
Cloak and Dagger: From Two Permissions
to Complete Control of the UI Feedback Loop

Yanick Fratantonio
UC Santa Barbara

yanick@cs.ucsb.edu

Chenxiong Qian, Simon P. Chung, Wenke Lee
Georgia Tech

qchenxiong3@gatech.edu

pchung34@mail.gatech.edu

wenke.lee@gmail.com

Abstract—The effectiveness of the Android permission sys-
tem fundamentally hinges on the user’s correct understand-
ing of the capabilities of the permissions being granted. In
this paper, we show that both the end-users and the security
community have significantly underestimated the dangerous
capabilities granted by the SYSTEM ALERT WINDOW and
the BIND ACCESSIBILITY SERVICE permissions: while it is
known that these are security-sensitive permissions and they
have been abused individually (e.g., in UI redressing attacks,
accessibility attacks), previous attacks based on these permissions
rely on vanishing side-channels to time the appearance of overlay
UI, cannot respond properly to user input, or make the attacks
literally visible. This work, instead, uncovers several design short-
comings of the Android platform and shows how an app with
these two permissions can completely control the UI feedback
loop and create devastating attacks. In particular, we demonstrate
how such an app can launch a variety of stealthy, powerful
attacks, ranging from stealing user’s login credentials and se-
curity PIN, to the silent installation of a God-mode app with all
permissions enabled, leaving the victim completely unsuspecting.

To make things even worse, we note that when installing
an app targeting a recent Android SDK, the list of its
required permissions is not shown to the user and that
these attacks can be carried out without needing to lure
the user to knowingly enable any permission. In fact, the
SYSTEM ALERT WINDOW permission is automatically
granted for apps installed from the Play Store and our
experiment shows that it is practical to lure users to unknowingly
grant the BIND ACCESSIBILITY SERVICE permission by
abusing capabilities from the SYSTEM ALERT WINDOW
permission. We evaluated the practicality of these attacks by
performing a user study: none of the 20 human subjects that took
part of the experiment even suspected they had been attacked.
We also found that it is straightforward to get a proof-of-concept
app requiring both permissions accepted on the official store.

We responsibly disclosed our findings to Google.
Unfortunately, since these problems are related to design
issues, these vulnerabilities are still unaddressed. We conclude
the paper by proposing a novel defense mechanism, implemented
as an extension to the current Android API, which would protect
Android users and developers from the threats we uncovered.

I. INTRODUCTION

One of the key security mechanism for Android is the per-

mission system. For the permission system to actually improve

security, the end-users and the community need to be aware

of the security implications of the different permissions being

requested. In this paper, we focus our attention on two spe-

cific permissions: the SYSTEM ALERT WINDOW and the

BIND ACCESSIBILITY SERVICE permissions. The former

allows an app to draw overlays on top of other apps, while the

latter grants an app the ability to discover UI widgets displayed

on the screen, query the content of these widgets, and interact

with them programmatically, all as a means to make Android

devices more accessible to users with disabilities.

Even though the security community (as well

as our adversaries) are beginning to discover the

threats from the SYSTEM ALERT WINDOW and the

BIND ACCESSIBILITY SERVICE permissions, we show

how seemingly innocuous design choices can lead to even

more powerful attacks. Moreover, we uncover how these two

permissions, when combined, lead to a new class of stealthy,

very powerful attacks, which we called “cloak and dagger”

attacks.1 Conceptually, “cloak and dagger” is the first class

of attacks to successfully and completely compromise the UI
feedback loop. In particular, we show how we can modify
what the user sees, detect the input/reaction to the modified
display, and update the display to meet user expectations.
Similarly, we can fake user input, and still manage to display
to the user what they expect to see, instead of showing them
the system responding to the injected input.

This is in sharp contrast to existing attacks that

utilize only one of the SYSTEM ALERT WINDOW

and BIND ACCESSIBILITY SERVICE permissions. With

only SYSTEM ALERT WINDOW permission (e.g., GUI

confusion attacks [1], [2], [3]), the attacker can modify

what the user sees, but cannot anticipate how/when the user

reacts to the modified display, and thus fails to change the

modified displayed content accordingly. Similarly, with only

BIND ACCESSIBILITY SERVICE permission, the attacker

can inject fake user inputs2, but the attacker cannot prevent

the user from seeing the results of these fake inputs displayed

on the screen. As such, in both cases, with only one of
the two permissions, the user will very quickly discover the
attack. On the contrary, in “cloak and dagger,” the synergy of

1The term “cloak and dagger” can refer to: 1) situations involving intrigue,
secrecy, espionage, or mystery; or 2) in martial arts, literally wielding a
dagger in one hand and a cloak in the other. The purpose of the cloak was to
obscure the presence or movement of the dagger, to provide minor protection
from slashes, to restrict the movement of the opponent’s weapon, and to
provide a distraction.

2E.g., in [4], the BIND ACCESSIBILITY SERVICE permission is abused
to inject click events to allow the installation of adware and other unwanted
apps.

2017 IEEE Symposium on Security and Privacy

© 2017, Yanick Fratantonio. Under license to IEEE.

DOI 10.1109/SP.2017.39

1041

the two permissions allows an attacker to both modify what

the user sees and inject fake input, all while maintaining
the expected “user experience” and remaining stealthy. Such

stealthiness would in turn lead to better sustainability (i.e.,

the malicious app can be made available on the Play Store

and remain there for a very long time).

We will also demonstrate the devastating capabilities the

“cloak and dagger” attacks offer an adversary by showing

how to obtain almost complete control over the victim’s

device. In this paper, we will demonstrate how to quietly

mount practical, context-aware clickjacking attacks, perform

(unconstrained) keystroke recording, steal user’s credentials,

security PINs, and two factor authentication tokens, and

silently install a God-mode app with all permissions enabled.

We note that by completely controlling the feedback loop

between what is displayed on screen and what is inputted

by the user, “cloak and dagger” attacks invalidate a lot of

security properties that are taken for granted (e.g., the user

will eventually notice something and take action), and make

the uncovered design issues more dangerous.

What makes “cloak and dagger” attacks even more

dangerous is the fact that the SYSTEM ALERT WINDOW

permission is automatically granted for apps installed from

Play Store, and it can be used to quietly lure the user to

grant the BIND ACCESSIBILITY SERVICE permission and

bootstrap the whole attack. Furthermore, it is straightforward

to get a proof-of-concept app requiring both permissions

accepted on the official store.

To test the practicality of these attacks, we performed a

user study that consisted of asking a user to first interact with

our proof-of-concept app, and then login on Facebook (with

our test credentials). For this experiment, we simulated the

scenario where a user is lured to install this app from the

Play Store: thus, SYSTEM ALERT WINDOW is already

granted, but BIND ACCESSIBILITY SERVICE is not. The

results of our study are worrisome: even if the malicious app

actually performed clickjacking to lure the user to enable

the BIND ACCESSIBILITY SERVICE permission, silently

installed a God-mode app with all permissions enabled, and

stole the user’s Facebook (test) credentials, none of the 20

human subjects even suspected they have been attacked. Even

more worrisome is that none of the subjects were able to

identify anything unusual even when we told them the app

they interacted with was malicious and their devices had been

compromised.

We reported our findings to Google, which promptly

acknowledged all the problems we have raised. However, no

comprehensive patch is available yet: while few of the specific

instances of problems can be fixed with a simple patch, most

of the attacks are possible due to design shortcomings that

are not easily addressable.

We conclude this paper by elaborating on a new, principled

defensive mechanism that would prevent, by design, the

presence of this new class of attacks. In particular, the

protection system involves an extension of the Android API,

in a way that would allow the developer to indicate to the

OS that a given widget plays a security-sensitive “role.” In

turn, when any of these widget is displayed, the OS would

enforce, in a centralized manner, a number of constraints on

the capabilities of third-party apps with respect to the two

permissions we discuss in this work.

While we believe our proposed defense system would

significantly improve the overall security of the Android plat-

form, the current state of Android security patch distribution

would currently leave most devices unpatched [5], and thus

susceptible to the problems uncovered in this work. Thus, we

hope this work will urge Google to reconsider their decision

of automatically granting the SYSTEM ALERT WINDOW

permission to apps hosted on the Play Store: This modification

could be quickly deployable as it only affects the Play Store

app itself. To the best of our knowledge, Google is refraining

to deploy this fix because this permission is requested

by top apps installed by hundreds millions of users (e.g.,

Facebook, Messenger, Twitter, Uber), and the new permission

prompt would interfere with the user experience. While these

concerns are understandable, we believe users and the security

community should be able to make informed decisions.

In summary, this paper makes the following contributions:

• We uncover several design shortcomings related to

the SYSTEM ALERT WINDOW permission, the

BIND ACCESSIBILITY SERVICE permission, and the

Android framework itself.

• We show that an attacker can easily weaponize these

design shortcomings by mounting a new class of

devastating attacks, dubbed “cloak and dagger,” which

lead to the complete control of the UI feedback loop.

