked in their model. Kremer et al. use another finite
model checker, Mocha, to analyse several fair exchange [21],
contract signing [22] and multi-party contract signing [9].
They model resilient channels as fairness constraints and are
able to check liveness properties. Gürgens and Rudolph [17]
use the finite-state model checker SHVT to find new flaws in
some fair non-repudiation protocols (flaws that were outside
of the model of previous analyses). This illustrates that finite
model checkers may easily miss attacks, and that there is
consequently a need for a general model that is capable
of reasoning about liveness properties without imposing
artificial finiteness constraints on the underlying model.

2. Preliminaries

Terms and equational theories. As usual in symbolic
protocol analysis, we model messages by abstract terms.
Therefore, we define an order-sorted term algebra with the
sort msg and two incomparable subsorts pub and fresh . For
each of these subsorts we assume a countably infinite set
of names, FN for fresh names and PN for public names.
Fresh names will be used to model cryptographic keys and
nonces while public names model publicly known values.
We, furthermore, assume a countably infinite set of variables
for each sort s, Vs, and let V be the union of the set of
variables for all sorts. We write u : s when the name or
variable u is of sort s. Let Σ be a signature, i.e., a set
of function symbols, each with an arity. We write f/n
when function symbol f is of arity n. There is a subset
Σpriv ⊆ Σ of private function symbols, which cannot be
applied by the adversary. We denote by TΣ the set of well-
sorted terms built over Σ, PN , FN and V . For a term t,
we denote by names(t), respectively vars(t) the set of
names, respectively variables, appearing in t. The set of

ground terms, i.e., terms without variables, is denoted by
MΣ. When Σ is fixed or clear from the context, we often
omit it and simply write T for TΣ and M for MΣ.

We equip the term algebra with an equational theory
E, which is a finite set of equations of the form M = N
where M,N ∈ T . From the equational theory we define
the binary relation =E on terms, which is the smallest
equivalence relation containing equations in E that is closed
under application of function symbols, bijective renaming
of names and substitution of variables by terms of the same
sort. Furthermore, we require E to distinguish different fresh
names, i. e., ∀a, b ∈ FN : a �= b⇒ a �=E b.

Example 1. Digital signatures can be modelled using a
signature

Σ = { sig/2, ver/2, pk/1, sk/1 }
and an equational theory defined by

ver(sig(m, sk(i)), pk(i)) = m,

where i is the identity of a party. If sk is a private function
symbol, this gives a very minimalistic model of a public-key
infrastructure.

For the remainder of the article, we assume that E refers
to some fixed equational theory and that the signature and
equational theory always contain symbols and equations
for pairing and projection, i.e., {〈., .〉, fst, snd} ⊆ Σ and
equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E.
We will sometimes use 〈x1, x2, . . . , xn〉 as a shortcut for
〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉.

Positions within terms are defined as usual. A position p
is a sequence of positive integers and t|p denotes the subterm
of t at position p.

Facts. We also assume an unsorted signature Σfact , disjoint
from Σ. The set of facts is defined as

F := {F (t1, . . . , tk) | ti ∈ TΣ, F ∈ Σfact of arity k}.
Facts will be used both to annotate protocols by means
of events and to define multiset rewrite rules. We partition
the signature Σfact into linear and persistent fact symbols.
We suppose that Σfact always contains a persistent, unary
symbol !K and a linear, unary symbol Fr. Given a sequence
or set of facts S we denote by lfacts(S) the multiset of all
linear facts in S and pfacts(S) the set of all persistent facts
in S. By notational convention, facts whose identifier starts
with ‘!’ will be persistent. G denotes the set of ground facts,
i.e., the set of facts that does not contain variables. For a
fact f we denote by ginsts(f) the set of ground instances
of f . This notation is also lifted to sequences and sets of
facts as expected.

Predicates. We assume an unsorted signature Σpred of
predicate symbols that is disjoint from Σ and Σfact . The
set of predicate formulas is defined as

P := {pr(t1, . . . , tk) | ti ∈ TΣ, pr ∈ Σpred of arity k}.
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Predicate formulas may be used to describe branching con-
ditions in protocols. While our translation supports these
predicates, none of our case studies requires any predicate
except for checking equality, i.e., equal/2 ∈ Σpred with
φequal(x, y) = x ≈ y. We refer to the full version for details.

Substitutions. A substitution σ is a partial function from
variables to terms. We suppose that substitutions are well-
typed, i.e., they only map variables of sort s to terms of sort
s, or of a subsort of s. We denote by σ = {t1/x1 , . . . ,

tn /xn}
the substitution whose domain is D(σ) = {x1, . . . , xn} and
which maps xi to ti. As usual, we homomorphically extend
σ to apply to terms and facts, and use a postfix notation to
denote its application, e.g., we write tσ for the application
of σ to the term t. A substitution σ is grounding for a term
t if tσ is ground.

Sets, sequences and multisets. We write Nn for the set
{ 1, . . . , n }. Given a set S we denote by S∗ the set of
finite sequences of elements from S and by S# the set of
finite multisets of elements from S. We use the superscript
# to annotate usual multiset operations, e.g. S1 ∪# S2

denotes the multiset union of multisets S1, S2. Given a
multiset S we denote by set(S) the set of elements in
S. The sequence consisting of elements e1, . . . , en will be
denoted by [e1, . . . , en] and the empty sequence is denoted
by []. We denote by |S| the length, i.e., the number of
elements of the sequence. We use · for the operation of
adding an element either to the start or to the end, e.g.,
e1 · [e2, e3] = [e1, e2, e3] = [e1, e2] · e3. Given a sequence
S, we denote by idx (S) the set of positions in S, i.e., Nn

when S has n elements, and for i ∈ idx (S) Si denotes the
ith element of the sequence. Set membership modulo E is
denoted by ∈E and defined as e ∈E S iff ∃e′ ∈ S. e′ =E e.
⊂E , ∪E , and =E are defined for sets in a similar way.
Application of substitutions are lifted to sets, sequences and
multisets as expected. By abuse of notation we sometimes
interpret sequences as sets or multisets; the applied operators
should make the implicit cast clear.

Functions. We suppose that functions between terms are
interpreted modulo E, i.e., if x =E y then f(x) = f(y).
Given function f we let f(x) = ⊥ when x �∈E D(x). When
f(x) = ⊥ we say that f is undefined for all y =E x. We
define the function f := g[a �→ b] with D(f) = D(g) ∪E

{ a } as f(x) := b for x =E a and f(x) := g(x) for x �=E a.

3. Cryptographic calculus with local progress

We extend the Stateful Applied Pi calculus (SAPiC) [19]
adding three necessary ingredients to show fairness in fair
exchange protocols:

Local progress: each process needs to be reduced as far
as possible. That is, until it is either waiting to receive a
message, or until it reaches a replication (as we cannot
replicate the process indefinitely).

Resilient channels: There is a resilient channel which
guarantees message delivery, i.e., each trace is induced

by at least one execution in which all messages sent
were delivered.

External non-determinism: Any process P+Q reduces to
P ′ or Q′ if either P reduces to P ′, or Q to Q′. Hence,
if either P or Q are able to progress, then P +Q must
progress.

3.1. Syntax and informal semantics

SAPiC is a variant of the applied pi calculus [1]. In
addition to the usual operators for concurrency, replication,
communication, and name creation, SAPiC was designed for
the analysis of state-based protocols and cryptographic APIs,
hence it offers several constructs for reading and updating
an explicit global state. For the analysis of fair-exchange
protocols, we add constructs for non-deterministic choice
and communication on a reliable channel to SAPiC. The
resulting grammar for processes is described in Figure 1.

