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Abstract—Device tracking is a serious threat to the privacy of
users, as it enables spying on their habits and activities. A
recent practice embeds ultrasonic beacons in audio and tracks
them using the microphone of mobile devices. This side channel
allows an adversary to identify a user’s current location, spy
on her TV viewing habits or link together her different mobile
devices. In this paper, we explore the capabilities, the current
prevalence and technical limitations of this new tracking tech-
nique based on three commercial tracking solutions. To this
end, we develop detection approaches for ultrasonic beacons
and Android applications capable of processing these. Our
findings confirm our privacy concerns: We spot ultrasonic
beacons in various web media content and detect signals in
4 of 35 stores in two European cities that are used for location
tracking. While we do not find ultrasonic beacons in TV
streams from 7 countries, we spot 234 Android applications
that are constantly listening for ultrasonic beacons in the
background without the user’s knowledge.

1. Introduction

The tracking of desktop and mobile devices is an in-
creasing threat to the privacy of users. Devices are no longer
only fingerprinted and monitored as users surf the web,
but also when they open applications on smartphones and
other mobile devices [e.g., 15, 17, 20]. In consequence, it
becomes possible to track the location of users and their
activity across different devices and applications. While
such tracking may help in identifying fraud, for example
logins from unknown devices, its main purpose is targeted
advertising that often impacts the privacy of users. Various
advertising platforms already provide corresponding services
to their customers, including Google’s Universal Analytics
and Facebook’s Conversion Pixel.

Recently, several companies have started to explore new
ways to track user habits and activities with ultrasonic
beacons. In particular, they embed these beacons in the
ultrasonic frequency range between 18 and 20 kHz of audio
content and detect them with regular mobile applications
using the device’s microphone. This side channel offers
various possibilities for tracking: The mobile application
Shopkick, for instance, provides rewards to users if they walk
into stores that collaborate with the Shopkick company. In
contrast to GPS, loudspeakers at the entrance emit an audio
beacon that lets Shopkick precisely determine whether the

user walked into a store. Furthermore, mobile applications
like Lisnr and Signal360 present location-specific content
on mobile devices such as vouchers for festivals and sport
events via ultrasonic beacons. Once the user has installed
these applications on her phone, she neither knows when
the microphone is activated nor is she able to see which
information is sent to the company servers.

Finally, the developers of Silverpush filed a patent which
recently raised attention in the media [23] due to its privacy
threat: The patent proposes to mark TV commercials using
ultrasonic beacons, thus allowing them to precisely track a
user’s viewing habits. In contrast to other tracking products,
however, the number and the names of the mobile applica-
tions carrying this functionality are unknown. Therefore, the
user does not notice that her viewing habits are monitored
and linked to the identity of her mobile devices.

No scientific work has so far systematically investigated
the technical implementation, prevalence, and privacy impli-
cations induced by ultrasonic user tracking. We gain detailed
insights into the current state of the art by examining the
communication protocols and signal processing of the three
commercial solutions: Shopkick, Lisnr and Silverpush. In
this way, we are able to develop methods for detecting
ultrasonic beacons in audio as well as the respective detection
mechanisms in mobile applications. These detection methods
enable us to obtain an overview of the current prevalence of
ultrasonic tracking in practice.

During our evaluation, we have analyzed more than
140 hours of media data captured from different sources,
including TV streams and various audio content. We find that
ultrasonic beacons are indeed present in everyday life without
being noticed by most people. In particular, we spot that 4
of 35 visited stores in two European cities use ultrasonic
beacons for location tracking. Although we could not detect
any beacons in actual TV audio, we observe that the number
of applications embedding the Silverpush SDK constantly
increases. While in April 2015 only six instances were known,
we have been able to identify 39 further instances in a dataset
of about 1,3 million applications in December 2015, and until
now, a total of 234 samples containing SilverPush has been
discovered. We conclude that even if the tracking through TV
content is not actively used yet, the monitoring functionality
is already deployed in mobile applications and might become
a serious privacy threat in the near future.

Fortunately, we are able to identify various restrictions of
the technique throughout our empirical study with common
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Figure 1: Examples of different privacy threats introduced by ultrasonic side channels. (a) Ultrasonic beacons are embedded
in TV audio to track the viewing habits of a user; (b) ultrasonic beacons are used to track a user across multiple devices; (c)
the user’s location is precisely tracked inside a store using ultrasonic signals; (d) visitors of a website are de-anonymized
through ultrasonic beacons sent by the website.

mobile devices and human subjects that limit the context
in which audio beacons can appear. Amongst others, we
show that the frequent use of compression in common
multimedia data significantly affects the feasibility of an
ultrasonic side-channel, thus making the distribution of these
beacons through common streaming websites rather unlikely.

In summary, we make the following contributions:

• We reverse engineer the inner workings of three com-
mercial tracking technologies and provide detailed
insights on how they are used in the wild.

• We conduct an empirical study to show where
ultrasonic audio beacons currently appear. To this end,
we implement two detection methods which allow us
to efficiently scan audio data and mobile applications
for indications of ultrasonic side channels.

• Finally, we empirically evaluate the reliability of
the technique under different conditions and present
limitations that help to determine how and which
defenses should be applied.

The remainder of this paper is organized as follows: We
first discuss the privacy threats introduced by ultrasonic side
channels in Section 2 and review the background of acoustic
communication in Section 3. In Section 4, we present tools
for detecting indicators for ultrasonic side channels and
use them to determine the prevalence of three commercial
implementations throughout an empirical study in Section 5.
Subsequently, we discuss the identified limitations and
resulting countermeasures in Section 6. Section 7 provides
related work and Section 8 concludes the paper.