• We evaluate the practicality of these attacks with a

user study. None of the 20 human subjects suspected

anything, even after we revealed the malicious nature of

the app they interacted with.

• We propose a defense mechanism that can block any

attempt to confuse the end-user and limit the (malicious)

capabilities of the accessibility service.

II. TWO PERMISSIONS

This section introduces relevant background information

about the two permissions discussed in this work, including

what capabilities they provide, how to enable them, and how

they are used in real-world apps. The next section, instead,

describes the existing security mechanisms that (attempt

to) enforce that the powerful capabilities granted by these

permissions cannot be abused.

A. The SYSTEM ALERT WINDOW permission

An app having the SYSTEM ALERT WINDOW

permission has the capability to draw arbitrary overlays on top

of every other app. According to the official documentation,

“Very few apps should use this permission; these windows

are intended for system-level interaction with the user.” [6].

Despite this warning, the SYSTEM ALERT WINDOW is

used by very popular apps such as Facebook, LastPass,

Twitter, and Skype. In particular, we found that about 10.2%

1042

(454 out of 4,455) of top apps on Google Play Store require

this permission. The most common usage of this permission

is floating widgets, such as the ones implemented by music

players, weather notification apps, and Facebook Messenger.

Security apps such as app lockers, desk launchers, and

password managers also use this permission to implement

some of their key features.
It is important to mention that, starting from Android 6.0,

this permission is treated differently from the others (such as

the more traditional location-related permission). In particular,

in the general case, the user needs to manually enable this

permission through a dedicated menu. Thus, the general

belief is that it is quite challenging for an app to obtain this

permission. However, we observed that if an app is installed

through the latest version of the official Play Store app,

the SYSTEM ALERT WINDOW permission is automatically
granted. Moreover, if the app targets an SDK API higher or

equal than 23 (an app’s developer can freely select which

API level to support through the app’s manifest), the Android

framework will not show the list of required permissions

at installation time: in fact, modern versions of Android

ask the user to grant permissions at run-time. This means

that, since the SYSTEM ALERT WINDOW permission is

automatically granted, the user will not be notified at any

point. We note that this behavior seems to appear a deliberate

decision by Google, and not an oversight. To the best of our

understanding, Google’s rationale behind this decision is that

an explicit security prompt would interfere too much with the

user experience, especially because it is requested by apps

used by hundreds of millions of users.
On the technical side, the overlay’s behavior is controlled by

a series of flags. The Android framework defines a very high

number of flags, the three most important being the following:

• FLAG_NOT_FOCUSABLE: if set, the overlay will not

get focus, so the user cannot send key or button events to

it, which means the UI events sent to the overlay will go

through it and will be received by the window behind it.

• FLAG_NOT_TOUCH_MODAL: if set, pointer events

outside of the overlay will be sent to the window behind

it. Otherwise, the overlay will consume all pointer

events, no matter whether they are inside of the overlay

or not. Note that setting the previous flag implicitly sets

this one as well.

• FLAG_WATCH_OUTSIDE_TOUCH: if set, the overlay

can receive a single special MotionEvent with the

action MotionEvent.ACTION_OUTSIDE for touches

that occur outside of its area.

If none of the above flags are specified, the overlay will

receive all events related to the user interaction. However, in

this case, these events cannot be propagated to the window

below the overlay. There are several other flags and technical

aspects that are relevant for our work: for clarity reasons, we

postpone their discussion to later in the paper.

B. The Accessibility Service
The accessibility service is a mechanism that is designed

to allow Android apps to assist users with disabilities. In

particular, an app with this permission has several powerful

capabilities. In fact, the app is notified (through a callback-

based mechanism) of any event that affects the device. For

example, the main onAccessibilityEvent() callback

is invoked whenever the user clicks on a widget, whenever

there is a “focus change,” or even when a notification is

displayed. The details about these events are stored in an

AccessibilityEvent object, which contains the package

name of the app that generated the event, the resource ID

of the widget, and any text-based content stored by these

widgets (note that the content of passwords-related widgets

is not made accessible through this mechanism). This object

thus contains enough information to reconstruct the full

context during which the event has been generated.

Moreover, an accessibility service app can also access

the full view tree and it can arbitrarily access any of the

widgets in such tree, independently from which widget

generated the initial accessibility event. An accessibility

service can also perform so-called actions: for example, it

can programmatically perform a click or a scroll action on

any widget that supports such operations. It can also perform

“global” actions, such as clicking on the back, the home, and

the “recent” button of the navigation bar.

Google is aware of the security implications of this

mechanism. Thus, the user needs to manually enable this

permission through a dedicated menu in the Settings app.

Not surprisingly, this permission is less popular than the

SYSTEM ALERT WINDOW permission: Among the top

4,455 apps on the Play Store, we find 24 apps that use the

accessibility service. It is worth noting that none of them

are purely designed for people with disabilities. In fact, most

of them are security apps such as password managers (e.g.,

LastPass), app lockers, desk launchers, and antivirus apps.

We also found that 17 of these apps require both permissions

discussed in this paper. Several of these apps are installed

and used by more than one hundred million of users.

III. EXISTING SECURITY MECHANISMS

The two permissions discussed thus far grant capabilities

that are clearly security-related. However, although powerful,

the actions that an app can perform must adhere to what

specified in the documentation and to what is communicated

to the user. Thus, the Android OS implements a number of

security mechanisms to prevent abuse.

Security Mechanism #1. The SYSTEM ALERT WINDOW

permission allows an app to create custom views and widgets

on top of any another app. However, the system is designed

so that the following constraint always holds: if an overlay is

marked as “pass through” (that is, it will not capture clicks),

the app that created the overlay will not know when the user

clicks on it (however, since the overlay is pass through, the

click will possibly reach what is below); instead, if the overlay

is created to be “clickable,” the app that created it will be

notified when a click occurs, and it will also have access to its

1043

(a) This figure shows the popup
that informs the user about the
security implications of en-
abling the accessibility service.
To grant authorization, the user
needs to click on the OK button.

(b) This figure shows the
warning message that is shown
when the user clicks on the
OK button that is covered by
an overlay. The overlay in the
figure is drawn semi-transparent
for clarity. Of course, during a
real attack, the overlay would
be drawn completely opaque.

Fig. 1: Accessibility service popup & security mechanism

exact coordinates. However, the system is designed so that an

overlay cannot propagate the click to the underlying app. This

is a very fundamental security mechanism: in fact, if an app

could create an (invisible) overlay so that it could intercept

the click and also propagate it to the app below, it would be

trivial, for example, to record all user’s keystrokes: a malicious

app could create several overlays on top of all keyboard’s

button and monitor user’s actions. At the same time, since

the overlays are invisible and since the clicks would reach the

underlying keyboard, the user would not suspect anything.

An overlay can also be created with the

FLAG_WATCH_OUTSIDE_TOUCH flag, such that the

overlay will be notified of any clicks, even if they fall outside

the app itself. However, once again for security reasons, the

event’s precise coordinates are set only if the click lands in the

originating app, while they are set to (0,0) if the click lands

on a different app. In this way, the attacker cannot infer where
the user clicked by using the coordinates. This mechanism

makes also difficult to mount practical clickjacking attacks: in

fact, it prevents an app to lure the user to click on what’s below

and at the same time being notified exactly where the user

clicked, and it is thus not trivial to infer whether the user has

been successfully fooled. This, in turn, makes mounting multi-

stage UI redress attacks challenging, since there is currently no

reliable technique to know when to advance to the next stage.

Security Mechanism #2. An accessibility service app has

access, by design, to the content displayed on the screen by the

apps the user is interacting with. Although the accessibility ser-

vice does not have access to passwords (see below for a more

detailed discussion), it does have privacy-related implications.

Thus, in Android, the service needs to be manually enabled

by the user: after pressing on the “enable” switch, the system

shows to the user an informative popup (as in Figure 1a) and

she needs to acknowledge it by pressing on the OK button.

Security Mechanism #3. Given the security implications

of the accessibility service, the Android OS has a security

mechanism in place that aims at guaranteeing that other apps

cannot interfere during the approval process (i.e., when the

user is clicking on the OK button). This defense has been

introduced only recently, after a security researcher showed

that it was possible to cover the OK button and the popup

itself with an opaque, passthrough overlay: while the user is

convinced to interact with the app-generated overlay, she is

actually authorizing the accessibility service permission by

unknowingly pressing OK [7].

The new security mechanism works in the following

way. For each click, the receiving widget receives

a MotionEvent object that stores the relevant

information. Among these information, Google added

the FLAG_WINDOW_IS_OBSCURED flag (obscured flag, in

short). This flag is set to true if and only if the click event

passed through a different overlay before reaching its final

destination (e.g., the OK button). Thus, the receiving object

(once again, the OK button in our case) can check whether

this flag is set or not, and it can decide to discard the click

or to take additional precautions to confirm the user’s intent.

Figure 1b shows the message shown when the user clicks

on the OK button while an overlay is drawn on top. We

inspected the Android framework codebase and we found that

this flag is used to protect the accessibility service, but also to

protect the Switch widgets used to authorize each individual

permission. Google is advising third-party developers to use

a similar approach to protect security-sensitive applications.