〈P ,Q〉 ::= 0
| P | Q
| P +Q
| ! P
| νn : fresh; P
| out(c,N ); P (c ∈ { ‘r’, ‘c’ } : pub)
| in(c,N ); P (c ∈ { ‘r’, ‘c’ } : pub)
| if Pred then P [else Q]
| event F ; P (F ∈ F)
| insert M ,N ; P
| delete M ; P
| lookup M as x in P [else Q]
| lock M ; P
| unlock M ; P

Figure 1: Syntax, where M,N ∈ T and Pred ∈ P

0 denotes the terminal process. P | Q is the parallel
execution of processes P and Q and !P the replication of
P allowing an unbounded number of sessions in protocol
executions. P+Q denotes external non-deterministic choice,
as discussed above. The construct νn;P binds the name
n ∈ FN in P and models the generation of a fresh, random
value. The processes out(c,N ); P and in(c,N ); P represent
the output, respectively input, of message N on channel
c ∈ { ‘c’, ‘r’ }. There are exactly two channels, one for
reliable communication, e.g., between a protocol partici-
pant and the trusted third party, and one public channel.
Messages on both channels may be intercepted and altered
by the adversary, however, the reliable channel guarantees
that eventually, the message that was sent arrives. Readers
familiar with the applied pi calculus [1] may note that we
opted for the possibility of pattern matching in the input
construct, rather than merely binding the input to a variable
x. The process if Pred then P else Q will execute P
or Q, depending on whether Pred holds. For example, if
Pred = equal(M,N), and φequal = x1 ≈ x2, then if
equal(M,N) then P else Q will execute P if M =E N

79



and Q otherwise. (In the following, we will use M = N
as a short-hand for equal(M,N).) The event construct is
merely used for annotating processes and will be useful for
stating security properties. For readability, we sometimes
omit trailing 0 processes, respectively, else branches that
consist of a 0 process.

Note that several semantics would be possible for the
non-deterministic choice operator. One possibility would
be a purely internal non-deterministic choice, whose se-
mantics would correspond to the following reduction rules:
P1 + P2 → Pi (1 ≤ i ≤ 2). The other possibility, which
we choose here, is an external choice whose semantics is
defined by the rules

Pi → Q

P1 + P2 → Q
(1 ≤ i ≤ 2)

In this version P1 +P2 may only behave as P1 or P2 if the
chosen process can indeed reduce, i.e., execute an action.
While the external choice does complicate the translation
towards Tamarin, this flavour of choice is required for
modelling fair exchange protocols as we will illustrate in
Example 2 below.

The remaining constructs are used to manipulate state
and were introduced with SAPiC [18]. The construct insert
M ,N binds the value N to a key M . Successive inserts
overwrite this binding, the delete M operation “undefines”
the binding. The lookup M as x in P else Q allows for
retrieving the value associated to M binding it to the variable
x in P . If the mapping is undefined for M , the process
behaves as Q. The lock and unlock constructs are used
to gain or waive exclusive access to a resource M , in the
style of Dijkstra’s binary semaphores: if a term M has been
locked, any subsequent attempt to lock M will be blocked
until M has been unlocked. This is essential for writing
protocols where parallel processes may read and update a
common memory.

Example 2. The following example models the responder
in the ASW contract-signing protocol (cf. Section 8.2), sim-
plified to use pattern m1 and m3 to match the first and the
third message of the optimistic protocol.

in(‘c’,m1); out(‘c’,m2);

(
in(‘c’,m3); out(‘c’,m4)

+(out(‘r’, 〈m1,m2〉); . . .)

)

The responder emits m2, but is not sure to receive the
response m3, as the originator might be dishonest or
the adversary might have intercepted this message. If m3

arrives, then the process in(‘c’,m3); out(‘c’,m4) is able
to transition to out(‘c’,m4). If m3 does not arrive, the
message 〈m1,m2〉 is transmitted on the reliable channel,
to contact the TTP. This example highlights the need for
external choice, as opposed to internal choice: with inter-
nal choice, the responder could simply move to the first
branch in(‘c’,m3); out(‘c’,m4) and would then be unable
to contact the TTP. This would result in an unsound model.
Using external choice, however, moving to the first branch
is only possible if m3 is indeed available for input.

3.2. Semantics

Frames and deduction. Before giving the formal semantics
of SAPiC, we introduce the notions of frame and deduc-
tion. A frame consists of a set of fresh names ñ and a
substitution σ, and is written νñ.σ. Intuitively, a frame
represents the sequence of messages that have been observed
by an adversary during a protocol execution and secrets ñ
generated by the protocol, a priori unknown to the adversary.
Deduction models the capacity of the adversary to compute
new messages from the observed ones.

Definition 1 (Deduction). We define the deduction relation
νñ.σ � t as the smallest relation between frames and terms
defined by the deduction rules in Figure 2.

Operational semantics. We can now define the operational
semantics of our calculus. The semantics is defined by a
labelled transition relation between process configurations.
A process configuration is a 6-tuple (E ,S,P, σ,L,U) where

• E ⊆ FN is the set of fresh names generated by the
processes;

• S : MΣ → MΣ is a partial function modeling the
store;

• P is a multiset of ground processes representing the
processes executed in parallel;

• σ is a ground substitution modeling the messages out-
put to the environment;

• L ⊆MΣ is the set of currently active locks

• U ⊆M#
Σ is the multiset of messages pending delivery

on the public (resilient) channel

The transition relation is defined by the rules in Figure 3.
Transitions are labelled by sets of ground facts. For read-
ability, we omit empty sets and brackets around singletons,

i.e., we write → for
∅−→ and

f−→ for
{ f }−→. We write →∗ for

the reflexive, transitive closure of → (the transitions that are

labelled by the empty sets) and write
f⇒ for →∗ f→→∗. We

can now define the set of traces, i.e., possible executions that
a process admits. As we are interested in liveness properties
we will only consider the set of progressing traces, that is
traces that end with a final state. Intuitively, a state is final if
all messages on resilient channels have been delivered and
the process is blocking.

Definition 2. Given a ground process P we define the
predicate blck as follows

blck(P )=̂

⎧⎪⎨
⎪⎩
�, if P = 0, P =!Q or P = in(c,m);Q

blck(P1) ∧ blck(P2), if P = P1 + P2

⊥, otherwise

Intuitively a process will always execute completely,
except if it is a replication or when it blocks for external
reasons, i.e., it is awaiting input on (the public or the
resilient) channel.

Definition 3 (Traces of P ). Given a ground process P we
define the set of progressing traces of P as
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a ∈ FN ∪ PN a /∈ ñ
νñ.σ � a

DNAME
νñ.σ � t t =E t′

νñ.σ � t′
DEQ

x ∈ D(σ)

νñ.σ � xσ
DFRAME

νñ.σ � t1 · · · νñ.σ � tn f ∈ Σk \ Σk
priv

νñ.σ � f(t1, . . . , tn)
DAPPL

Figure 2: Deduction rules.

tracesppi(P ) =
{
(F1, . . . , Fn) | c0 F1=⇒∗ . . .

Fn=⇒∗ cn

∧ final(cn)
}
, where

c0 = (∅, ∅, {P }, ∅, ∅, ∅), and final(En,Sn,Pn, σn,Ln,Un)
iff Un = ∅ and blck(P ) for all P ∈ P .

3.3. Discussion

Our calculus supports two channels: ‘c’ is public and not
resilient, while ‘r’ is public and resilient. It is easy to model
an arbitrary number of resilient channels by consistently
using pattern matching, e.g., one channel per session id sid
and party A is encoded by using out(‘r’, 〈A, sid ,m〉) and
in(‘r’, 〈A, sid ,m〉) throughout the process modelling A in
session sid .