2. Privacy Threats

Ultrasonic side channels on mobile devices can be a
threat to the privacy of a user, as they enable unnoticeably
tracking locations, behavior and devices. For example, an
adversary can spy on the TV viewing habits of a user, locate
its position if in range of an ultrasonic signal or even weaken
anonymization techniques. The user just needs to install
a regular mobile application that is listening to ultrasonic
signals through the microphone in the background. Figure 1
summarizes the resulting privacy threats:

Media Tracking. An adversary marks digital media in TV,
radio or the web with ultrasonic beacons and tracks their
perception with the user’s mobile device. The audio signal
may carry arbitrary information such as a content identifier,
the current time or broadcast location. As a result, it becomes
possible to link the media consuming habits to an individual’s
identity through her mobile device. Where traditional broad-
casting via terrestrial, satellite or cable signals previously
provided anonymity to a recipient, her local media selection
becomes observable now. In consequence, an adversary can
precisely link the watching of even sensitive content such
as adult movies or political documentations to a single
individual – even at varying locations. Advertisers can
deduce what and how long an individual is watching and
obtain a detailed user profile to deliver highly customized
advertisements.

Cross-Device Tracking. Ultrasonic signals also enable an
adversary to derive what mobile devices belong to the
same individual. When receiving the same signal repeatedly,
devices are usually close to each other and probably belong
to the same individual. Consequently, an advertiser can track
the user’s behavior and purchase habits across her devices. By
combining different information sources, the advertiser can
show more tailored advertisements. Similarly, an adversary
can link together private and business devices of a user, if
they receive the same ultrasonic signal, thereby providing a
potential infection vector for targeted attacks.

Location Tracking. An ultrasonic signal also enables an adver-
sary to track the user’s movement indoor without requiring
GPS. A location, for example a drug store, emits an ultrasonic
signal with a location identifier. This information reveals
where and when an individual usually stays. Furthermore,
the adversary can learn when people are meeting or are in
close proximity to each other.

De-Anonymization. The side channel through ultrasonic
codes makes the de-pseudonymization of Bitcoin and
de-anonymization of Tor users possible. As an example, a
malicious web service can disclose the relation between a
Bitcoin address and a user’s real-world identity. Whenever
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the service shows an uniquely generated address to which
the user has to pay, it also transmits an ultrasonic signal to
the payer’s mobile device. This in turn enables the service
to link the user’s Bitcoin address to her mobile device. A
similar attack strategy against Tor users has recently been
demonstrated by Mavroudis et al. [19].

In summary, an adversary is able to obtain a detailed,
comprehensive user profile by creating an ultrasonic side
channel between the mobile device and an audio sender.
Our case study on three commercial ultrasonic tracking
technologies reveals that the outlined tracking mechanisms
are not a theoretical threat, but actively deployed (e.g.
Shopkick and Lisnr) or at least in the process of being
deployed (e.g. SilverPush).

3. Technical Background

Before presenting the current state of the art on ultrasonic
side channels, we briefly introduce the basics of acoustic
communication and corresponding information encoding. A
reader familiar with these topics can directly proceed to
our methodology on detecting ultrasonic implementations in
Section 4.

3.1. Audible and Inaudible Sound

Sound can be formally described as a sum of waves with
different frequency. While natural sound is usually composed
of a wide spectrum of these frequencies, humans are only
able to perceive a particular range, where frequencies outside
of this range remain inaudible. For designing an inaudible
side channel it is thus essential to first pick an appropriate
frequency band for transmission:

• Infrasound (≤ 20 Hz): Frequencies below 20 Hz
can generally not be perceived by the human ear.
Due to the long wave length, however, infrasound is
difficult to create with small devices and moreover
less efficient in transmission.

• Audible sound (20 Hz–20 kHz): In general, humans
are able to perceive frequencies consciously between
20 Hz and 20 kHz. This upper bound decreases with
age [13], such that humans of 30 years and older
often cannot recognize sound above 18 kHz.

• Ultrasound (≥ 20 kHz): Frequencies above 20 kHz
can also not be perceived by humans. Moreover, the
small wave length enables creating ultrasound from
small devices and also provides the ground for a
quick transmission.

As a consequence, ultrasound theoretically is a perfect
match for designing an inaudible yet effective side channel
between devices. However, most loudspeakers and micro-
phones deployed in commodity hardware are not designed
to transmit inaudible sound. Instead these devices exactly
aim at the audible range of frequencies between 20 Hz and
20 kHz [14]. This problem is alleviated by the decreasing

hearing performance of humans, leaving a near-ultrasonic
frequency range of 18 kHz to 20 kHz for transmission that
is only perceived by very young or sensitive humans.

Consequently, commodity and thus existing audio hard-
ware can be leveraged for establishing a side channel. No
additional hardware or technology is needed. An alternative to
sound, for example the iBeacon solution, requires a dedicated
sender device that emits the Bluetooth signal. Moreover, the
receiving device needs to support the Bluetooth Low Energy
standard.
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Figure 2: (a) Audio wave of a music track, (b) spectrogram
of the frequencies contained in the music track.

To visually present sound in this paper, we make use of
the plots shown in Figure 2, where (a) depicts the amplitude
and (b) the spectrogram over time for an exemplary sound.
In the latter case, the individual frequencies of the sound
are plotted over the y-axis and their power is indicated by
brightness. The sound corresponds to a music track and it
is visible that also inaudible frequencies above 18 kHz are
part of the recording.

3.2. Encoding of Information

So far, we have identified the frequency band 18 kHz
to 20 kHz as a promising channel for designing inaudible
communication. It thus remains to investigate how informa-
tion can be encoded on this channel. Fortunately, acoustic
and electromagnetic waves share several similarities and
many basic concepts developed in telecommunication can
also be applied for acoustic communication, such as different
variants of signal modulations.

However, when transmitting information using inaudible
sound, we need to make sure that no frequencies outside the
selected band occur. This requirement renders the concept
of Frequency Shift Keying (FSK) attractive for this purposes
since other concepts like Phase Shift Keying (PSK) potentially
introduce discontinuities in the signal. These discontinuities
may lead to high instantaneous frequencies and result in
perceptible clicks.