Security Mechanism #4. To maximize the usefulness of

accessibility service apps, they are given access to the content

displayed on the screen. However, for security reasons, they

are not given access to highly private information, such as

password. This is implemented by stripping out the content

of EditText widgets known to contain passwords. [8]

IV. ATTACKING THE UI FEEDBACK LOOP

As we have mentioned in the introduction, the ultimate

strength of “cloak and dagger” attacks lies in their complete

control of the UI feedback loop between what users see on

the screen, what they input, and how the screen reacts to that

input. From a more conceptual point of view, the UI offers

an I/O channel to communicate with the user. In turn, the two

directions of the channel can be attacked in an active or a

passive fashion. This leads to four distinct attack primitives,

which we discuss next.

Primitive #1: Modify What The User Sees. An attacker may

want to confuse or mislead the user by showing her something

1044

other than what is displayed on the screen. For example, in

the context of clickjacking, the attacker may want to modify

the prompt displayed by the system to trick the user into

clicking “yes.” In other scenarios, instead, the attacker may

want to hijack the user’s attention, for example by launching

an attack while the user is distracted watching a video.

Primitive #2: Know What is Currently Displayed. Before

we can properly modify what the user sees, we need to know

what we are modifying. Continuing with the clickjacking ex-

ample, our attack can only be successful if we know the system

is displaying the targeted prompt: if we show our modified

prompt when the target is not even on the screen, we will

alert the user that something is wrong. As another example,

to steal the user’s password with a fake Facebook login, it

only makes sense to show the fake UI when the real one is

expected. In general, an attacker aims at determining which

app is on top and which activity is displayed at any given time.

Primitive #3: User Input Injection. This primitive allows

an attacker to control the user’s device, while all the previous

primitives provide proper “masking” for the effect of user in-

put injection. In particular, to disable specific security features

or to silently install an additional app, the attacker needs, for

example, to inject clicks into the Android Settings app.

Primitive #4: Know What the User Inputs (and When).
The attacker may want to monitor relevant GUI events, such

as user clicks. In some cases, this is necessary so the attacker

can update the modified display in Primitive #1 to maintain the

expected user experience. With the clickjacking example, it is

necessary to know that the user has clicked on either “yes” or

“no” to dismiss the fake message we are displaying. This prim-

itive can also be used to leak the user’s private information.

V. DESIGN SHORTCOMINGS

We identified four different design choices/shortcomings in

Android that either enable easy implementation of the attack

primitives, or make it harder to defend against cloak and

dagger attacks.

Design Shortcoming #1. The main capability granted by

the SYSTEM ALERT WINDOW permission is the ability

to draw windows on top of other windows. In particular, an
app can draw arbitrary windows (in terms of their shape,
appearance, and position) at arbitrary times. This provides a

first step to implement Attack Primitive #1.

Design Shortcoming #2. Regarding the accessibility

service: all GUI objects on the screen are by
default treated equal. As such, any app that has the

BIND ACCESSIBILITY SERVICE permission can easily

implement both Attack Primitives #2 and #4 to receive

necessary information from most apps, and implement

Attack Primitive #3 to inject input to many apps. The only

exceptions are apps that declare some of their widgets as

security-sensitive or choose to override the default behavior

of how their widgets provide information to the accessibility

service. The most prominent example of the former exception
is the getText() method of password-related EditText
widgets that returns an empty string (instead of returning its

content). Another security consequence of this default “on”

policy towards the accessibility service is that it is very easy

to overlook apps/widgets that need to override the default for

security reasons, as we will demonstrate in Section VI.

Design Shortcoming #3. As just mentioned, in Android an

app can create a number of windows that are all completely

customizable. The customization is related to the look and feel

of the window, and provides what is necessary to implement

Attack Primitive #1 in a completely stealthy manner (i.e., any

overlay can look like part of the UI it’s overlaying without

any visible difference). Furthermore, it is also possible to

define callbacks (mostly related to the graphical UI) and the

window’s behavior when clicked. Moreover, these callbacks

receive specific objects (e.g., MotionEvent) that provide

several information about the context. We show that the
inherent complexity of the WindowManager leads to the
creation of unexpected side channels, and possibly provides an

alternative method to implement Attack Primitives #2 and #4.

Design Shortcoming #4. By design, Android apps do not
have access to the current context. For example, an app cannot

know whether, at a given point in time, there is another app

displayed on top of it. While this does not necessarily help the

implementation of any of our Attack Primitives, it certainly

makes it very hard for individual apps to defend against cloak

and dagger attacks. To the best of our knowledge, the only

Android feature that provides some useful information for apps

to know their UI is being attacked is Security Mechanism #3,

but we will show that this mechanism is not always effective.

The key observation in this design shortcoming is that an app

does not have any capability to determine whether it should

trust the user input and it does not know whether the user had

access to enough information to take an informed decision.

We note there is an interesting trade-off between this

design shortcoming and Design Shortcoming #3 (DS#3): the

more contextual information the Android framework exposes

to an Android app, the more information a malicious app has

access to implement attacks. We also note that while Design

Shortcoming #2 may have security-related repercussions, it

does save developers a lot of efforts in making their apps

accessible to people with disabilities.

VI. UNLEASHING MAYHEM

This section discusses how an attacker can weaponize

the design shortcomings discussed thus far. Moreover, we

show how, in some cases, the existing security mechanisms

themselves can be used as an attack vector. All the attacks

discussed in this section have been tested on a Nexus 5

running Android 6.0.1, and they are still unaddressed at the

time of writing. Table I in Appendix A systematizes the main

aspects of these attacks.

1045

Fig. 2: This figure shows the organization of the overlays

created for our “Keystroke Inference” attack (Attack #3).

Of course, the overlays are made visible only to ease our

explanation: the overlays would be created invisible during

an actual attack.

A. Clickjacking Made Practical

Attack #1: Context-aware Clickjacking. One known

attack in Android is the possibility to perform clickjacking

attacks. These attacks work by spawning a security-sensitive

app, which we call the target app, and by creating an

on-top, opaque overlay that does not capture any of the user

interaction: while the user believes she is interacting with the

app she sees, she is in fact interacting with the target app in the

background. In a security context, the target app would usually

be the Android Settings app, or any other “privileged” app.

The malware would then use social engineering techniques

to lure the user to click on specific points on the screen.
Clickjacking is relevant to our work because, very recently,

a security researcher discovered that it is possible to perform

clickjacking to lure the user to unknowingly enable the

accessibility service [7]. In response to the researcher’s

report, Google implemented the security mechanism based

on the FLAG_WINDOW_IS_OBSCURED flag described

in Section III as Security Mechanism #3. The researcher

subsequently discovered that the current implementation of

this defense mechanism only checks that the portion of the

clicked button was not covered by any overlay, and it does

not guarantee that the OK button is visible in its entirety.

According to Google, this issue does not pose any concrete

and practical risks, and, reportedly, there are no plans to fix it.
The main limitation of current clickjacking techniques is

that the malicious app does not know when and where the user

clicked (this is ensured by Security Mechanism #1 described

in Section III) and so it does not have precise control on when

to move to the next step, making the attack less practical.
We developed a technique that makes clickjacking aware of

the user’s actions. We call this new technique context-aware
clickjacking. Our technique works by creating a full screen,

opaque overlay that catches all user’s clicks, except for the

clicks in a very specific position on the screen (the point

where the attacker wants the user to click). This is achieved

by actually creating multiple overlays so to form a hole: the

overlays around the hole would capture all the clicks, while the

overlay on the hole would make the clicks pass through. The

key observation that makes this technique context-aware is the

following: since there is only one hole, there is only one way

for a user’s click to not reach the malicious app. This observa-

tion makes it possible to use the Security Mechanism #1 as a

side channel: if the event’s coordinates are set to (0,0), then

it means that the user clicked exactly in the hole (otherwise,

the event’s coordinates would be set to their actual value).

This feature makes these attacks particularly practical.

For example, when performing clickjacking to lure the user

into enabling the accessibility service, the attacker just needs

to hijack three clicks: these three clicks do not need to be

consecutive or near in time. Moreover, the malicious app

knows exactly when the user clicked on the hole. This gives

the app enough information to know when to move to the

next step, and to update the overlay shown to the user so
to appropriately react to the click, even if the click never

reached the malicious app.

Attack #2: Context Hiding. In Section III we described how

the Android OS features a security mechanism based on the

obscured flag: an object receiving a click event can check

whether the user click “passed through” an overlay. We also

mentioned that a security researcher determined how this

mechanism is implemented in an insecure way: as long as the

user clicks on a part that is not covered, the flag is not set.

We argue that this defense mechanism would be insecure

even if it were implemented correctly. In fact, we believe this

mechanism is vulnerable by design: if the user can only see

the OK button, how can she know what she is authorizing?

Is she clicking the OK button on an innocuous game-related

popup, or is she unknowingly enabling the accessibility

service? By using context-aware clickjacking, it is easy to

create overlays with a single hole in correspondence to the

OK button, thus completely covering all security-relevant

information. Thus, a malicious app can hide the real context

from the user, and it can lure her into clicking on the OK

button – even if the OK button is entirely visible.