Unlike in the original SAPiC [19], we do not support
private channels for the following reason. Suppose a process
is reduced to P = out(s,m);P ′, and s is a supposedly
secret channel name. As there is no matching input in(s,m),
internal communication is not an option, and thus, the
process can only reduce further if the adversary was able
to deduce s. Hence, whether P is final would depend on
whether s is private, i.e., deducible by the adversary, which
would significantly complicate the translation.

4. Labelled multiset rewriting

We now recall the syntax and semantics of labelled
multiset rewriting rules, which constitute the input language
of the Tamarin tool [26].

Definition 4 (Multiset rewrite rule). A labelled multiset
rewrite rule ri is a triple (l, a, r), l, a, r ∈ F∗, written
l −[ a ]→ r. We call l = prems(ri) the premises,
a = actions(ri) the actions, and r = conclusions(ri) the
conclusions of the rule.

A labelled multiset rewriting system is a set of labelled
multiset rewrite rules R, which satisfy some side-conditions
which we leave out for brevity. There is one distinguished
rule FRESH which is the only rule allowed to have Fr-facts
on the right-hand side

FRESH : [] −[]→ [Fr(x : fresh)].

The semantics of the rules is defined by a labelled
transition relation.

Definition 5 (Labelled transition relation). Given a multiset
rewriting system R we define the labeled transition relation
→R⊆ G# × P(G)× G# as

S
a−→R ((S \# lfacts(l)) ∪# r)

if and only if l −[ a ]→ r ∈E ginsts(R ∪ FRESH),
lfacts(l) ⊆# S and pfacts(l) ⊆ S.

Definition 6 (Executions). Given a multiset rewriting system
R we define its set of executions as

execmsr (R) =
{
∅ A1−−→R . . .

An−−→RSn | ∀i, j ∈ Nn, a.

(Si+1 \# Si) = {Fr(a) }#∧
(Sj+1 \# Sj) = {Fr(a) }# ⇒ i = j

}
The set of executions consists of transition sequences

that respect freshness, i. e., for a given name a the fact Fr(a)
is only added once, or in other words the rule FRESH is at
most fired once for each name. We define the set of traces
in a similar way as for processes.

Definition 7 (Traces). The set of traces is defined as

tracesmsr (R) =
{
(A1, . . . , An) | ∀ 0 ≤ i ≤ n.

∅ A1=⇒R . . .
An=⇒R Sn ∈ execmsr (R)

}
where A

=⇒R is defined as ∅−→∗
R

A−→R
∅−→∗

R for A �= ∅.
Note that both for processes and multiset rewrite rules

the set of traces is a sequence of sets of facts.

5. Security Properties

In the Tamarin tool [26], security properties are de-
scribed in an expressive two-sorted first-order logic. The
sort temp is used for time points, Vtemp are the temporal
variables.

Definition 8 (Trace formulas). A trace atom is either false
⊥, a term equality t1 ≈ t2, a timepoint ordering i � j, a
timepoint equality i

.
= j, or an action F@i for a fact F ∈ F

and a timepoint i. A trace formula is a first-order formula
over trace atoms.

As we will see in our case studies, this logic is expressive
enough to analyze a variety of security properties, including
liveness properties.

To define the semantics, let each sort s have a domain
D(s). D(temp) = Q, D(msg) =M, D(fresh) = FN , and
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Standard operations:

(E ,S,P ∪# {0}, σ,L,U) −→ (E ,S,P, σ,L,U)
(E ,S,P ∪# {P |Q}, σ,L,U) −→ (E ,S,P ∪# {P,Q}, σ,L,U)

(E ,S,P ∪# {P +Q}, σ,L,U) A−→ (E ′,S ′,P ′, σ′,L′,U ′)

if (E ,S,P ∪# {P}, σ,L,U) A−→(E ′,S ′,P ′, σ′,L′,U ′) or (E ,S,P ∪# {Q}, σ,L,U) A−→(E ′,S ′,P ′, σ′,L′,U ′)

where P ′ = P or P ′ = P ∪# {P ′ }# for some P ′ �= P

(E ,S,P ∪# {!P}, σ,L,U) −→ (E ,S,P ∪# {!P, P}, σ,L,U)
(E ,S,P ∪# {νa;P}, σ,L,U) −→ (E ∪ {a′},S,P ∪# {P{a′/a}}, σ,L,U)

if a′ is fresh

(E ,S,P, σ,L,U) K(M)−−−−→ (E ,S,P, σ,L,U) if νE .σ �M

(E ,S,P ∪# {out(‘r’, N);P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ ∪ {N/x},L,U ∪# {N }#)
if x is fresh

(E ,S,P ∪# {in(‘r’, N);P}, σ,L,U) K(Nτ)−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U)
if ∃τ. τ is grounding for N, νE .σ � Nτ

(E ,S,P ∪# {in(‘r’, N);P}, σ,L,U) K(Nτ)−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U \# {N ′ }#)
if ∃N ′, τ. N ′ ∈ U , τ is grounding for N,Nτ =E N ′

(E ,S,P ∪# {out(‘c’, N);P}, σ,L,U) K(‘c’)−−−−→ (E ,S,P ∪# {P}, σ ∪ {N/x},L,U)
if x is fresh

(E ,S,P ∪# {in(‘c’, N);P}, σ,L,U) K(〈‘c’,Nτ〉)−−−−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U)
if ∃τ. τ is grounding for N, νE .σ � Nτ

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L,U) −→ (E ,S,P ∪ {P}, σ,L,U)
if φpr{M1/x1 , . . . ,

Mn /xn} is satisfied

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L,U) −→ (E ,S,P ∪ {Q}, σ,L,U)
if φpr{M1/x1 , . . . ,

Mn /xn} is not satisfied

(E ,S,P ∪ {event(F ); P}, σ,L,U) F−→ (E ,S,P ∪ {P}, σ,L,U)
Operations on global state:

(E ,S,P ∪# {insert M,N ; P}, σ,L,U) −→ (E ,S[M �→ N ],P ∪# {P}, σ,L,U)
(E ,S,P ∪# {delete M ; P}, σ,L,U) −→ (E ,S[M �→ ⊥],P ∪# {P}, σ,L,U)

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L,U) −→ (E ,S,P ∪# {P{V/x}}, σ,L,U)
if S(M) =E V is defined

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L,U) −→ (E ,S,P ∪# {Q}, σ,L,U)
if S(M) is undefined

(E ,S,P ∪# {lock M ; P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ,L ∪ {M },U) if M �∈EL
(E ,S,P ∪# {unlock M ; P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ,L \ {M ′ |M ′ =E M },U)

Figure 3: Operational semantics

D(pub) = PN . A function θ : V → M∪Q is a valuation
if it respects sorts, i. e., θ(Vs) ⊂ D(s) for all sorts s. If t is
a term, tθ is the application of the homomorphic extension
of θ to t.

Definition 9 (Satisfaction relation). The satisfaction relation
(tr , θ) � ϕ between a trace tr , a valuation θ, and a trace
formula ϕ is defined as follows:

(tr , θ) � ⊥ never
(tr , θ) � F@i ⇐⇒ θ(i) ∈ idx (tr) ∧ Fθ ∈E trθ(i)
(tr , θ) � i� j ⇐⇒ θ(i) < θ(j)

(tr , θ) � i
.
= j ⇐⇒ θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 ⇐⇒ t1θ =E t2θ

(tr , θ) � ¬ϕ ⇐⇒ not (tr , θ) � ϕ

(tr , θ) � ϕ1 ∧ ϕ2 ⇐⇒ (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ ⇐⇒ there is u ∈ D(s)

such that (tr , θ[x �→ u]) � ϕ.

For readability, we define t1� t2 as ¬(t1� t2∨ t1 .
= t2)

and ( ·≤, � .=, ·≥) as expected. We also use classical notational
shortcuts such as t1 � t2 � t3 for t1 � t2 ∧ t2 � t3 and
∀i ≤ j. ϕ for ∀i. i ≤ j → ϕ. When ϕ is a ground formula
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we sometimes simply write tr � ϕ as the satisfaction of ϕ
is independent of the valuation.