In FSK each bit or symbol is represented by a separate
frequency within the specified frequency band. An example
is depicted in Figure 3 where a simple bit sequence is
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Figure 3: Information encoding using FSK modulation.

transmitted using two different frequencies. Obviously, it
is possible to generalize this binary FSK and encode M
symbols with M separate frequencies. This generalization is
known as M -FSK and a variant of it is used by SilverPush
and Lisnr.

Although these implement a vanilla M -FSK, the chang-
ing frequencies within the given band can also introduce
minor discontinuities and thus audible clicks [14]. This
effect can be prevented using techniques like continuous-
phase frequency shift keying or at least mitigated when
lowering the amplitude at frequency transitions as proposed
by Deshotel [6].

3.3. Sending and Receiving

Equipped with a frequency band and a simple encoding
scheme, an attacker only needs to construct a corresponding
sender and a receiver. In the case of media- and cross-device
tracking, implementing a sender is rather straightforward,
as the attacker just needs to embed the prepared frequency
signal into the audio stream broadcast via TV, radio or a web
stream. Designing a receiver is a little bit more involved,
as the corresponding device needs continuously monitor the
sound using a built-in microphone.

Without loss of generality, we focus on a receiver
implemented for the Android platform, as the same concepts
also apply to other mobile platforms. The Android platform
provides a dedicated class called AudioRecord for recording
audio data from the microphone without compression. Note
that compression algorithms can foil the plan of an ultrasonic
side channel, as they may cut off inaudible sounds from the
recording. While this class is easy to access, an app still
requires the RECORD_AUDIO permission for recording audio.
Thus, the user also needs to explicitly grant this permis-
sion to the app. Unfortunately, users tend to blindly grant
permissions to Android applications, if they are interested
in their functionality. As a consequence, the permission-
based security mechanism of Android does not really stop
an application from listening for inaudible beacons.

Furthermore, a continuous stealthy recording can be
easily implemented on Android using the concept of services
that work in the background so that a user can even switch to
another application. In consequence, a covert transmission of

an ultrasonic signal can take place at any time, since it may
not be clear when a viewer, for example, will watch a TV
program that contains the embedded audio beacon. To revive
a service after a shutdown of the device, techniques known
from Android malware can be employed, such as triggering
the service on events like boot-up or finished phone calls.

4. Methodology

With these basics of communication in mind, we are
ready to develop two tools for detecting indicators for ultra-
sonic side channels: One detector spots the corresponding
audio beacons in an audio signal, while the other identifies
the receiving implementation in an Android application.

4.1. Detecting Ultrasonic Beacons

As ultrasonic beacons may vary between different tech-
niques, we need a broad detection approach to spot previously
unknown beacons. Furthermore, the approach must be capa-
ble to analyze large amounts of data efficiently and we need
to ensure that the algorithm produces no or at least only few
false positives which can be manually verified later.
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Figure 4: Plot (a) shows the frequency distribution of more
than 1,500 songs whereas Figure (b) depicts the frequency
distribution of an audio sample containing a Lisnr audio
beacon.

Based on our insights from exploring current commercial
tracking technologies (see Section 5), we assume that the
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energy of the beacons in the frequency band between 18 kHz
and 20 kHz is higher than in other common signals. Thus,
an anomaly detection in the considered frequency band
seems a promising candidate to identify arbitrary ultrasonic
beacons. To this end, we require a meaningful model of the
energy distribution for each signal class of interest. This
includes audio files, TV streams and environmental sounds
in a common shopping mall.

We therefore first determine the frequency distributions
of different signal types using an FFT analysis. Figure 4 (a)
depicts, for instance, the distribution of the maximum
frequencies of more than 1,500 songs from different genres.
Comparing the frequency distribution of an arbitrary audio
sample with this distribution enables us to identify anomalies
in the examined frequency range. As an example, consider the
frequency distribution of the signal depicted in Figure 4 (b).
The figure shows the distribution of a sample that contains
a beacon as used by the Lisnr SDK. It is visible that the
distributions differ significantly in the considered frequency
band, thus allowing us to identify the presence of the beacon
by scanning for anomalies in the frequency spectrum. In
particular, the detector reports the presence of an ultrasonic
signal if the energy in a frequency band exceeds a previously
chosen threshold. In order to further improve the performance
of this approach, we additionally perform a high-pass filter on
the signal such that only frequencies above 18 kHz remain
to be analyzed. Lower frequencies are rather unlikely to
be used for audio beacons since the beacon would strongly
overlap with other signals and be perceivable by most people
(see Section 3).

4.2. Detecting Mobile Applications

To study the prevalence of mobile applications using
inaudible sound to track user behavior, we also require a
detection tool capable of efficiently scanning a large amount
of Android applications for corresponding implementations.

Automatically identifying algorithms in program code,
however, is a challenging task that requires to abstract from
concrete implementations. In the general case determining
whether an algorithm is present in a program is undecid-
able [21]. As a remedy, we thus use a lightweight detection
method which is capable to perform a fuzzy matching of
interesting code fragments on a large set of applications.

The design of our method is inspired from a detection
technique developed in the context of network intrusion
detection [4, 25]. In the first step, we manually select methods
from the available sample applications that are known to be
crucial for their functionality. This, for instance, includes
the Goertzel algorithm present in samples of Silverpush.

Our method identifies the code regions containing these
methods and extracts all n-grams with n = 2 from the
corresponding byte sequences. To generalize different im-
plementations, we keep only shared n-grams, that is, byte
sequences of length n that are present in all methods of
the same functionality. These shared n-grams are stored
in a Bloom filter [2], a classic data structure that allows
to compactly describe a set of objects. As a result of

this learning phase, our method provides a set of Bloom
filters, where each filter represents one characteristic method
indicative for inaudible tracking.

Scanning an unknown Android application for occur-
rences of the learned patterns is conducted similarly: Our
method first identifies all Dalvik code regions in the applica-
tion and then extracts n-grams by moving a sliding window
of 100 bytes over the code. The extracted n-grams under
the window are compared against the different Bloom filters
and a match occurs if a pre-defined amount of the n-grams
is also present in the Bloom filter. Ultimately, an application
is flagged as being suspicious, if at least one characteristic
method is found in the code regions. Note, that this approach
can be applied to spot arbitrary code of interest.