As we will discuss in Section VII, we performed a user

study that evaluated how practical it is to lure users to

enable the accessibility service even if the obscured flag

implementation were correct: none of the human subjects

involved in our user study suspected they were under attack.

B. Keystroke Recording

We now describe three new attack vectors to record

all user’s keystrokes, including sensitive information

such as passwords. The first attack only relies on the

SYSTEM ALERT WINDOW permission and exploits

DS#1 and DS#3, the second attack only relies on the

BIND ACCESSIBILITY SERVICE and exploits DS#2,

while the third attack relies on the combination of the two.

1046

Attack #3: Keystroke Inference. This attack is based

on a novel technique that attempts to circumvent Security
Mechanism #1. In particular, we show how it is possible to

use the well-intentioned obscured flag recently introduced

by Google as a side channel to infer where the user clicked.

The net result of this attack is that an app with just the

SYSTEM ALERT WINDOW permission can record all

keystrokes from the user, including private messages and

passwords.
The attack works in several steps. We first create

several small overlays, one on top of each key on the

keyboard, as shown in Figure 2. Of course, during a real

attack, these overlays would be completely transparent

and thus invisible for the user. The overlays are created

with the following flags: TYPE_SYSTEM_ALERT,

FLAG_NOT_FOCUSABLE, FLAG_NOT_TOUCHABLE,

and FLAG_WATCH_OUTSIDE_TOUCH. These flags make

sure that each overlay does not intercept any click by the user

(that is, when the user clicks on a keyboard’s key, the click

will reach the keyboard, as the user would expect). However,

note that, thanks to the FLAG_WATCH_OUTSIDE_TOUCH,

each overlay receives a MotionEvent object for each click.

As described in Section III, these click events do not contain

any information about where the user actually clicked.
However, we discovered that it is possible to use Google’s

obscured flag as a side channel to infer where the user

actually clicked. This attack works thanks to the following

two observations. First, the overlays are created in a very

specific, attacker-known order, and they are organized as in

a stack: overlay #0 (top left in Figure 2) is at the bottom of

the stack, while overlay #42 (bottom right) is at the top: thus,

each of these overlays has a different Z-level. The second

observation is that, for each overlay, the obscured flag is set

depending on whether or not the user clicked on an overlay

that was on top of it. For example, if the user clicks on overlay

#0, the MotionEvent events received by each overlay will

have the obscured flag set to 0. However, if the user clicks

on overlay #1, the event delivered to overlay #0 will have the

obscured flag set to 1. More in general, we observed that if the

user clicks on overlay #i, the events delivered to overlays #0 →
#(i-1) will have the obscured flag set to 1, while all the events

delivered to the remaining overlays will have the flag set to 0.
Thus, by creating the overlays in a specific order and by col-

lecting the events and their obscured flags, it is effectively pos-

sible to use the obscured flags as a side channel to determine

on which overlay the user has clicked, thus breaking Security
Mechanism #1. We were able to write a proof-of-concept that

can infer all keystrokes in a completely deterministic manner.

Attack #4: Keyboard App Hijacking. The accessibility

service is a powerful mechanism that has access to the content

displayed by the apps the user is interacting with. However,

for security reasons, it is designed so that it cannot get

access to security sensitive information, such as passwords.

In practice, this is implemented so that when an app attempts

to read the content of an EditText widget containing a
password, the getText() method always returns an empty

string. This behavior is documented at [8]: “[...] any event

fired in response to manipulation of a PASSWORD field does

NOT CONTAIN the text of the password.”

It is possible to use DS#2 to bypass this

protection mechanism. In fact, by specifying the

FLAG_RETRIEVE_INTERACTIVE_WINDOWS (according

to the documentation, it indicates to the system that “the

accessibility service wants to access content of all interactive

windows” [9]), the keyboard app itself (package name:

com.google.android.inputmethod.latin) is

treated as a normal, unprivileged app, and each of the key
widget generates accessibility events through which it is easy

to record all user’s keystrokes, including passwords.

Attack #5: Password Stealing. Attacks #3 and #4 show that

it is possible to abuse DS#1, DS#2, and DS#3 to record all

user’s keystrokes.

Here we describe an additional attack that uses a

combination of the two. The attack works in several steps.

First, the attacker uses the accessibility service to detect that,

for example, the user just opened the Facebook app’s login

activity. At this point, the malicious app uses the overlay

permission to draw an overlay that looks like the username

and password EditText widgets. Note how, differently

from the previous attacks, the widgets are actually visible:

however, they match exactly the Facebook user interface, and

the user does not have any chance to notice them. Thus, the

unsuspecting user will interact with the malicious overlays

and will type her credentials right into the malicious app.

To make the attack unnoticeable to the user, the malicious

app would also create an overlay on top of the login button:

when the user clicks on it, the malicious overlay would catch

the click, fill in the real username and password widget in the

Facebook app, and finally click on the real Facebook’s login

button. At the end of the attack, the user is logged in her

real Facebook account, leaving her completely unsuspecting.

Moreover, by checking whether the login attempt was

successful, our attack can also confirm that the just-inserted

credentials were correct.

We note that this technique is generic and it can be applied

to attack any app (e.g., Bank of America app). Moreover,

the malicious app would not need to contain any code of

the legitimate app, thus making it more challenging to be

detected by repackaging detection approaches. Our attack,

in fact, replaces many of the use cases of repackaging-based

attacks, making them superfluous.

C. Unlocking The Device

We now describe two attacks related to the Android locking

mechanisms. These two attacks are possible due to DS#2.

Attack #6: Security PIN Stealing. We discovered that the

security screen pad used by the user to digit her PIN to

unlock the device generates accessibility events, and that an

accessibility app is able to receive and process the events even

when the phone is locked. In fact, we discovered that the

Button widgets composing the security pad are treated as

1047

normal, unprotected buttons and that their content description

contains the number or symbol represented by the button.

Thus, any app with accessibility service can easily infer which

buttons the user is pressing and can thus infer which is the

user’s PIN. We believe the user’s PIN should be considered as

sensitive as user’s passwords: first, it is possible that the user

reuses the PIN in other settings; second, and more importantly,

the attacker armed with the knowledge of the PIN can use it to

unlock the phone in case of physical access to the device, or it

can use it to perform other attacks, as the one we describe next.

Attack #7: Phone Screen Unlocking. We discovered that apps

with accessibility service not only can receive events while the

phone is locked, but they can also inject events. We discovered

it is possible for an accessibility app to unlock the device in

case a “secure lock screen” is not used. We also discovered an

app can inject events onto the security pad and it can click and

“digit” the security PIN (which can be inferred by using the

previous attack). To make things worse, we noticed that the

accessibility app can inject the events, unlock the phone, and

interact with any other app while the phone screen remains
off. That is, an attacker can perform a series of malicious

operations with the screen completely off and, at the end, it can

lock the phone back, leaving the user completely in the dark.
We note that this attack works if the user did not setup a

security lock, or if she setup a security PIN. However, this

attack does not work if the user setup a secure pattern: to the

best of our knowledge, it is not possible to inject “swipe”

events through accessibility service. Interestingly, at a first

impression it appears that to unlock the phone (even in case

of security PIN) one would need to “swipe up” the security

lock icon. However, it turns out that by injecting a “click

event” on the lock icon, the security pad appears and the

accessibility app can inject the PIN and unlock the phone.

We also note that, according to the documentation, not even

an app that enjoys full admin privileges should have the

possibility to unlock the device.
The fact that an app can unlock the device and stealthily

perform actions could be also combined with other attacks

that generate revenue: in fact, it is simple to imagine a

malware that would unlock the phone during the night, and

it would go on the web and click ads (a scenario we discuss

later in this section) or perform any other actions that directly

generate revenue.

D. From Two Permissions to God Mode
Given an app with the SYSTEM ALERT WINDOW and

the BIND ACCESSIBILITY SERVICE permissions, we

show how it is possible to install a second malicious app that

requires all permissions and how to enable all of them, while

keeping the user unsuspecting.

Attack #8: Silent App Installation. The initial malicious app

(the one with only the two permissions discussed in this paper)

can embed a secondary, much more malicious app in the

form of an APK. Thus, an app can initiate the app installation

by sending an Intent with ACTION_VIEW as action, and
Uri.parse("file:///<path>/malware.apk"),

"application/vnd.android.package-archive"
as additional data. This will generate a prompt asking the user

for confirmation, at which point the app can automatically

click on the “Install” button. Before doing that, however,

the app checks whether side-loading of third-party app is

enabled: if it is not enabled, the app opens the Settings app,

browses to the security settings, and automatically grants

itself permission to side-load additional apps.

Since the “Install” button is unprotected, it is possible to

perform this attack while stealthily covering the screen with

an on-top overlay. In fact, as we discuss later in the paper,

we did test the practicality of this approach by performing

this (and the following) attack while the user believed to be

watching an innocuous video. The app can then cover its track

by opening the “recent windows” and by dismissing them all.