Definition 10 (Validity, satisfiability). Let Tr ⊆ (P(G))∗
be a set of traces. A trace formula ϕ is said to be valid
for Tr (written Tr �∀ ϕ) if for any trace tr ∈ Tr and any
valuation θ we have that (tr , θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr , written
Tr �∃ ϕ, if there exist a trace tr ∈ Tr and a valuation θ
such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr ��∃ ¬ϕ. Given a multiset
rewriting system R we say that ϕ is valid, written R �∀ ϕ,
if tracesmsr (R) �∀ ϕ. We say that ϕ is satisfied in R,
written R �∃ ϕ, if tracesmsr (R) �∃ ϕ. Similarly, given a
ground process P we say that ϕ is valid, written P �∀ ϕ,
if tracesppi(P ) �∀ ϕ, and that ϕ is satisfied in P , written
P �∃ ϕ, if tracesppi(P ) �∃ ϕ.

Example 3. In Section 8, the following trace formula is
used to express timeliness for the originator, i.e., whenever
originator ‘a’ runs the protocol with ‘b’ on a contract ‘t’
in session ‘sid ’, unless ‘a’ will be corrupted at some point,
she will eventually reach either a contract in this session or
receive notification that it has been aborted.

∀i : temp, a, b, t, sid : msg .

StartA(a, b, t, sid)@i⇒(∃j.ContractA(a, b, t, sid)@j)

|(∃j.AbortA(a, b, t, sid)@j)

|(∃j.Corrupt(a)@j)”

6. A translation from processes into multiset
rewrite rules

In this section, we define a translation from a process P
into a set of multiset rewrite rules �P � and a translation on
trace formulas such that P |=∀ ϕ if and only if �P � |=∀ �ϕ�.
Note that the result also holds for satisfiability as an imme-
diate consequence. For a rather expressive subset of trace
formulas (see [26] for the exact definition of the fragment),
checking whether �P � |=∀ �ϕ� can then be discharged to the
Tamarin prover that we use as a backend. Except for local
progress, resilient channels and NDC, the other elements of
the translation have been discussed in previous work [19].

6.1. Progress function

In Section 3, we have defined local progress axiomati-
cally in terms of the final state to be reached. The progress
function that we use for our translation gives a more
constructive understanding. In this section, we will give
an intuition of how this function works and illustrate the
subtle interplay between non-deterministic choice and local
progress. We postpone the formal definition to Appendix A.

When a process is in a certain position p, the progress
function π defines the maximal follow-up positions that the
process can reach on its own. All traces that do not reach
maximal positions will later be ruled out by the means of

an axiom. As we will see below, the progress function maps
a position to a set of sets of positions. In the simplest case
a position in a process can have a unique position it must
progress to.

Example 4. Let

P = event A; in(‘c’,m); event B; 0.

Initially, the process P must reduce to

P |1 = in(‘c’,m); event B; 0

i.e., raise A. However, the process will be blocked as it needs
to wait for an input. Once P can be reduced to P |111 =
event B; 0, e.g., because the adversary sends a message,
it must continue to reduce to 0. We would therefore define
the progress function for P such that π([]) = { { 1 } } and
π(11) = { { 111 } }

In general, a process needs to progress until it reaches
a blocking process, as defined in Definition 2. We call a
position blocking in P , if P |p is blocking. If P is clear from
context, we only call the position blocking. Note that in case
of a non-deterministic choice, the process P = P1 + P2 is
only blocking if both P1 and P2 are blocking too. If one of
the Pi is non-blocking, the process will progress in that
branch. Therefore, progress can never reach the position
directly below a +. In particular, if NDC operators are
nested (which is useful, e.g., to express an n-fold choice),
several positions need to be ‘jumped over’, figuratively
speaking.

Moreover, in case of a parallel composition, the progress
function expects the process to progress to the next blocking
position in each of the parallel branches.

Example 5. Consider the process

P = (event A; 0) | (event B; 0)

This process is expected to raise both events A and B.
Therefore, π([]) = { { 11 }, { 21 } }.

A process P = P1 + P2 allows to either execute P1 or
P2 but not both. Unlike parallel composition where P must
progress in both branches, we ensure that P processes in
either P1 or P2.

Example 6. Consider the process

P = (event A; 0) + (event B; 0)

To express that P must either raise event A or event B, we
define π([]) = { { 11, 21 } }.

We are now ready to explain why the progress function
requires to return a set of sets of positions. When

π(p) = {A1, . . . An },
process P must transition p to some position in Ai for each
1 ≤ i ≤ n. Intuitively, each Ai corresponds to a parallel
branch. The positions in each Ai are the mutually exclusive
positions due to the + operator. We hence require that a
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process at position p executes until it reaches one blocking
position for each Ai.

Example 7. Consider the process

(event A; 0 | event B; 0) + (event C; 0 | eventD; 0)

and denote the leaf position below event A be called
pA and similarly for other events. We have that π([]) =
{ { pA, pC }, { pA, pD }, { pB , pC }, { pB , pD } }
Example 8. The following example illustrates the difficulty
in defining π due to non-deterministic choice.

P = (in(‘c’,m); event A; 0)+
(out(‘r’, r1); event B; in(‘r’, r2); event C; 0)

While the left branch starts with a blocking position,
progress is possible in the right branch. As π aims to capture
the guarantee that a process will progress until no action is
directly available, we have to consider two cases: a) If the
input in the first branch is not available, P has no choice
but to progress to the second branch, which is non-blocking.
b) If the input in the first branch is available, then P has
to reduce to the next blocking position in the first branch.
Thus π([]) = { { 111, 211 } }, and π(2111) = { { 21111 } }.
This situation appears in all contract-signing protocols we
verify: either a message appears on the public channel and
we can proceed to A, or the process eventually gives up
and contacts the TTP on the reliable channel. If the TTP is
implemented well, then due to local progress and the fact
that messages sent on the reliable channel are eventually
delivered, the position below event B (2111) can be reached,
which triggers progress up to event C.

When π is the progress function for P we will denote by
From(P ) the domain of π and To(P ) the set of positions that
appear in the image of π. From(P ) is the set of positions
where progress starts, roughly, the non-blocking positions
that directly follow a blocking position and possibly [] (if
[] is non blocking). We also show that for any position q ∈
To(P ) there is a unique position p ∈ From(P ) such that q
appears in π(p) and denote the function that maps q to p by
π−1. The formal definitions of these sets and the progress
function are rather technical and can be found in the long
version.

6.2. Definition of the translation of processes

The translation is defined on well-formed processes, i.e.,
ground processes that do not contain reserved variables or
reserved facts, in which every variable is under the scope
of exactly one binder and which fulfils a syntactic criterion
on locks. We leave the details for the full version, as none
of these conditions constitutes a limitation for this work (as
has thoroughly been discussed in [19]).

Definition 11. Given a well-formed ground process P we
define the labelled multiset rewriting system �P � as

MD ∪ {INIT, MID} ∪ �P , [], []�

where

• the rule INIT is defined as

INIT : [Fr[]] −[ Init,ProgFrom [] ]→ [state[]()],

• the rule MID is defined as

MID : [Fr(x)] −[ ]→ [MIDrcv(x),MIDsnd(x)]

• �P, p, x̃� is defined inductively for process P , position
p ∈ N∗ and sequence of variables x̃ in Figure 4.
For brevity, we use the following syntactic shortcuts:

ProgFromp=̂

{
ProgFromp(progp) if p ∈ From(P )

[] otherwise

ProgTop=̂

{
ProgTop(progπ−1(p)) if p ∈ To(P )

[] otherwise

Frp=̂

{
Fr(progp) if p ∈ From(P )

[] otherwise

x̃p=̂

{
x̃ ∪# { progp }# if p ∈ From(P )

x̃ otherwise

The core of the translation builds on [19]. The mes-
sage deduction rules MD consist of four rules for message
output, message input, application of (non-private) function
symbols, and creation of fresh values. In the definition of
�P, p, x̃�, we intuitively use the family of facts statep to
indicate that the process is currently at position p in its
syntax tree. A fact statep will indeed be true in an execution
of these rules whenever some instance of Pp (i.e. the process
defined by the subtree at position p of the syntax tree of P )
is in the multiset P of the process configuration.