5. Empirical Study

We proceed with an investigation of commercial ultra-
sonic tracking technologies, namely SilverPush, Lisnr and
Shopkick. These three applications use ultrasound to send
messages to the mobile device, but with different use cases:
SilverPush targets media and cross-device tracking while
Lisnr and Shopkick perform location tracking (cf. Section 2).
In the following, we especially focus on the inner workings
of SilverPush and Lisnr and additionally discuss Shopkick
where it differs to Lisnr or SilverPush.

To gain insight into their functionality, we make use of
the reverse-engineering tools Radare2 and Androguard. In
particular, we use Androguard to decompile Java code and
to extract XML files from the applications. We switch to
Radare2 when an application uses native implementations
through the Android Native Development Kit (NDK) or
Androguard does not resolve a method’s control flow cor-
rectly. As no obfuscation has been used in the SilverPush,
Lisnr and Shopkick samples, this semi-automatic analysis
proceeds rather quickly and we gain detailed insights on
their communication protocols and signal processing.

5.1. Case Study Silverpush

We start our investigation of the SilverPush implementa-
tion with the GitHub repository of Kevin Finisterre [11]
who collected initial information about SilverPush after
the media coverage in November 2015. The repository
contains 21 Android applications that we examined for the
functionality to retrieve ultrasonic beacons.

Communication protocol. SilverPush uses the near-ultrasonic
frequency range to transmit audio beacons, as Section 3.1
generally motivates. These beacons consist of five letters
from the English alphabet where each letter is encoded using
a separate frequency in the range between 18 kHz and 20 kHz.
The encoding scheme thus corresponds to an M -FSK with
M being the number of letters in the alphabet.

As the acoustic transmission can be subject to noise or
other high-frequency sounds, the implementation contains
two simple mechanisms for error detection: (1) no letter
must appear twice in a transmitted beacon and (2) the
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Figure 5: Example of transmission of ultrasonic beacons. The upper three panels depict the audio wave of an audio signal,
while the lower three panels show the corresponding Spectrogram. (a)-(b) show a music track, (c)-(d) an ultrasonic beacon,
(e)-(f) show the result after embedding the beacon into the original track.

letter ’A’ must be present in every beacon. Obviously,
these mechanisms limit the set of available beacons for
transmission, but in combination realize a naive but effective
error detection. The audio snippet in Figure 5 (c) and (d)
contains a valid audio beacon of SilverPush, where Figure
5 (e) and (f) depict the same beacon exemplarily embedded
into an audio signal.

Listing 1: Decompiled Goertzel algorithm.

1 public double getMagnitude()
2 {
3 a = new double[2];
4 b = 0;
5 while (b < this.n) {
6 this.processSample(this.data[b]);
7 b = (b + 1);
8 }
9 this.getRealImag(a);

10 c = this[0];
11 d = this[1];
12 e = Math.sqrt(((c * c) + (d * d)));
13 this.resetGoertzel();
14 return e;
15 }

Signal processing. The SilverPush implementation records
audio from an available microphone at a sampling rate of
44.1 kHz and directly analyzes the recorded data in blocks
of 4,096 audio samples. Due to the use of a sampling
frequency of 44.1 kHz, the implementation is capable of
detecting beacons up to 22 kHz—provided that the available
loudspeakers and microphones support such a high frequency.
The developers seem to have been aware of this problem
and thus limited the FSK encoding of letters to 20 kHz.

To decode the beacons from the raw audio data, the im-
plementation makes use of the so called Goertzel algorithm,
a classic signal processing algorithm that is widely used
in telecommunication systems, for example, for identifying
DTMF tones in software. The algorithm’s advantage com-
pared to the more common Fast Fourier Transform (FFT)
is its ability to detect a single target frequency precisely
with little computational effort. On the contrary, the Fourier
transform provides access to several frequencies at once and

is thus a more robust tool for spotting a signal. It is worth to
note that we found one seemingly older Android application
of SilverPush during our empirical evaluation that uses a
Fourier transform. However, all other detected instances use
the Goertzel algorithm.

Listing 1 shows the decompiled and characteristic Go-
ertzel algorithm as found in the implementation of SilverPush.
The algorithm runs over all 4,096 audio samples, calculates
the real and imaginary part of a specified target frequency in
lines 5–9, and finally returns the magnitude obtained from
line 12.

If more than one letter is detected in one block, the
implementation discards this block which emphasizes that
just one tone per time is embedded. After collecting a valid
beacon, the implementation then sends the resolved audio
beacon to a server in unencrypted form, together with device
information that are usable to identify the device, such as
the IMEI, the Android ID, the OS version and the device
model. While this transmission of personal data is already a
privacy invasion, the fact that it is triggered from the audio
of a TV transmission makes this a frightening scenario.

5.2. Case Study Lisnr

We continue our investigation with Lisnr that realizes an
ultrasonic side channel to display location-specific content on
the mobile device. For example, during a festival, participants
can receive notifications such as welcome messages or
vouchers when they are near a specific location.

Communication protocol. Figure 6 shows a disclosed Lisnr
audio beacon in the near-ultrasonic frequency range that we
spotted in a music song. The switching frequencies reveal an
FSK encoding scheme between 18.5 and 19.5 kHz. Moreover,
the beacon is continuously repeated, as the unique frequency
block order in the figure also emphasizes.

Signal processing. Lisnr records audio with 44.1 kHz and
analyzes the data in blocks of 4,410 samples. In contrast to
SilverPush, its audio analysis is implemented in native code
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Figure 6: Spectrogram of a disclosed Lisnr audio beacon. An FSK scheme encodes a repeating bit sequence in the
near-ultrasonic frequency range between 18.5 and 19.5 kHz.

using the Android NDK. In this way, the computationally
demanding analysis runs directly on the smartphone’s CPU
without an intermediate virtual machine. We find that the
native code in Lisnr implements both, the Goertzel algorithm
and an FFT, for decoding ultrasonic signals. After detecting
a code, Lisnr shows location specific content to the user.