Attack #9: Enabling All Permissions. Once the secondary

malicious app is installed, it is trivial for the initial

app to grant device admin privileges: we found that the

“Enable” button is unprotected and it can be easily clicked

through an accessibility event. However, the Switch
widgets that the user needs to click are protected by the

FLAG_WINDOW_IS_OBSCURED flag. It turns out that the

current implementation of the mechanism that sets and

propagates this security flag handles user-generated clicks and

clicks generated by an accessibility service app in a different

way. In particular, we observed that the flag is not set for any

event generated by the accessibility service. Thus, we found

it is possible to automatically click and enable all permissions

while a full screen overlay is on top. At the end of this and

the previous attack, the initial unwanted application was able

to silently install a God-mode malicious app.

E. Beyond the Phone

Attack #10: 2FA Token Stealing. We show that a malicious

app that has access to the accessibility service is able to steal

two-factor authentication codes stored on or received by the

phone. In fact, for SMS-based tokens, the accessibility service

can be configured to be notified for any new notification, which

contains the required token. For tokens of other natures, such

as the ones offered by the Google Authenticator app [10], the

malicious app can easily open the activity displaying the to-

kens and easily read them off the screen: in fact, we found that

none of the views containing the tokens are protected. To make

things worse, this attack can be combined with the fact that the

phone can be unlocked and that the malware can perform these

operations while the screen is off. The malware can also gener-

ate a token “when needed,” and then get rid of the notification.

Attack #11: Ad Hijacking. An accessibility service app

is notified of all GUI-related event that happens. These

events include “click” and “touch” events, but also “windows

change” events when a graphical interface is redrawn. The

app also gets access to the app (identified by its package

name) that generates these events. The app would also get

access to the entire view tree, which includes details such

1048

as the type of each widget in the tree, their size, and their

position on the screen. This information can be used by a

malicious app to fingerprint each activity of each app and

identify where and when ads are shown. At this point, the

malicious app can draw an invisible on-top overlay on top of

the ad: whenever the user would press the ad, the malicious

app would intercept the click and redirect the user to the

malware author-owned ad, which would generate revenue.
Industry researchers recently discovered malware samples

that abuse the accessibility service to automatically install

adware apps and to automatically click on ads generated

by them. While this is profitable, the user would be clearly

aware of what is happening, and it would attempt to uninstall

the malicious apps or, more likely, to factory reset her

phone. We note that while these malware samples also abuse

accessibility service, their malicious process is very different.

In particular, our attack is completely stealthy, and none of

the parties involved (i.e., the user, the OS, the app developer)

has any chance to notice the fraud.

Attack #12: Exploring the Web. Among other things, we

discovered that the accessibility service has full access to the

phone’s browser. It is easy to write a program to open Chrome

and visit an arbitrary page. To make things worse, the content

of the page is automatically parsed by accessibility service and

easy-to-use Android objects are provided for each component

shown on the target HTML page. For example, the HTML

page itself is made accessible through a View tree and an

HTML button is converted to a Button Android widget. The

accessibility service not only does it have access to the infor-

mation, but it is also able to interact with it by, for example,

performing “click” actions. Once again, it is simple to imagine

malware that would secretly unlock the phone and click on

“like” buttons on social networks and post content on behalf

of the user. Moreover, since all HTML elements are nicely ex-

posed, we believe it would be simple to extend the “password

stealer” attacks we described earlier to web-based forms.

F. Putting All Together
All the attacks that we have described start off by

just luring an user to install a single app hosted on the

Play Store. This app’s manifest would declare only two

permissions: the SYSTEM ALERT WINDOW and the

BIND ACCESSIBILITY SERVICE permissions. A quick

experiment shows that it is trivial to get such an app accepted

on the Play Store. In particular, we submitted an app requiring

these two permissions and containing a non-obfuscated

functionality to download and execute arbitrary code, and this

app got approved after just a few hours. Since this app targets

a recent Android SDK, at installation time the user would

not see any prompt related to the required permission, thus

leaving him completely unsuspecting. Moreover, since the

SYSTEM ALERT WINDOW permission is automatically

granted for apps hosted on the Play Store, the only missing

step for the malicious app is to lure the user to enable the

BIND ACCESSIBILITY SERVICE permission.
However, as we described earlier, it is possible to perform

clickjacking attacks to lure the user into enabling the

BIND ACCESSIBILITY SERVICE permission: thanks to

our new context-aware clickjacking attack, this can be done

in a very practical and deterministic manner. Our user study,

described in Section VII shows that none of the human

subjects involved suspected anything. In fact, the attacker just

needs to hijack three clicks from the user, and since the app

has full control of the context, these clicks do not even need

to be sequential. After the user’s three clicks, the device is

fully compromised and, to make things worse, the user does

not even have a chance to suspect anything is wrong.

At this point, the malicious app can enable side-loading,

install another app (downloaded at run-time), enable all its

permissions, including device admin and accessibility service,

and launch it: a God-mode app is now installed on the device.

Given the attacks we described, the malicious app would

now be able to wait until night, to then silently unlock the

phone and perform the attacks we described earlier, including

leaking all user’s credentials (including passwords, security

PINs, and two-factor authentication codes), ad jacking, and

browsing the web and leaking even more data. Since the app

has all permissions enabled, the malware could perform the

variety of malicious actions described in the literature (e.g.,

record audio and video, steal user’s contacts), the imagination

being the only limit.

We note that the initial malicious app has even the chance

to clean after its steps. For example, the app could disable

the side-loading option. As another example, consider a

scenario where the initial app is installed through social

engineering, by making the user believe that this app is, for

example, a Pokemon Go-related app: to delete all traces, once

the secondary malicious app has been installed, the initial

malicious app could silently install the real Pokemon Go

app from the Play Store, and it could then uninstall itself: at

this point, the user would believe she has interacted with the

legitimate app from the very beginning.

To make things worse, we finally note that the new app has

a series of ideal properties for malware. In fact, the secondary

installed app does not need to be hosted on the Play Store,

but it can be dynamically downloaded: thus, the attacker has

full flexibility when generating this new app, and it could

even use polymorphism to make it very challenging to be

tracked. It is also possible to configure the malicious app to

not appear in the app’s launcher (this is possible by removing

android.intent.category.LAUNCHER from the

app’s manifest). Last, since the malicious app is granted with

device admin privileges, its uninstall button will be disabled,

and it is thus easier to be disguised as a legitimate system

app. Of course, it is possible that a determined user will be

able to spot this malicious app. However, since the attacks

described in this paper are designed to be stealthy, the user

would not even think her device is compromised.

VII. USER STUDY

Some of the attacks we presented require interaction with

the end user. We designed and performed a user study to

1049

Fig. 3: This figure shows how our attack stealthily installs a

malicious app using the accessibility service while covering

its action using an overlay vs. using only accessibility service

(e.g., [4]).

Fig. 4: This figure shows how our attack stealthily steals

the user’s credentials by using a fake UI and completing the

login with the help of accessibility service vs. using only a

fake UI (e.g., [11], [12], [1], [2], [3]).

evaluate the practicality of these attacks. In particular, we

evaluated the practicality of the attacks related to clickjacking

(#1 & #2), silent installation of God-mode app (attacks #8 &

#9), and the most complex of the keystroke recording attack

(attack #5). We start this section with a description of the user

study, and then discuss the results. Our study was reviewed

and approved by our institution’s internal review board (IRB).

A. Experiment Description

Human Subjects Recruitment. For our study, we were able

to recruit 20 human subjects. We performed the recruitment

by advertising our study through mailing lists and word-of-

mouth. The subjects involved in our study have a variety

of different backgrounds, ranging from doctoral students,

post-doctoral researchers, and personnel involved in the

administration. All the participants were recruited at the

research institution where the study has been conducted. The

only requirement to participate to the study was to have at

least a minimum familiarity with Android devices. While

recruiting the participants, we ensured that they were not

aware of any details related to our experiment.

Experiment Settings. Before starting the experiment, we

provided a bit of context to the human subject. However,

since our main goal is to determine the stealthiness of our

attacks, we obviously could not state our actual intent. Thus,

we created a fictitious scenario in which we, the researchers,

created a novel security mechanism for Android and that we

wanted to test whether this new mechanism would introduce

noticeable effects.3 As we discuss throughout this section,

the user is first asked to interact with an app we wrote. This

app only requires the two permissions we focus on in this

paper. Moreover, we simulate a scenario in which the user

downloaded the app from the official Play Store: thus, the

SYSTEM ALERT WINDOW permission is already granted,

while the BIND ACCESSIBILITY SERVICE permission is

not. The user will be lured to enable this second permission

as the user study progresses.

Experiment Organization. The study is organized as follows.

First, we ask the user to answer few preliminary questions.