We will now comment on the main changes w.r.t. [19].
The translation of a NDC does not produce a rule, but
rewrites the positions of the required state-fact in the first
rules of both its child processes, with the effect that the NDC
step is skipped to proceed to either one. Input and output
on the resilient channel require the fact MIDsnd, respectively
MIDrcv, both of which can be instantiated with the rule MID.
Each instantiation can be used but once and assures that each
message sent has a unique identifier, even if a message with
the same content has been sent before. Thus, the axiom
αresil can enforce that a message sent must be received, for
each instance of a message. Finally, we annotate the rules
with ProgFrom and ProgTo facts. The αprog axiom will
use these actions to enforce progress.

6.3. Definition of the translation of trace formulas

A trace formula ϕ is well-formed if no reserved variable
nor a reserved fact appear in ϕ.

Definition 12. Given a well-formed trace formula ϕ we
define

�ϕ�∀ := α⇒ ϕ and �ϕ�∃ := α ∧ ϕ

where α is defined in Figure 5.
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�0, p, x̃� = {[statep(x̃)] −[ ]→ []}
�P | Q, p, x̃� = {[statep(x̃)] −[ ProgFromp,ProgTop·1,ProgTop·2 ]→ [statep·1(x̃p), statep·2(x̃p)]}

∪�P, p · 1, x̃p� ∪ �Q, p · 2, x̃p�

�P +Q, p, x̃� = �P, p · 1, x̃�
{
statep(x̃)/statep·1(x̃)

}
∪ �Q, p · 2, x̃�

{
statep(x̃)/statep·2(x̃)

}
�!P, p, x̃� = {[statep(x̃)] −[ ProgTop·1 ]→ [!statesemi

p (x̃)],

[!statesemi
p (x̃)] −[ ]→ [statep·1(x̃)]} ∪ �P, p · 1, x̃�

�in(‘r’,m);P, p, x̃� = {[statep(x̃), In(m),Frp,MIDrcv(mid)] −[ ProgTop·1,Receive(mid ,m), InEvent(m) ]→
[statep·1(x̃p ∪ vars(m))]}

∪�P, p · 1, x̃ ∪ vars(m)�

�out(‘c’, N);P, p, x̃� = {[statep(x̃), In(‘c’)] −[ ProgFromp,ProgTop·1, InEvent(‘c’) ]→ [statep·1(x̃),Out(N)]}
∪�P, p · 1, x̃p�

Figure 4: Translation of processes: definition of �P, p, x̃�. (The rules for νn, input/output on the public channel, conditional
branching, events, locks, unlocks and state manipulation can be found in the full version.)

α := αinit ∧ αpred ∧ αnoteq ∧ αin ∧ αnotin ∧ αlock ∧ αinev ∧ αresil ∧ αprog and

αinit := ∀i, j. Init()@i ∧ Init()@j =⇒ i
.
= j

αresil := ∀x, y, t1. Send(x, y)@t1 =⇒ ∃t2. Receive(x, y)@t2 ∧ t1 ·≤ t2

αprog :=
∧

a∈From(P )∧B∈π(a)
{
∀l, t1. ProgFroma(l)@t1 =⇒ ∃t2.

∨
b∈B(ProgTob(l)@t2)

}
Figure 5: Definition of α. (αpred , αnoteq , αin , αnotin , αlock , αinev are defined in the full version.)

The axiom αresil is a straightforward formalisation of
the intuition that each message sent on the resilient channel
ought to arrive at some point. Progress is enforced via
the axiom αprog , which directly derives from the progress
function. Recall that π(p) for some position p encodes the
positions to be reached in conjunctive normal form. Similiar
to our use of locks, we annotate each parting position p with
a fresh nonce which re-appears in each position in π(p).
Whenever there is an action ProgFrom in the trace, the ex-
istence of a ProgFrom step is derived from the axiom αprog .
This action carries the fresh value chosen at the ProgFrom
position, which Tamarin identifies correctly merging these
two steps along with the intermediary positions.

7. Proof of correctness

The correctness of our translation is stated by the fol-
lowing theorem.

Theorem 1. Given a well-formed ground process P and a
well-formed trace formula ϕ we have that

tracesppi(P ) �� ϕ iff tracesmsr (�P �) �� �ϕ��

where 	 is either ∀ or ∃.

We here give an overview of the main propositions and
lemmas needed to prove Theorem 1. Detailed proofs are
given in the full version [4]. We first define additional
notations:

• given a process P , we write tracespi(P ) (as opposed
to tracesppi(P )) for the set of traces of P without
requiring progress (but we do require resilience);

• given a trace formula α and a set of traces Tr ,
filterα(Tr) denotes the subset of Tr on which α holds;

• given a trace tr and a set of facts F we write hideF (tr)
for the trace obtained by removing any fact in F and
lift this operation to sets of traces as expected.

We can now adopt the main lemma of the previous
translation [19], which is relating the set of traces of a
process P and the set of traces of its translation into multiset
rewrite rules. The set Fres denotes the set of reserved facts
used in the translation and that may not appear in processes
(see [19] for details). Note that this adoption does not yet
take into account the progress axiom. To increase modularity
we chose to treat this argument separately.

Lemma 1 (Adaptation of [19]). For all P well-formed with
respect to this paper’s Definition,

tracespi(P ) = hideFres
(filterα\αprog

(tracesmsr (�P �))).

Proof sketch. The proof is largely similar to the one pre-
sented in earlier work [19]. There are two main changes.
• Sending and receiving messages on the resilient chan-

nels requires correct bookkeeping, i. e., we show that at
any point of the execution, the multiset of undelivered
messages equals the multiset of pairs of messages and
message ids (mid , see rule MID) for which a Send-
action appears in the trace, but not a Receive-action.
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• We handle (possibly nested) non-deterministic choice.

In order to show the same property for tracesppi and α
including αprog , we have to show that, at any point, if and
only if no process can be further reduced, is α, including
αprog preserved.

Lemma 2 (Correctness of αprog ). The following two state-
ments are equivalent for all E1, . . . , Em:

∃s1, . . . , sm.(s0
E1=⇒ · · · Em=⇒ (Em,Sm,Pm, σm,Lm,Um))

∧∀Q ∈ Pm.blck(Q)

iff

∃S1, . . . , Sn,F1, . . . , Fn.∅ F1−→∗ · · · Fn−−→∗Sn ∈ execmsr (�P �)

∧ (E1, . . . , Em) = hideFres
((F1, . . . , Fn))

∧ ((F1, . . . , Fn)) � α.

Proof sketch. The main argument relies only on the cor-
rectness of the progress function, (Lemmas 5 to 11 in the
full version). For the first direction, if there is a process
that is non-blocking, there is a ProgFrom-action not yet
‘resolved’ by a ProgTo-action, otherwise αprog would hold.
Conversely, where αprog does not hold, one can point to a
ProgFrom that is not ‘resolved’, which identifies a position
that must be a prefix of some position in the process that
has not been further resolved.

Combining Lemmas 1 and 2, we can show our main
lemma.