Similarly, Shopkick implements an FFT in native code for
detecting audio beacons in collaborating shops. If a customer
wants to earn a reward, she needs to start the audio analysis
manually and the application then performs an analysis of
the full frequency spectrum which is computationally more
demanding than the Goertzel algorithm. Thus, it runs for a
few seconds only in order to avoid that the battery drains
too quickly.

In summary, SilverPush and Lisnr share essential similar-
ities in their communication protocols and signal processing.
Both, for example, use an FSK near the ultrasonic range
and employ the Goertzel algorithm in the background.
However, Silverpush does not inform the user about the
tracking whereas the user is aware of Lisnr’s and also
Shopkick’s audio analysis. All these technologies show that
the step between a legitimate use and spying is rather small.
The privacy threat posed by ultrasonic beacons hinges on
the notification of the user, who solely depends on this
information: First, she cannot hear the audio beacons when,
for example, watching TV. Second, she may not know that
their mobile device is listening in the background, since
there is no visible indication that an application contains this
form of tracking.

5.3. Evaluation

With our two tools to spot ultrasonic implementations
from Section 4 and our insights into the current state of the
art in ultrasonic tracking from previous section, we are ready
to conduct an empirical evaluation and assess the impact
of this privacy threat in practice. We especially perform the
following three groups of experiments:

1) Controlled experiment. We first examine the techni-
cal reliability and evaluate limitations of ultrasonic
beacons under realistic conditions with human sub-
jects and mobile devices (Section 5.3.1).

2) Audio beacons in the wild. To uncover the presence
of ultrasonic beacons, we scan different locations,
TV channels and websites for indications of ultra-
sonic side channels (Section 5.3.2).

3) Applications in the wild. We finally investigate the
presence of ultrasonic implementations by analyzing
over 1.3 Million Android applications collected in
December 2015 (Section 5.3.3).

5.3.1. Controlled Experiment. Although the companies
behind SilverPush, Lisnr and Shopkick market their technique
as an effective approach for their respective tracking scenario,
we have been skeptical about the reliability of the underlying
side channel in practice. In particular, it is questionable to
which extent the built-in microphones of common devices
are capable to reliably perceive high frequencies in presence
of environmental noise since they are mainly intended to
work within the voice band. Moreover, the audio beacons
might still get detected by some people due to the varying
frequency sensitivity of the human ear. Consequently, we
first conduct a proof-of-concept experiment consisting of two
different scenarios: In the first scenario we explore hardware
limitations of common devices, while in the second scenario,
we answer the question whether ultrasonic beacons are indeed
undetectable by the human ear.

Experimental setup. We create ultrasonic beacons that cover
different frequencies, lengths and sound levels. In particular,
we choose frequencies between 18 and 20 kHz and vary
the signal length between 0.3 and 1 seconds, and the sound
level between 0 and 18 dB. The resulting audio beacons are
then embedded in different video files that cover realistic
conditions such as speech, music or silence. The files are
played through standard TV loudspeakers at a common
loudness level of 60 dBA. In both scenarios, the TV plays
the test sequences while users or devices listen to it in a fixed
distance of about two meters. Figure 7(a) shows a photo of
our experimental setup.

Device experiment. In the first scenario, we are interested
in determining whether and how effective mobile devices
can spot the embedded beacons. To this end, we consider
five Android devices, namely an LG-P880, a Motorola Moto
G 2, a Fairphone 1 and two Asus Nexus 7, which each
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Figure 7: Results for the device experiment. Figure (a) shows the experimental setup with a TV device and different mobile
devices in a distance of 2 meters. Figure (b) presents the detection performance vs. signal-to-noise ratio for different frequency
bands and (c) the detection performance for different frequency bands and mobile devices.

run a frequency analysis to spot anomalies in the ultrasonic
range. The devices are exposed to the prepared video files,
containing embedded beacons of varying frequency ranges
and sound levels, such that a detection rate can be measured
over multiple experimental runs.

The results of this experiment are presented in Fig-
ure 7(b), where the average detection performance of all
devices on 10 repetitions is plotted against different signal-
to-noise ratios (SNR). The SNR describes the sound level
of the audio beacon compared to the sound level of the
commercial, that is, the SNR increases when amplifying the
audio beacon. In particular, an increase of the SNR by 6 dB
corresponds to an amplification of the audio beacon by a
factor of 2.

We observe that the devices are able to reliably detect
the audio beacons even at very low SNRs. Starting from an
SNR of -5 dB almost all beacons are correctly identified
on both frequency bands. However, we notice a variance
in the success rate among the different devices. Figure 7(c)
presents the detection performance for each of the devices
and frequency bands. While some devices, such as the
Fairphone, have problems in detecting audio beacons close
to the audible frequency range, the reverse holds true for
one of the Nexus 7 tablets which does not accurately detect
audio beacons at 20 kHz.

As in the case of the two Nexus 7 devices, it is likely
that frequency response patterns of the built-in microphones
vary depending on the particular model and device, thus
having an influence on the detection performance. Moreover,
since our audio analysis runs as a background process, the
performance may also depend on the current load on the
device and timing of running processes. Nonetheless, all
devices attain a detection rate of at least 60% which is
sufficient to spot audio beacons if multiple repetitions are
embedded in sound.

User experiment. In the second scenario, we ask 20 human
subjects between the age of 20 and 54 to watch in total
10 minutes of videos. Some contain audio beacons at a

frequency of 18 kHz in order to cover the lower end of
the near-ultrasonic range. The beacons are embedded at
various spots with different loudness levels ranging from 0
to 18 dB and the participants are asked to note down when
they perceive a beacon in the audio.