The main goal of these initial questions is to assess whether

the subject had familiarity or owned an Android device. After

we have established that the subject satisfies our inclusion

criteria, we proceed with the main part of our study, which is

a controlled experiment designed to test whether the user can

tell whether they are under attack or not. We did this for two

sets of attacks in Section VI, namely attacks #1, #2, #8, #9

(for enabling accessibility and installing the God-mode app)

and attack #5 (for stealing Facebook password). In particular,

we ask the user to interact with an app we wrote (running on

a device we provide) twice for each set of tested attacks, one

where the attack actually happened and one “control run”

where the attack was not launched. We randomized the order

of the runs.4 After the experiment for each of the tested set of

attacks, we asked the subject few questions to assess whether

she had noticed anything during the two runs.

As a final step of our study, we give the subject the

possibility to freely interact with the device (which now has

accessibility enabled for our app, and the God-mode app in-

stalled) and we ask them to report any “weirdness” the subject

would like to note. We then ask a series of wrap-up questions

to assess to which extent the subject realized what actually

happened during the experiment. The remainder of this section

provides the details about the two phases, the assessment and

wrap-up questions, as well as the results of the study.

3Given the nature of our study, we needed to use concealment. We note
that we properly included the description of this element while preparing our
application package to obtain IRB approval. We also note that, as per IRB
guidelines, at the end of the experiment each of the subject was debriefed
about the real nature of the study.

4I.e., there is a 50% chance the first run will be the attack, and 50% the
first run will be the control.

1050

Phase #1: Clickjacking and Silent App Installation. This

phase aims at testing the practicality of the attacks #1 and

#2 (related to clickjacking), and #8 and #9 (related to the

silent installation of a God-mode app). For this phase, we

ask the subject to interact with one app we wrote. We

pre-installed this app on our test device before the beginning

of the experiment. This app is disguised as a simple tutorial.

The user is asked to click on three buttons: “Start Tutorial,”

“Next,” and “OK.” After the subject clicks on the final OK

button, the app shows a short animation (for a duration of

about 20 seconds). Once the video is over, a final message is

shown. This marks the end of the first phase.
Unbeknownst to the user, what actually happens during the

attack run is that the first three clicks enable the accessibility

service: the first one clicks on the entry related to our app, the

second one clicks on the “on/off” Switch widget, while the

final click on the OK button actually clicks on the real OK

button; i.e., we are showing them overlays with text related
to our tutorial, with holes in the overlay to show buttons that
belong to the Settings app below. At this point, our malicious

app uses the SYSTEM ALERT WINDOW permission to

create an on-top overlay that shows the video and, in the

meantime, it uses the BIND ACCESSIBILITY SERVICE

permission to silently enable side-loading of third-party apps

and install a secondary, much more malicious app (which was

embedded in the first). Then, it enables all its permissions,

grants it device admin capabilities, and before the video is

over, dismisses all the “recent” views so that the user will not

notice anything once the attack is over. The secondary app

that is installed is disguised as “Google Parental Control” app.

Figure 3 depicts how our attack #8 can achieve its stealthiness,

and it shows how our attack improves over existing ones.
As for the control run, we showed the user real UIs with

the same text and buttons that are actually generated by our

app, and, after the user clicks all three buttons, we show them

the same tutorial video.

Phase #2: Password Stealer. This phase aims at evaluating

the practicality of attack #5. In particular, we asked the subject

to login on Facebook (with test credentials we provided). The

subject needed to open the Facebook app, type the password

in (the username was pre-filled by the app’s cache), and click

on the “Log In” button. As in the previous case, this phase

is executed twice: in one of the two cases our malicious app

performed the attack, while it remained idle in the other one.
In this case, during the attack run, our malicious app would

use the accessibility service to infer that the user had opened

the Facebook app, and it would then create an overlay that

would resemble the password and login button widgets used by

the real Facebook app (since the username is stored in a non-

protected EditText widget, the malware can steal it by sim-

ply using the getText()’s accessibility service API). The

unsuspecting subject would thus interact with our malicious

widgets, type her password in, and click on the login button.

At this point, our malicious app would copy the (now leaked)

password to the real Facebook app, click on the real login but-
ton, and dismiss the malicious overlays. On the other hand, no

overlay is created on top of the Facebook app during the “con-

trol run.” Figure 4 graphically depicts this attack and it demon-

strates its advantage over existing attacks that only use fake UI.

Assessment Questions. After each of the two phases, we

asked several questions to assess whether the subject noticed

any difference or any “weirdness” while performing the

required steps. These questions include “Did you notice any

difference?”, “Did you notice any slowdown?”, and “Did you

notice any weirdness?”. We allowed the subject to provide a

yes/no answer as well as an open answer to let her clarify

any of her thoughts.

Wrap-up Questions. Once the experiments for the two sets

of attacks are concluded, we asked the subject to answer

several questions in order to assess to which extent the subject

understood what really happened during the experiments. We

also took this opportunity to test the subject’s knowledge on

the two permissions we focus on in this paper. As the very

last question, we reveal to the subject that the initial app was

malicious: once again, we gave the subject free access to the

device, and we ask her to note any impression, idea, or hy-

pothesis about what actually happened during the experiment.

B. Results & Insights

We now describe the results of our user study. We organize

the discussion by describing the results of each component of

the attack: clickjacking, silent app installation, and password

stealer. We then provide insights about the general awareness

of the subjects.

Clickjacking. None of the 20 subjects noticed any weirdness

while they were under attack. In particular, none of them

reported noticing any difference between the two runs of

the experiment. We conclude that our clickjacking attack

is practical. We also note that this attack is practical even

when assuming that the FLAG_WINDOW_IS_OBSCURED
flag functionality were correctly implemented (that is, no

overlay can obscure any part of the OK button).

Silent God-mode App Installation. Once again, none of the

subject even suspected that they were under attack and they

did not notice any significant difference between the two runs

of the experiment. Interestingly, a few subjects did report

some very general differences regarding some audio/video

aspects of the video we showed. For example, two subjects

reported that the image and sound quality decreased, or

that the sound was higher in one case. One other subject

reported that “the initial splash screen seems different.” Lastly,

two other subjects reported that the duration of the video

changed between the two runs. However, we cannot find any

correlations between the reported differences and whether a

particular run is the attack run or not; to the contrary, for the

reports about the video length, one subject thought the video
played while the attack was launched was shorter, while the
other subject reported the exact opposite. One hypothesis that

explains why these subjects reported these differences is that

they simply assumed there was a difference to be detected.

1051

As a matter of fact, quite a few participants smiled when

asked “Did you notice any difference?”: they then confessed

they had no idea where the difference could have been.

Password Stealing. 18 out of the 20 human subjects did

not detect any differences or weirdnesses between the two

times they were asked to login into Facebook. The remaining

two subjects triggered a bug in our implementation and,

although they did not understand they were under attack,

they did notice some graphical glitches. One of these two

subjects miss-clicked on the widget holding the username

and he noticed a graphical glitch. Nonetheless, the subject

did not understand he was under attack, and he reported that

he found differences in the “touch sensitiveness.” The other

subject encountered a different problem: instead of clicking

on the “log in” button, he clicked on the “enter” keyboard’s

button, which our prototype did not handle correctly. Once

again, the subject just noticed the glitch without realizing

he was under attack. We note that these glitches are caused

by simple imperfections of our prototype, and they are not

caused by any conceptual limitation of our attacks.

At the end of the experiment, we explained to these two sub-

jects the details about the attacks we were testing and why they

encountered those graphical glitches. As an additional experi-

ment, we asked them to repeat the experiment: Both subjects

were not able to distinguish in which case they were under

attack even if they knew we were attacking them during one
of the two runs. We believe these results show that this attack

is practical. We also note that this attack is the most complex

(and most challenging to fix) among the other two other attacks

to record the user’s keystrokes (i.e., attacks #3 and #4).

Overall Awareness. None of the users was able to even

suspect that they were under attack. What is more worrisome

is that none of the users actually managed to understand what

happened even after we told them the app they played with

was malicious and even after we gave them complete and free

access to the compromised device. We also stress that the sub-

jects could not detect anything even when they had a chance to

directly compare what happened against a “benign” baseline:

In a real-world scenario, there would not be any baseline to

use as reference. We also argue that it is quite easy to hide a

malicious app among many benign ones. In fact, one subject

opened the device admin settings and she found our seemingly

benign “Google Parental Control” app: still, she did not sus-

pect that app was malicious, and she assumed it was a system

app. Only one subject noticed one aspect that was marginally

related to our attack: the device was configured to enable the

installation of side-loading app. While our attack turned this

feature on, it is quite simple to “improve” the malware to reset

the side-loading settings as it were before the attack started.

Finally, only two out of the 20 subjects knew what the

SYSTEM ALERT WINDOW permission was and what an

app with this permission can do. Instead, only five subjects

knew what the accessibility service was (in fact, eight subjects

in total declared to know about it, but three of them provided

a wrong description). Interestingly enough, no single subject

knew the details about both permissions.

We believe these results clearly indicate that the attacks we

discuss in this paper are practical. Our results also indicate

that the user’s awareness of these permissions and thus

of the risks they pose is currently quite low. We believe

this is particularly worrisome because the user is not even

notified about these two permissions and she will thus remain

completely unsuspecting.