Lemma 3 (trace-equivalence). For all well-formed P , then

tracesppi(P ) = hideFres (filterα(traces
msr (�P �))).

Proof sketch. The idea is to define tracesppi(P ) in terms
of the set difference between tracespi(P ) and non-final
traces. As the negation of Lemma 2 shows equivalence
between non-final SAPiC executions and msr executions
that are filtered, the rest of the proof is a set-theoretical
transformation.

The main theorem follows Lemma 3, and Propositions 3
and 2 (cf. the full version).

Proof of Theorem 1.

tracesppi(P ) �� ϕ
⇔ hideFres

(filterα(traces
msr (�P �))) �� ϕ by Lemma 3

⇔ filterα(traces
msr (�P �)) �� ϕ by Prop. 3

⇔ tracesmsr (�P �) �� �ϕ�� by Prop. 2

The axiom αinev within α has turned out to slow down
verification time, which is why we have shown that for a
particular class of formulas it is possible to remove it. We
show in the full version (Theorem 2) that this is sound for
all security properties we are interested in.

8. Case studies

In this section we present the analyses of several case
studies using our extension of SAPiC/tamarin toolchain. The
obtained results, obtained using 16 2.5GhZ Intel Xeon E7-
8867 cores and 1.5TB available RAM are summarised in
Tables 1 and 2. The implementation and SAPiC models are
part of the tamarin-prover repository 2.

8.1. A first toy protocol

Our first case study is a fair non-repudiation protocol
introduced in [20] to motivate the need for timeliness in
addition to fairness. We will also use this protocol to discuss
our modelling of fairness, timeliness and corruption.

Protocol description. The protocol consists of two sub-
protocols: a main protocol and a recovery protocol. In the
main protocol, 3 messages are exchanged.

Originator A Responder B

m1 = commitment�

� m2 = NRR

m3 = t,NRO �

Toy protocol: honest protocol run

In order to concentrate on the message flow, we do not
give the details of these messages, which can be found
in [20]. The first message m1 is a commitment of A to
send some text t. B replies by sending m2 which represents
a non-repudiation of receipt (NRR) evidence. Finally, mes-
sage m3 contains t and a non-repudiation of origin (NRO)
proof. An obvious fairness problem arises when B does not
receive m3. In this case, he may contact the TTP with a
resolve request (which includes m1). m1 contains enough
information for the TTP to recover t and produce a non-
repudiation of origin evidence on behalf of A. The TTP
sends the evidence and t to B. The TTP also sends a non-
repudiation of receipt evidence to A on behalf of B: this is
important as a dishonest B could otherwise request a resolve
after having received m1 without sending m2.

The processes used to model the roles of A, B and
the TTP are given in Figure 7. The definitions of the
messages mi and ri are available in our example files.
The processes PA and PB use the NDC operator to model
the possible branching in case of a recovery. Note that,
unlike the more complex ASW and GJM examples, here
the model of the TTP neither requires NDC nor persistent
state (to store the status of the protocol). The processes
are annotated with events that allow us to define security
properties. Even though the toy protocol was designed to
exchange non-repudiation evidences we will refer to the
items to be exchanged as contracts (these evidences may
be seen as a kind of contract).

2. https://github.com/tamarin-prover/tamarin-prover
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TABLE 1: Case studies and results: � denotes successful verification, while � denotes we
discovered an attack. ∞ means that the verification procedure diverges.

ASW ASW (mod.) GJM GJM (mod.) toy example

property type time type time type time type time type time

timeliness (A) � 1:40min � 1:38min � 0:46min � 6:08min � 37s

timeliness (B) ∞ — � 37:34min � 12:49min � 34:49h

fairness (A) �1 8:34min �1 31:06min �2 2:22min �2 14:11min �2 5:46h

�2 0:40h

fairness (B) � 14:05h2 �2 43:52h 3

1 weak notion of contract 2 strong notion of contract 3 add. helping lemma (verified in 2:38min)

PA(a, b, ttp, t) = new k; event StartA(a, k); out(‘c’,m1);(
in(‘c’,m2); out(‘c’,m3);
event ContractA(a, b, t, k)

)
+

(
in(‘r’, r2);
event ContractA(a, b, t, k)

)

PB(a, b, ttp) = in(‘c’,m1); new sess; event Startb(b, sess); out(‘c’,m2);(
in(‘c’,m3);
event Contractb(a, b, t, sess)

)
+

(
out(‘r’, r1); in(‘r’, r3);
event Contractb(a, b, t, sess);

)

PT = in(‘r’, r1); out(‘r’, r2); out(‘r’, r3);

Figure 7: Description of the toy fair non-repudiation protocol

Modelling Fairness. In this section, we will discuss our
formulation of the fairness property. Intuitively, fairness may
be expressed as follows:

“Either both parties can receive a contract or
none of them can.”

Suppose that CA and CB are logical formulas that repre-
sent the statement “if A (respectively B) proceeds, she will
receive the expected contract”. This can indeed be expressed
using the Contract events that annotate the processes (see
Figure 7). Then the above intuitive formulation can be
expressed as

(CA ∧ CB) ∨ ¬(CA ∨ CB)

⇔(CA → CB) ∧ (CB → CA).

The second equivalent formulation expresses both fair-
ness for A (first disjunct) and fairness for B (second dis-
junct). In our complete model, we consider the cases where
A or B may be dishonest (modelled through corruption
described below). Suppose that DB expresses that B has
been corrupted. In that case we do not require fairness to
hold for B, but only for A. As in our calculus, protocol
events can only be emitted by honest runs of the protocol,
the attacker may not be able to raise the event ContractB
for a corrupted B. Therefore, we model a fourth entity, a
judge, which emits an event if enough evidence has been
brought forward to prove that a contract was made:

PJ = (in(‘c’,m1); event Contractjudge(A,B, T ))

| · · · |(in(‘c’,mn); event Contractjudge(A,B, T ))

where m1, . . . ,mn are the messages that suffice as evidence
of a contract. We assume the public variable T is part of
m1, . . . ,mn and describes the contract text. Suppose that J

expresses that “it is possible to raise event Contractjudge”.
Then, in the case where B is corrupted, CB should be
replaced by J , and fairness for A expressed as J → CA.
Note that the judge is different from the TTP in particular,
the judge never emits messages, but just an event if sufficient
evidence for a contract was brought forward.

Following these ideas, and recalling that fairness is only
required to hold for uncorrupted parties, we can express
fairness for A in the first-order logic introduced in Section 5.

∀i : temp, a, b, t : pub.Contract judge(a, b, t)@i

⇒ (∃j : temp, k : msg .ContractA(a, b, t, k)@j)

∨ (∃k : temp.Corrupt(a)@k).

where Corrupt is the event raised when a party has been
corrupted. Fairness for B is obtained by switching A for B.
Overall, fairness is the conjunction of these two conditions.
Using our tool we show that fairness indeed holds for A.

Modelling timeliness. Timeliness guarantees that no honest
participant is ‘left hanging’, i.e., stuck in a situation where
it cannot continue without the help of another participant,
while fairness guarantees that no honest party ends up
without a contract if the other has one. Consider again the
toy example. Even though fairness holds for A, once A has
sent message m1 he needs to wait for either m2 or r2.
He does however not know whether one of these messages
will ever arrive or if B simply stopped the protocol – A
is left ‘hanging’. This demonstrates that fairness does not
imply timeliness, while the other direction is clear: even if a
participant can always terminate, he might not always obtain
the contract.