None of the human subjects is able to spot the embedded
beacons reliably even at the highest loudness level, although
the frequency of 18 kHz lies within the age-dependent audible
range and the participants are aware of the presence of audio
beacons in the video clips. Two participants at the age of 23
and 27 are able to spot 17 and 6 beacons, respectively, from
a total of 26 embedded beacons. Moreover, six participants
state that they have perceived some anomalies in the signal.
However, only few of these are indeed audio beacons. On
the contrary, all participants are able to identify the beacons
at the highest sound level without background sound. The
reason for this discrepancy is that the human ear masks the
tone in the presence of nearby frequencies and sounds. This
effect is well-known and exploited in audio compression
formats like MP3 and AAC which apply psychoacoustic
models to lower the used transmission rate.

In summary, although our participants are aware of the
audio beacons, they had considerable problems to identify the
audio beacons reliably. The beacons are mainly perceived as
an usual anomaly in sound. Hence, if not aware, a user might
not even notice the ultrasonic signals. At the same time,
different mobile devices already successfully tracked the
signal at a SNR of -5 dB. In the end, our experiment confirms
the technical feasibility to transmit ultrasonic beacons to a
mobile device covertly, but also spots the limitations of this
side channel.

5.3.2. Audio Beacons in the Wild. The previous experiment
demonstrates that ultrasonic side channels are technically
well realizable. In the next step, we explore whether this
new form of tracking is already employed in practice.

Regarding Lisnr, we can spot audio beacons in record-
ings from the web that corresponds to events where Lisnr
also participated. It shows that this technology is actively
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Country # TV channels Size

United States 7 25h
Germany 5 24h
Spain 6 23h
Austria 3 21h
United Kingdom 2 16h
Philippines 5 16h
India 10 15h

TABLE 1: Dataset from TV streaming analysis.

deployed, but rather at specific events, yet. We thus also
investigate Shopkick that appears to be more widespread. To
this end, we record audio in 35 stores in two European cities
and detect an ultrasonic signal from Shopkick at four stores.
Although we acknowledge that the user starts the Shopkick
application intentionally, our findings underline the active
distribution of ultrasonic tracking in the daily life.

The last question is whether TV streams contain ultra-
sonic beacons, especially from SilverPush. In fact, we have
no information when, how and where these beacons are
transmitted in TV. Our search is thus close to finding a
needle in a haystack. Consequently, we conduct a broad
search across different countries and TV channels, rather
than focusing on a specific scenario.

In particular, we record TV streams retrieved over the
Internet from 7 different countries, where we focus on
channels presenting a lot of commercials. Table 1 summarizes
the number of TV channels and the total duration of analyzed
audio signals per country. Note that the quality of the
transmitted audio streams differs considerably between the
recorded channels. While we generally retrieve audio with a
sufficient sampling rate between 40 and 48 kHz, the channels
make use of different compression settings that potentially
filter out inaudible high frequencies (see Section 6).

We analyze the recorded data, comprising almost 6
days of audio, with our standalone detection tool presented
in Section 4.1. Although our tool is capable of detecting
ultrasonic beacons at arbitrary frequencies between 18 and
20 kHz, we do not find any indications of such beacons
in the recorded data, leaving us with a negative result. On
the one hand, it seems that ultrasonic device tracking is not
used in the considered TV channels; on the other hand, we
cannot rule out that the beacons have been initially present
but later removed due to compression for Internet streaming.
In addition, we also visited the global, Indian and Philippine
Top 500 Alexa websites and recorded their audio output to
spot ultrasound. Similar to TV streams, we do not find any
indications of ultrasonic beacons again.

5.3.3. Applications in the Wild. Our Lisnr and Shopkick
findings emphasize their active deployment, but we cannot
quantify their distribution on the receiving side yet. In
consequence, we would like to determine the distributions
of Lisnr, Shopkick and Silverpush. To this end, we focus on
the landscape of Android applications and apply the method
presented in Section 4.2 to search for Lisnr, Shopkick and
SilverPush implementations in the wild.

In particular, we retrieve all Android applications submit-
ted to the VirusTotal service in the third week of December
2015. In total, we obtain a dataset of 1,320,822 applications,
covering numerous benign as well as malicious samples
and a total volume of over 8 Terabytes. We then apply our
detection tool to scan for applications that contain code
fragments similar to our initial 21 SilverPush samples as
well as 4 Lisnr samples we identified during the research.
Finally, we scan for similar code fragments from different
versions of the official Shopkick application.

Within the 1,320,822 Android applications, our scan
yields 2 and 1 samples with functionalities of Lisnr and
Shopkick, respectively. These samples are either applications
that have been released by these companies themselves or
by other companies officially collaborating with Shopkick
or Lisnr. The user is thus aware of the deployed technology
and needs to start the audio analysis manually.

On the other hand, our scan returns 39 unique SilverPush
matches within our Android application dataset. We manually
verify that each of these matches is indeed an instance of the
SilverPush implementation embedded into applications from
India and the Philippines. Table 2 lists five representative
applications from our dataset along with their developer and
number of downloads as reported by the Google Play Store.

The download numbers are considerable: Two appli-
cations have between 1 and 5 Million downloads, while
the other three have about 50,000 to 500,000 downloads.
It becomes evident that SilverPush is already deployed
in real-world applications. While in April 2015 only six
instances have been known, our experiment unveils another
39 installations. Moreover, with the help of VirusTotal we
have been able to identify further instances, reaching a total
of 234 samples in January 2017. These additional samples
have been identified by searching for virus labels containing
the term “SilverPush” and then eliminating false positives
using our detection tools. Based on this strategy we obtain
244 applications, where 10 samples are false positives that
do not contain actual functionality but just strings related to
the SilverPush implementation.

Our analysis provides us with two important insights
regarding SilverPush: First, the number of mobile applica-
tions using the library is constantly growing. Second, the
applications reach a high coverage among people and are
not only downloaded a few hundred times. Even if the audio
beacons are not embedded in actual TV commercials, our
findings indicate that SilverPush has launched its deployment
on the receiver side.