VIII. DISCUSSION

The numerous attacks we described and the

results of our user study highlight that the risks

imposed by the SYSTEM ALERT WINDOW and

BIND ACCESSIBILITY SERVICE permissions are currently

vastly underestimated.

Responsible Disclosure. We responsibly disclosed all

our findings to the Android security team, which promptly

acknowledged the security issues we reported. When available,

the fixes will be distributed through an over-the-air (OTA)

update as part of the monthly Android Security Bulletins [13].

No Easy Fix. Unfortunately, even if we reported these

problems several months ago, these vulnerabilities are still

unpatched and potentially exploitable. This is due to the fact

the majority of the presented attacks are possible due to the

inherent design issues outlined in Section V. Thus, it is chal-

lenging to develop and deploy security patches as they would

require modifications of several core Android components. As

an example, consider the issue related to all widgets are treated
equally: to address this issue, the Android system would need

to be modified so to add the concept of type of widget and so to

react in different ways depending on such type. We argue we

need a more principled design mechanism that directly focuses

at addressing the design issues we uncovered or, alternatively,

at making sure they cannot be weaponized to be a real concern.

IX. SECURING THE ANDROID GRAPHICAL UI

This section proposes a series of modifications and

enhancements to the Android system that directly address the

design shortcomings we described in the previous section. Our

proposed modifications are constituted by two main compo-

nents: first, the introduction of secure apps and widgets, and,

second, system popups. These new mechanisms would require

system modifications, which we believe to be necessary.

However, given the problematic state for which Android

devices receive updates, we also discuss two recommendations

that can be deployed within a much shorter timeframe.

A. Secure Apps & Widgets

We envision an extension of the Android framework that

allows a developer to easily indicate to the OS that a given

widget is security-sensitive. There are many typologies of

widgets that a developer may want to flag as security-sensitive.

Few examples are: Button or Switch widgets whose “click

action” have a security-related semantics; TextView or

1052

EditText widgets that store passwords or two-factor authen-

tication tokens; Button widgets for which merely knowing

that they have been clicked might leak sensitive information

(e.g., buttons on the keyboard app or on the security pad).
It should be as easy as possible for a developer to spec-

ify that a given widget is security-sensitive and, ideally,

it should not require the implementation of any custom

logic. We propose to define a new flag, which we call

FLAG_SECURITY_SENSITIVE (or secure flag, in short),

that a developer should be able to set for an arbitrary widget

or view. As an additional convenient extension, the developer

should be able to indicate to the OS that an entire activity, or

even an entire app, should be considered as security-sensitive:

in these cases, the secure flag should be conceptually propa-

gated to all sub-views. The semantics of this flag is intuitive:

it tells the Android OS that a given widget, activity, or app

plays a security-related “role,” and it thus needs special care.
This approach is preferable with respect to the current

one because the developer does not need to implement any

custom logic on how the app should “react” based on whether

the FLAG_WINDOW_IS_OBSCURED flag is set. In fact, our

proposal allows a developer to rely on a secure-by-design

fallback such as “discard any interaction if the context is

unsafe and notify the user.” Moreover, the current approach

only lets the developer detect problematic cases where an

overlay is on top of a widget: as we have shown in this

paper, this is only one of the many problems. We believe

that a defense design system should be comprehensive. As

a possible further extension, the developer would be given

the possibility to customize how to “react” when an unsafe

situation is encountered: however, we believe that “custom
logic” should be the exception, rather than the rule.

Enforced Security Properties. We now define what are the

properties that the OS should enforce for secure widgets (i.e.,

widgets for which the secure flag is set). First, whenever the

user is interacting with an app that embeds any secure widget,

no other app should be allowed to interfere with the user’s

interaction by being able to create arbitrary overlays on top.

We note that this should apply not only for Button widgets,

but also for EditText widgets that store user-entered

passwords: When the user is interacting with “buttons” or

“data” (of any kind) that are security-relevant, there should

not be, by design, any possibility to (even subtly) interfere

with it. (We note that there are few legitimate scenarios where

this constraint might create practicality issues. We address

these issues later in this section.)
Moreover, the OS should enforce that no input from the user

should be accepted if there was something on top in the past

few seconds. This precaution would make sure that the user

has sufficient time and information to take informed decisions.

This idea has been first proposed by Roesner et al. in [14].
We note that the proposed mechanism might cause

backward compatibility issues: what would happen if a third-

party app attempts to create a widget on top while the user is

interacting with a secure app? One solution to address these
issues is the following: instead of denying the possibility for

an app to draw overlays, the OS would still allow it, but none

of these widgets would be actually rendered while the user is

interacting with a secure view. This would not break existing

apps and it would ensure that the user cannot be misled.

Another property that should be enforced is that an

accessibility service should not be able to automatically click

or perform any action on any secure widgets: if the developer

of an app would like to provide an option for an action to

be performed programmatically, the developer should expose

such functionality through an appropriate API (and protected

by a permission, if needed). We note it is safe enough to let

third-party accessibility apps to automatically fill EditText
widgets, even if they store user-sensitive information. This

would assure backward compatibility with popular apps such

as LastPass.

Last, there should not be any direct or indirect mechanism

to infer or leak information stored in secure widgets. As it

already happens with password-related EditText widgets,

the getText() method should return an empty string. The

same principle should apply for TextView widgets that

contain, for example, two factor authentication codes. We note

that in some scenarios, the mere fact that a specific button or

TextView has been clicked could also constitute a problem.

For example, by knowing on which keyboard’s TextView
widget the user is clicking, it is trivial to record all keystrokes.

Thus, no accessibility events should be generated when the

user interacts with these security-sensitive widgets.

Addressing Design Shortcomings. The Android API

extension we just discussed directly addresses the design

shortcomings we uncovered for this work. The new typology

of widgets and apps, i.e., secure widgets and apps, addresses

the shortcoming related to the fact that the Android OS treats

all widgets equal (i.e., DS#2). Third-party apps are also now

prevented to tamper with security-sensitive applications: while

they are still able to create arbitrary widgets, our proposal

effectively avoids the weaponization of such capability, thus

effectively making DS#1 innocuous.

Our proposal also addresses DS#4: while apps would not

have explicit control over the current context, they would

have an OS-enforced guarantee that the context is safe enough

to trust user’s input. Interestingly, another option would have

been to provide finer-grained information about the current

context: which app is currently displaying widgets? In which

positions? We argue this would be a bad decision. In fact, the

more information is exposed to a third-party app, the more

likely is that this information can be used as a side-channel

to mount attacks (cf. DS#3). We believe our proposal hits the

sweet spot in the trade-off between information provided to

the app and possibility of having side channels.

Adoption. Once the modifications proposed in this paper

are integrated within the Android OS, we envision Google

leading the way and marking as “secure” critical apps such

as the Android Settings app and the Keyboard app. Moreover,

any widget that prompts the user for any security-relevant

question should be marked as “secure” as well. Moreover,

1053

we believe developers of third-party apps would smoothly

transition to using the proposed API extension: in fact, taking

advantage of this system would require the usage of a single

flag and, differently from the existing system, it would not

require the implementation of any custom logic.

B. System Popups
Our proposal would be effective in addressing (or preventing

abuse of) the design shortcomings we highlighted. However,

our proposal has one side-effect that could cause compatibility

problems: no app would be allowed to create any overlay

when the user is about to input her credentials in a login

activity (which should be assumed to be marked as “secure”);

However, this mechanism might break certain legitimate

functionalities. For example, when the current version of the

LastPass app detects that an user is about to type her creden-

tials in a login form, it creates an on-top overlay offering the

user the possibility of using LastPass’ auto-fill functionality.
We argue that what distinguishes this benign functionality

and the attacks we presented is that, in this case, it is very

clear for the user that there is an overlay on top and it is clear

which app generated it: we build on top of this observation

to further extend our proposal with the introduction of a

well-defined API to create system popups. We define a system

popup as a system-generated, clearly-defined overlay that

resembles web-based popups: the shape and layout are defined

by the OS and cannot be customized by an unprivileged app,

and the only freedom left to the app developer is the definition

of the popup’s content and whether to show one (or more)

clickable buttons. Moreover, a system popup will include

information about the app requesting its creation, so to avoid

any source of confusion. Last, the OS should also dim the

background out, as it already happens for standard dialogs.
We note that we introduce the concept of system popups

not to address a specific design shortcoming, but to address

a potential usability limitation of our proposal. In a way, we

remove the need for legitimate apps such as LastPass to have

access to an API to create arbitrarily custom overlays, which,

as we have seen, provide a powerful primitive to mislead users.

C. Limitations
We acknowledge that our proposal has a few limitations.

First, we leave the responsibility to indicate which widgets

should be considered as security-sensitive to the developer. An

interesting future research direction is how to automatically

determine where to place these checks. We note that this

limitation affects the current system as well. Second, the

proposed modifications would prevent certain types of

security-sensitive widgets to generate accessibility events,

which could be useful in some specific context. One solution

to not negatively interfere with these scenarios is to allow

only system-signed apps to have full access to these security-

sensitive widgets: since system-signed apps already have very

elevated privileges and are considered a trusted extension

of the OS itself, we argue this is a reasonable compromise.