Timeliness expresses that a participant can always uni-
laterally (i.e. without the help of the other participant, but
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possibly relying on the TTP) finish the protocol. Timeliness
is modelled by annotating the processes with Start events,
expressing that a session has started (cf Figure 7) in addition
to the Contract events (and Abort events in the more
complex ASW and GJM protocols). The arguments of these
events should identify the session. Then timeliness for A is
expressed as

∀i : temp, a, b, t, k.StartA(a, k)@i⇒
(∃j : temp.ContractA(a, b, t, k)@j)

∨(∃j : temp.Corrupt(a)@j)

Again, no guarantee is required when A is corrupt and
timeliness for B is formulated similarly. Using our tool we
confirm that timeliness does not hold for A.

Modelling resilient channels and corruption. In our case
studies, we found that it is very often not clear what exactly
is required from resilient channels to achieve timeliness
or fairness. Suppose Alice takes the role of the initiator
in two sessions, and the role of the responder in another.
Do all her sessions share the same channel, do the initiator
sessions share the same channel, or does every session have
a separate channel?

In the ASW protocol, we found that a reply from the
TTP does not identify which responder session should re-
ceive it and we chose to model:

• For the toy and ASW protocol, one resilient channel
to the TTP per participant and protocol role (either
originator or responder), along with the corresponding
return channel.

• For the GJM protocol, one channel per session, as this
protocol does not carry any session information in its
messages.

Our calculus provides only a single resilient channel, but
the above assumptions can be trivially modelled via pattern
matching. While the assumption of a channel per participant
is standard (e.g., it is necessary for fairness of the Zhou-
Gollman protocol [28]), the separation by protocol role is
unusual. It is justified in the case of the ASW protocol,
as a participant A that has two sessions with itself and
aborts the protocol in both, might receive one of the two
abort messages from session one in the other session. While
this does not necessarily imply an attack, it makes it much
more difficult to prove timeliness for our tool, while it only
amplifies the assumption.

The corruption process raises an event to mark a party
corrupted, and reveals its secret key to the adversary. Ad-
ditionally, for each corrupted party we add a process that
inputs any messages sent over resilient channels to these
parties. This is important as any trace with undelivered
messages is ignored and attacks might be missed.

! in(‘c’, 〈’cor’, x〉); event Corrupt(x); out(‘c’, sk(x));
(! in(‘r’, 〈’resp’, x,m〉 | ! in(‘r’, 〈’orig’, x,m〉))

8.2. ASW protocol

The optimistic contract-signing protocol by Asokan,
Shoup, and Waidner [3] proceeds as follows. For a contract

text T , the originator A sends a signature for T and a
commitment to a freshly drawn nonce na in the form of
a hash. The responder B confirms by signing this message
and a commitment on another freshly drawn nonce, nb. Both
parties then exchange their nonces. (Note that we have left
out the identifiers of originator, responder and TTP in the
first message.) In case that A or B are not receiving a

Originator A Responder B

m1 = sigskA
(T, h(nA))�

�
m2 = sigskB

(m1, h(nB))

m3 = nA �
� nB

Figure 8: ASW protocol: honest protocol run

response in appropriate time, A may decide to abort the
protocol (if the second message does not arrive), to resolve
the contract with the TTP (if the fourth message does not
arrive), or B may decide to resolve the contract (if the third
message does not arrive). For brevity, we will only outline
the parts of the corresponding abort/resolve-protocols when
they are relevant to attacks below.

It is important to note that here the complete tran-
script from the first to the fourth message constitutes the
contract text, including the nonces. As indicated by the
original authors [3, Definition 3.1], each transcript of the
honest protocol run identifies a different contract. In case
the TTP is called, a second form of a valid contract is
recognized, which consists of the TTP’s signature on the first
and the second message of the opportunistic protocol run,
sigskTTP

(m1,m2) for m1 and m2 of the form in Figure 8.
With this notion of contract, the following replay attack

permits an attacker to create an arbitrary amount of different
copies with the same contract text T for A and B, without
A having any knowledge of this, nor A having any evidence
that this attack took place, as the TTP is never contacted.
Suppose the attacker observes the honest run above, he can
commit to another contract with the responder B in the name
of A, just by replaying the first and third message:

Attacker I Responder B

. . .
(continuation of run Fig. 8)

m1 �

(intercepted) �
sigskB

(m1, h(n
′
B))

m3 �

(intercepted) �
n′B

ASW protocol: Shmatikov/Mitchell attack.

This attack was discovered in a finite model by Shmatikov
and Mitchell. The weakness here is that the third message is
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not related to the second message in any way, so Shmatikov
and Mitchell proposed the following fix for the protocol.

Originator A Responder B

sigskA
(T, h(nA))�

�
sigskB

(m1, h(nB))

sigskA
(nA, h(nB))�

�
sigskB

(nB , h(nA))

ASW protocol: repaired version by Shmatikov and Mitchell.

Nevertheless we were able to show timeliness for A. We
were unable to show timeliness for B, as the response of the
TTP to a resolve request from B does not contain enough
information to identify B’s session. Rather than strength-
ening the assumption on the channel to avoid this possible
confusion, we chose to modify the protocol by adding h(nB)
to the response. Note that a) we did not find an actual
attack, as a message that arrives in the wrong session would
prevent this session to pick up any other messages, hence we
conjecture that, overall, each message will be successfully
picked up. Yet, the additional proof effort did not seem to
justify the slight gain in generality. Furthermore, b) for the
GJM protocol, we did avoid this problem by imposing a
larger number of secret channels, as there was no hope for
a similar fix in that protocol. For the protocol containing
our and Shmatikov/Mitchell’s modification, we managed to
show timeliness for both parties.

Using our tool, we also found that surprisingly simple
attack on the fairness of this repaired protocol. Suppose a
dishonest B has signed a contract with A and wants to have
a second copy of it. B can obtain a second copy without
A’s consent by calling the TTP to resolve with a ‘refreshed’
m2, where nB is substituted by a freshly drawn nonce n′B .

B (dishonest) TTP

. . .
(continuation of run Fig. 10)

m1,m
′
2 = sigskB

(h(m1), h(n
′
b))�

�
sigskTTP

(m1,m
′
2)

ASW protocol: new attack.

If we alter the judge process, so that it identifies a
contract with the text committed to, and the two signers,
but not the nonce na, then we are able to show fairness for
both parties. We call this property fairness for the weaker
notion of a contract. Note that this rules out certain kinds
of contract, e.g., if A and B exchange IOUs, one would
expect each new IOU, even if it contains the same text, to
correspond to a different contract, e.g., that three contracts
saying ‘A owes B $50’ would amount to a debt of $150.

TABLE 2: OPC UA Secure Conversation results

Property Time Proof steps

all messages are received 1s 15
all messages were sent 7s 138

message order is respected 26s 204

8.3. GJM protocol

The fairness of the optimistic contract-signing protocol
by Garay, Jakobsson, and MacKenzie (GJM) [16] was al-
ready analysed in previous work, but only in a bounded
model. Under the assumption that each party has a reliable
channel to and from the TTP for each session, we can
automatically show timeliness for A and B. The verification
proceeds automatically and without any additional lemma.

However, we immediately found an attack on fairness
for A, even for the weak notion of contract. The optimistic
protocol run, as well as recovery conducted by the trusted
third party, will return a contract of the same form, namely

(sig(〈‘1′, t〉, skA), sig(〈‘2′, t〉, skB)),

where t is the contract set, and ‘1′ and ‘2′ just serve to
distinguish these messages in a protocol run. Note that nei-
ther signature contains the identity of the respective contract
partner. Hence it is easy, e.g., for a party X with a bad
reputation, to obtain a contract A would only want to sign
with B, just by replacing the second signature:

(sig(〈‘1′, t〉, skA), sig(〈‘2′, t〉, skX)).