6. Discussion

During the analysis and evaluation of the ultrasonic
tracking technologies, we have gained insights into their
capabilities but also spotted some limitations. In this section
we therefore discuss requirements that have to be satisfied
in order to allow the tracking to work properly. Furthermore,
we discuss countermeasures to alleviate this new privacy
threat.
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Application Name Developer Version Downloads

100000+ SMS Messages Moziberg 2.4 1,000,000 – 5,000,000
McDo Philippines Golden Arches Dev. Corp. 1.4.27 100,000 – 500,000
Krispy Kreme Philippines Mobext 1.9 100,000 – 500,000
Pinoy Henyo Jayson Tamayo 4.0 1,000,000 – 5,000,000
Civil Service Reviewer Free Jayson Tamayo 1.1 50,000 – 100,000

TABLE 2: Third-party applications with SilverPush functionality.

6.1. Limits and Challenges

Although we are able to verify the feasibility of ultra-
sonic side-channel communication under realistic conditions
throughout our empirical study, we have experienced several
issues which may impede a successful communication. In
particular, there exist a bunch of challenges on the sender
and the receiver side which have to be considered in order
to allow an inaudible communication between the devices.
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Figure 8: Spectrogram of DVB-T recording. Note that audio
frequencies above 17 kHz are cut off.

Bandwidth restrictions. When analyzing the frequency spectra
of the TV channels recorded for our analysis, we find that
several of them are cut off at a frequency lower than 18 kHz
and can thus not contain any audio beacons. Figure 8 depicts,
for instance, a typical TV signal received via DVB-T. The
spectrum of the signal clearly shows the absence of any
frequencies above 17 kHz. In principle, common video
broadcasting standards like ASCT, DVB and ISDB allow
sampling rates of less than 40 kHz which would remove
the desired frequency band. However, since the sampling
frequency has been high enough in the recorded data, the
low-pass filtering of the signal most probably results from
the compression applied to the audio signal.

Several audio compression algorithms are capable of
removing frequencies that are inaudible, such as MP3 and
AAC. As both formats use a psychoacoustical model and offer
various options, it is difficult to state when the compression
exactly cuts off a frequency. Figure 9 gives a tendency
for MP3 and AAC by using a fixed bitrate as indicator of
quality. In particular, we compressed a stereo music track
with embedded high-frequency tones with ffmpeg’s built-in
MP3 and AAC encoder and tried to detect these tones after
compression. As an example, for MP3 a bitrate of 320 kb/s
allows frequencies up to 20 kHz, while a common bitrate
of 128 kb/s removes ultrasonic frequencies entirely.

Furthermore, we have also uploaded videos with embed-
ded audio beacons to YouTube to test whether high-frequency

tones are preserved. YouTube always encodes an uploaded
video to ensure that it can be played with different devices
in different quality levels. In our tests, the highest quality
of a stereo signal reaches up to 18.5 kHz, while a mono
signal conveys audio beacons in the full frequency spectrum
between 18 and 20 kHz. As a consequence, ultrasonic side
channels are currently only possible if a mono recording is
uploaded to YouTube.

Finally, a legitimate question arises why an adversary
does not simply use the audible frequency range. The device
could perform sound or speech recognition to identify the
TV viewing habits or the location. The music recognition
service Shazam already provides additional information about
a brand or product based on the identified sound [16]. There
are, however, two problems. First, Shazam’s recognition
algorithm requires a full frequency analysis through a
Fourier Transform [24]. This analysis is computationally
more demanding than the beacon detection through the
simple Goertzel algorithm (see Section 5). In consequence,
a persistent background monitoring would quickly drain the
battery of mobile devices. Second, an audio beacon can carry
additional information about the location or the played media
that in turn facilitates tracking (see Section 2).
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Figure 9: Frequency bandwidth of MP3 and AAC.

Software restrictions. Another restriction arises from the
new permission model introduced by Android 6 [7]. In
contrast to previous Android versions, the new system
differentiates between normal and dangerous permissions and
the user has to grant dangerous permissions at run-time. The
set of dangerous permissions also comprises permissions
like RECORD_AUDIO and READ_PHONE_STATE which
are crucial for Silverpush’s functionality. It should thus
raise doubts by the user when an application, for instance,
unexpectedly wants to record audio.
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Although this new permission model increases security
theoretically, there are two practical problems: First, when
an application targets an SDK smaller than 23, the old
permission model is used again where the user is only asked
at installation time. Second, famous applications can carry
the ultrasonic tracking functionality. It is unclear if a user
questions a dangerous permission in this case. Therefore,
the new permission model might alleviate the risk, but can
unfortunately not entirely prevent it.

Hardware limitations. Finally, we notice that various limita-
tions are introduced by the built-in microphones and speakers
in common hardware. As we have already discussed in
Section 5.3.1, the detection performance differs between
several devices. Moreover, although the SilverPush patent,
for instance, also considers inaudible frequencies in the infra-
sound range below 20 Hz, it is unlikely that such frequencies
can actually be used, since they require specialized hardware
to send and receive sound. Consequently, only the considered
range of 18 to 20 kHz is a realistic and technically feasible
range for transmission of inaudible beacons.

6.2. Countermeasures

Based on the different challenges for transmission, we
identify defenses to limit the tracking via ultrasonic beacons.
Obviously, a simple yet effective defense strategy is to filter
out frequencies above 18 kHz in the transmitted audio signal,
e.g. in the radio or TV device. However, manipulating either
the hardware or software of these devices is not tractable for
a regular user. Moreover, the emitting sender is not always in
the user’s control, for example during the location tracking.

Therefore, practical countermeasures affect the mobile
device. If the device is not listening secretly, a transmitted
audio beacon is harmless. Hence, we consider the following
countermeasures for the Android platform:

Detection of implementations. An option is to scan for appli-
cations for known functionality of ultrasonic side channels.
Our detection tool presented in Section 4.2 might provide a
good start for the development of a corresponding defense.
Similarly to a virus scanner, such a detection can be applied
locally on the device as well as globally on a market place
directly. As our approach builds on static code analysis,
however, detecting the corresponding functionality can be
hindered by obfuscating the respective implementations.

Notification. Just as for Bluetooth or Wifi, a more fine-
grained control of the audio recording is likely the best
strategy for limiting the impact of ultrasonic side channels.
A combination of user notifications and a status in the pull
down menu can inform the user when a recording takes
place and lets her detect unwanted activities.

6.3. Limitations

Our study deals with a real-world threat and underlying
technical problems. It thus naturally subject to certain
limitations, which we briefly discuss in the following.

First, our study could not reveal any indications of
ultrasonic sounds in TV streams. However, whether this
finding is to be interpreted as a negative or positive result
is unclear. While we designed our study with great care
and as broad as possible, it is not unlikely that we simply
missed audio beacons due to monitoring TV channels at
the wrong time or place. Moreover, the beacons could have
been obfuscated using code spread spectrum techniques. In
this case, our detection method from Section 4.1 would
have missed these signals. However, we could not find
any indications throughout our analysis that Silverpush
uses this kind of technique. In addition, the detection of
Lisnr or Shopkick beacons makes it rather unlikely that we
missed beacons in TV streams due to the high similarity of
SilverPush to Lisnr or Shopkick.

Second, although our detection tool provides an efficient
way to identify the functionality of SilverPush, Lisnr and
Shopkick, it relies on the knowledge of currently used code.
Changing the code basis drastically would prevent a detection,
but seems unrealistic due to the permanent changes that
are necessary after adapting our detector again (cat-and-
mouse game). Moreover, as our detector relies on concepts
of static analysis, obfuscation techniques represent a more
sophisticated means of evading detection. We acknowledge
this limitation. However, as our study focuses on the under-
lying threat rather than a robust detection, we leave possible
extensions to circumvent obfuscation for future work.

7. Related Work

Ultrasonic cross-device tracking touches different areas
of security and privacy. We review related approaches and
concepts in this section.

Mobile device fingerprinting. While classic web browser
fingerprinting is characterized by a vivid area of research in
the last years [20], there is only a small number of works
that examine mobile devices. A straightforward adoption of
browser fingerprinting methods is not possible due the high
standardized nature of mobile devices [15]. Nevertheless,
Hupperich et al. recently demonstrated the feasibility to
fingerprint the mobile web browser as well [15]. Furthermore,
Kurtz et al. showed how personalized device information
such as the list of installed apps or the most-played music
songs also provide an effective way to fingerprint an iOS
device without any user permission [17].

Another approach is to leverage unique physical charac-
teristics from device sensors such as the camera [12], the
accelerometer [3] as well as the microphone and speak-
ers [1, 3, 5, 26] for fingerprinting. Although the resulting
hardware fingerprints are highly unique due to their random
character, their computation is computationally demanding
and requires access to the sensor for a specific time interval.

While these works aim at fingerprinting one device, the
studied ultrasonic side channel enables an adversary to track
a user across her multiple devices, her visited locations as
well as to obtain her media usage.
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Android application analysis. During our search for Android
applications containing the ultrasonic tracking functionality,
we have applied static analysis to spot characteristic code
regions. Our approach is thus closely related to analysis
methods used to find malicious applications on Android,
such as the popular methods Kirin [10] and Drebin [1].
While the first approach completely concentrates on the
detection of suspicious combinations of permissions in order
to identify malicious applications, the latter also analyzes
the code of an application. However, both methods suffer
from false-positives and are thus not directly applicable for
scanning large collections of applications.

All static analysis methods, including our own method,
are vulnerable to obfuscation techniques like encryption. In
contrast, dynamic analysis approaches like TaintDroid [9]
or CopperDroid [22] allow the monitoring of an application
during run-time. In particular, TaintDroid employs taint
tracking during the execution of an application, enabling
it to detect sensitive data leaks of third-party applications.
However, these methods are computationally expensive
and thus need considerably more time for the analysis of
applications than static approaches.

Covert acoustic communication. Different authors have
demonstrated the feasibility to communicate covertly in the
ultrasonic range with just standard loudspeakers and micro-
phones [6, 8, 14, 18]. The considered scenarios, however,
differ from our study. First, these authors mainly focus on
bypassing security mechanisms and bridging the “air gap”
between isolated computer systems. Second, the ultrasonic
communication is usually conducted in a quiet environment,
whereas ultrasonic user tracking demands a high robustness
that can compensate different environmental noise.

8. Conclusion

This paper marks a first step against the emerging privacy
threat of ultrasonic tracking. In particular, an adversary
can monitor a user’s local TV viewing habits, track her
visited locations and deduce her other devices. Furthermore,
a side channel attack to Bitcoin or Tor users become even
possible. In the end, an adversary is able to obtain a detailed,
comprehensive user profile with a regular mobile application
and the device’s microphone solely.

By analyzing prominent examples of commercial tracking
technologies, we gained insights about their current state of
the art and the underlying communication concepts. The case
of SilverPush emphasizes that the step between spying and
legitimately tracking is rather small. SilverPush and Lisnr
share essential similarities in their communication protocol
and signal processing. While the user is aware about Lisnr’s
location tracking, SilverPush does not reveal the application
names with the tracking functionality.

Throughout our empirical study, we confirm that audio
beacons can be embedded in sound, such that mobile
devices spot them with high accuracy while humans do
not perceive the ultrasonic signals consciously. Moreover,
we spot ultrasonic beacons from Lisnr in music and Shopkick

beacons in 4 of 35 stores in two European cities. While we
do not find indication of ultrasonic tracking in TV media,
the receiver side looks more alarming in this case. At the
time of writing, we are aware of 234 Silverpush Android
applications that are listening in the background for inaudible
beacons in TV without the user’s knowledge. Several among
them have millions of downloads or are part of reputable
companies, such as McDonald’s and Krispy Kreme.

Our findings strengthen our concerns that the deployment
of ultrasonic tracking increases in the wild and therefore
needs serious attention regarding its privacy consequences.
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