This attack only applies if the contract text does not explic-
itly mention the signing parties but rather depends on the
signers, e.g., “the signers agree to . . . ”. If we require t to
be of the form 〈A,B, t′〉, i.e., to contain the signing parties,
we can automatically show fairness (for the weak notion of
contract) for A and B. The protocol we show secure actually
enjoys a small improvement: Garay et.al. assume the reliable
channel to the TTP to additionally be secret. We lift this
assumption, as only the responder’s resolve message needs
to be kept secret. Thus, we use asymmetric encryption in the
transmission of this message, while the originator’s resolve
message and the abort message can remain unencrypted.

8.4. OPC UA Secure Conversation Protocol

To show that our approach can also be used beyond
contract-signing, we analyzed the Secure Conversation Pro-
tocol, which is part of the United Architecture (UA) stan-
dard [24] developed by the OPC Foundation. The protocol
implements a security layer designed for the use in industrial
control systems, and aims at securing the data flow between
two devices that share symmetric keys. It uses symmetric
encryption and message authentication codes (MACs), and
relies on sequence numbers to ensure the correct order of
messages.

In the context of industrial control systems, the integrity
of the data exchanged between two devices is extremely
important. Modifying, injecting, or just reordering command
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messages, e.g., in critical infrastructure such as the power
grid, can have catastrophic effects by putting the system in
a state beyond its safe operation limits.

Similar to fair exchange protocols, the protocol relies
on a resilient channel to ensure message delivery, yet the
protocol still needs to make sure that messages cannot be
injected, duplicated or reordered. Using our approach we
were able to show that in the OPC UA Secure Communi-
cation protocol, all messages are received only once and in
the correct order. More precisely, we prove the following
properties.

• All sent messages are received:

∀i : temp, A,B, t : msg . Send(A,B, t)@i⇒
(∃j � i : temp. Recv(A,B, t)@j)

• All received messages were sent before and are only
received once:

∀i : temp, A,B, t : msg . Recv(A,B, t)@i⇒
(∃j � i : temp. Send(A,B, t)@j∧
¬(∃k � .= i : temp, A2, B2 : msg . Recv(A2, B2, t)@k))

• Any two messages that are received in a certain order
were sent in that order:

∀i, j : temp, A,B,m, n : msg .

Recv(A,B,m)@i ∧ Recv(A,B, n)@j ∧ i� j

⇒ (∃k, l : temp.

Send(A,B,m)@k ∧ Send(A,B, n)@l ∧ k � l)

9. Conclusion

In this paper, we have presented a novel methodology
for reasoning about liveness properties of cryptographic
protocols in a machine-assisted manner without imposing
artificial constraints on the size of protocol descriptions and
executions as commonly done in prior work. Our findings
from applying this methodology to the widely investigated
class of fair exchange protocols notably demonstrate that
such finiteness constraints do not constitute a purely aca-
demic limitation, but that they are responsible for not de-
tecting actual weaknesses in such protocols.

Moreover, our approach of augmenting a higher-level
calculus with key concepts for stating and reasoning about
liveness properties and of subsequently designing a prov-
ably sound and complete translation into the widely used
model of multiset rewriting allowed us to build upon recent
advances in the automated verification of cryptographic
protocols. In particular, we strongly benefit from the large
degree of automation in the state-of-the-art verification tool
Tamarin, and enable reasoning about liveness properties in
Tamarin in a comprehensive manner through our translation.
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Appendix

Given a position p0 and a set of positions P we denote
by p0 · P the set of positions { p0 · p | p ∈ P }.
Definition 13. Given a ground process P we define the
function next next(P ) as

next(P )=̂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if P = 0

(1 · next(P1)) if P = P1 + P2 ∧ blck(P1)

∪(2 · next(P2)) ∧ blck(P2)

(1 · next(P1)) if P = P1 + P2 ∧ blck(P1)

∪{ 2 } ∧ ¬blck(P2)

{ 1 } if P = P1 + P2 ∧ ¬blck(P1)

∪(2 · next(P2)) ∧ blck(P2)

children(P ) otherwise

Next, we define the starting points of local progress.
Intuitively, the set From(P ) is the set of positions of P
from where a progression starts.

Definition 14. Given a ground process P we define the set
From(P )=̂from(P,�) where

from(P, b)=̂

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{ [] } ∪⋃

p∈next(P ) p · from(P |p, blck(P ))

if ¬blck(P ) ∧ b⋃
p∈next(P ) p · from(P |p, blck(P ))

otherwise

We extend the previous notation: given a position p0 and a
set of sets of positions P , p0 · P denotes { p0 ·P | P ∈ P }.
Definition 15. Given a process P we define the progression
function π : From(P ) → 22

pos(P )

, as π(p) = p.f(P |p),
where f is defined inductively on the structure of P :

f (P )=̂

⎧⎪⎨
⎪⎩
{ { [] } } if blck(P )

1.f(P1) ∪ 2.f(P2) if P = P1 ‖ P2

{⋃p∈next0(P ) Sp | Sp ∈ p.f(P |p) }, otherwise,

where next0(P ) is defined just like next(P ) (i.e., replacing
any occurence of next in Definition 13 by next0), except that
next0(0) = { [] }.

Using the progress function we relate positions in
From(P ) to positions they move to.

Definition 16. Let P be a process and π its progress
function. We define the binary relation Rπ as

(p, q) ∈ Rπ iff p ∈ From(P ) and ∃A.A ∈ π(p) and q ∈ A.

We define the set To(P ) to be the range of Rπ.

90



References

[1] Martı́n Abadi and Cédric Fournet. “Mobile Values,
New Names, and Secure Communication”. In: 28th
ACM Symp. on Principles of Programming Lan-
guages (POPL’01). ACM, 2001, pp. 104–115.

[2] Alessandro Armando et al. “The AVISPA Tool for the
Automated Validation of Internet Security Protocols
and Applications.” In: 17th International Conference
on Computer Aided Verification (CAV’05). LNCS.
Springer, 2005, pp. 281–285.

[3] N. Asokan, Victor Shoup, and Michael Waidner.
“Asynchronous protocols for optimistic fair ex-
change”. In: IEEE Symposium on Security and Pri-
vacy (S&P’98). IEEE Comp. Soc., 1998, pp. 86–99.

[4] Michael Backes et al. A Novel Approach for Reason-
ing about Liveness. . . Extended version, https://hal.
inria.fr/hal-01396282.

[5] David A. Basin, Jannik Dreier, and Ralf Sasse. “Au-
tomated Symbolic Proofs of Observational Equiv-
alence”. In: 22nd Conference on Computer and
Communications Security (CCS’15). ACM, 2015,
pp. 1144–1155.

[6] Bruno Blanchet, Martı́n Abadi, and Cédric Fournet.
“Automated Verification of Selected Equivalences for
Security Protocols”. In: Symposium on Logic in Com-
puter Science (LICS’05). IEEE Comp. Soc., 2005,
pp. 331–340.

[7] Jan Cederquist and Muhammad Torabi Dashti. “An
intruder model for verifying liveness in security pro-
tocols”. In: ACM Workshop on Formal methods in
security engineering, (FMSE’06). 2006, pp. 23–32.

[8] Rohit Chadha, Max Kanovich, and Andre Scedrov.
“Inductive methods and contract-signing protocols”.
In: 8th ACM Conference on Computer and Commu-
nications Security. ACM, 2001, pp. 176–185.

[9] Rohit Chadha, Steve Kremer, and Andre Scedrov.
“Formal Analysis of Multi-Party Contract Signing”.
In: Journal of Automated Reasoning 36.1-2 (2006),
pp. 39–83.

[10] Rohit Chadha et al. “Automated verification of equiv-
alence properties of cryptographic protocols”. In:
ACM Transactions on Computational Logic 17.4
(2016).

[11] Rohit Chadha et al. “Contract signing, optimism,
and advantage”. In: CONCUR 2003 — Concurrency
Theory. LNCS. Springer-Verlag, 2003, pp. 366–382.
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