Last, our proposal does not prevent a malicious app to
use the BIND ACCESSIBILITY SERVICE permission as

a side-channel to infer which app the user is interacting

with and to subsequently mount existing GUI confusion and

task-hijacking attacks [1], [2], [3]. While these attacks are

not as stealthy as the ones we proposed, they could still be

effective against the less security-conscious users.

D. Short-term Recommendations

Our proposal would be implemented as a series of system

modifications. Thus, by its nature, it is going to take some

time for our proposal to be deployed on users’ devices. On

the other hand, this work shows that the threat associated to

these attacks is real. We argue that, in the meantime, Google

should follow two recommendations.

First, the SYSTEM ALERT WINDOW permission can

seriously hinder the security of the entire device, and we

strongly believe it should not be automatically granted,

not even for apps hosted on the Play Store. Moreover, our

user study suggests that users do not clearly understand the

security implications of an app with this permission. By not

automatically granting this permission, the Android OS would

have a chance to explain what an app with this permission is

really capable of.

Second, we believe Google should scrutinize more

accurately apps with this combination of permissions. As we

discussed earlier, it was trivial to get an app requiring both

permissions and including malicious-looking functionality,

such as the possibility of downloading and executing arbitrary

code from a network end-point. Since the volume of submitted

apps requiring both these permissions seems to be relatively

low (only 17 apps out of the 4,455 top apps we crawled

require both permissions), we believe that even manual
vetting could be a scalable approach.

These recommendations would not address the design

shortcomings we identified, but they have the advantage of

being immediately deployable. In fact, the first one would

simply require an update of the Play Store app, which Google

obviously controls, while the second one simply requires

more scrutiny during the vetting process.

X. RELATED WORK

Recent years have seen the migration of UI attacks to

mobile OSs. For example, Rydstedt et al. [15] demonstrate

that mobile browsers are vulnerable to framing attacks, while

Felt et al. [11], Niemietz et al. [12], Chen et al. [1], Bianchi et

al. [2], and Ren et al. [3] study the use of UI attacks to lure

users to enter their credentials into fake/malicious UIs. These

works showed that these attacks are practical, and can affect

millions of Android apps.

However, the previous attacks suffer from two limitations.

First, they rely on OS-provided side channels (e.g., access

to the /proc file-system), which are being systematically

removed by Google. As a result, all known task hijacking

techniques will not work on modern versions of Android.

Second, after the user has inserted her credential into the

malicious UI, the user will not see the expected result of

a successful login, and she might become suspicious. This

1054

highlights the importances to have both the ability to show
the users the attacker’s intended UI, and also to preserve
the expected user experience once the fake UI is dismissed;
the clickjacking attacks presented in this work address these

limitations by utilizing the accessibility service to know when

to pop-up our fake UI and to log the user in using the stolen

credential after the fake UI is dismissed (cf. Attack #5).
The “draw on top” feature has been abused by malware

to mount clickjacking attacks [16], [17], [18], [19], [7],

[20] (which was first introduced as “redressing” attacks

by Niemietz et al. in [12]) to, for example, lure the user

into enabling device administrator capabilities. In response,

Google introduced the FLAG_WINDOW_IS_OBSCURED flag

to counter the risk. Our work shows that this current defense

mechanism is vulnerable by design. Moreover, we show

how the existing clickjacking techniques can be significantly

improved in multiple regards: we show how the complexity

of the Android framework often leads to very fine-grained

side channels, and how it is possible to implement context-

aware clickjacking. Our user study also shows that these

attacks are extremely practical and stealthy. Furthermore,

by combining the SYSTEM ALERT WINDOW permission

and the accessibility service, we made previous clickjacking

attacks more practical by removing the reliance on vanishing
side-channels (to know when to show the fake UI) and by
reliably dismissing the fake UI when the user clicks on
something to preserve the user experience.

Recently, malware have been found using Android’s acces-

sibility service to bypass security enhancements or to install

apps [4], [21], [22]. Kraunelis et al. [23] point out how

malicious apps can abuse the accessibility service on Android

to detect app launching, and to race running on the top, while

Jang et al. [24] showed that accessibility service, which is

available on all popular systems, leads to a new kind of vulner-

abilities in existing defense. All these existing attacks are vis-

ible to the users, thus will lead to user reactions that are detri-

mental to further attacks. In contrast, our work shows how one

can use the SYSTEM ALERT WINDOW permission to dis-

tract the user and cover up the almost arbitrary malicious oper-

ations performed by BIND ACCESSIBILITY SERVICE un-

derneath. Thus, for the first time, we add stealthiness to these

already devastating attacks: our user study showed that none
of the 20 human subjects even realized they were attacked.

Along with the increasingly popular attacks on mobile

devices, there is also a large body of works proposing defense

solutions. Malisa et al. [25] propose to detect spoofing attacks

by leveraging screenshot extraction and visual similarity

comparison, but our attack does not use spoofed UI. Bianchi et

al. [2] propose the use of a security indicator to help users

identify which app they are interacting with, and make sure

that the inputs go to the app. In [26], Fernandes et al. find

that this approach introduces side channels and they propose

to notify the user when a background non-system app draws

an overlay on top of the foreground app. However, this will

disrupt many legitimate apps that use overlays (e.g., Facebook,

LastPass); our proposal, instead, provides app developers the
flexibility to determine when they want to prohibit overlays.

Similarly, Ren et al. propose the Android Window Integrity

policy [27], which restricts the use of overlay to only

white-listed apps and also protects the navigation between

apps/activities using the “back” and “recent” buttons.

Some of the defense mechanisms proposed in Section IX

are inspired by previous works. For example, we adopted

the idea that overlays cannot cover secure widgets, and

users should have sufficient time to interact with them,

which is proposed by Ringer et al. [28] and Roesner [14].

However, if the semantic of the secure widgets relies on

neighboring widgets (e.g., a generic “OK” button), the

approach proposed in [28] may suffer the same problem

as the FLAG_WINDOW_IS_OBSCURED flag; in this case,

we need to protect both the widget and the associated text.

Moreover, the proposal to prevent accessibility service from

programmatically interacting with secure widgets is similar to

the input integrity principle from Roesner et al. [29]. More-

over, we are inspired by Jang et al. [24]’s recommendations

that allow developers to flag how different widgets will handle

inputs from accessibility service. Finally, it’s possible to use

the method from Nan et al. [30] to automatically identify

security sensitive UI widgets and apply the proper defense.

XI. CONCLUSION

In this paper we have uncovered several design

shortcomings that, in turn, make an Android

app with the SYSTEM ALERT WINDOW and

BIND ACCESSIBILITY SERVICE permissions able to

mount devastating and stealthy attacks, which we called “cloak

and dagger.” Our experiments show that it is very easy to get

an app on the Play Store and that the context-aware click-

jacking, silent installation of a God-mode app, and keystroke

inference attacks are both practical and stealthy. We hope that

our work will raise awareness of the real danger associated

with these two permissions, and that Google will reconsider

its decisions and adopt our proposed defense mechanism.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for

their valuable feedback. We would also like to thank Billy

Lau, Yeongjin Jang, and, once again, Betty Sebright and

her growing team. This research was supported by the NSF

awards CNS-1017265, CNS-0831300, CNS-1149051 and

DGE-1500084, by the ONR under grants N000140911042

and N000141512162, and by the DARPA Transparent

Computing program under contract DARPA-15-15-TC-FP-

006. Any opinions, findings, conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF, ONR, or DARPA.

1055

REFERENCES

[1] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking Into Your App Without
Actually Seeing It: UI State Inference and Novel Android Attacks,” in
Proc. of the USENIX Security Symposium, 2014.

[2] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the App is That? Deception and Countermeasures
in the Android User Interface,” in Proc. of the IEEE Symposium on
Security and Privacy, 2015.

[3] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards Discovering
and Understanding Task Hijacking in Android,” in Proc. of USENIX
Security Symposium, 2015.

[4] Lookout, “Trojanized adware family abuses accessibility service to
install whatever apps it wants,” https://blog.lookout.com/blog/2015/11/
19/shedun-trojanized-adware/, 2015.

[5] S. Week, “Overwhelming Majority of Android Devices Don’t Have
Latest Security Patches,” http://www.securityweek.com/overwhelming-
majority-android-devices-dont-have-latest-security-patches, 2016.

[6] “Documentation for SYSTEM_ALERT_WINDOW (DRAW_ON_TOP,
informally) permission.” [Online]. Available: https:
//developer.android.com/reference/android/Manifest.permission.html#
SYSTEM ALERT WINDOW

[7] Y. Amit, “Accessibility Clickjacking The Next Evolution in
Android Malware that Impacts More Than 500 Million Devices,”
https://www.skycure.com/blog/accessibility-clickjacking/, 2016.

[8] “Documentation of AccessibilityEvent.” [Online]. Available:
https://developer.android.com/reference/android/view/accessibility/
AccessibilityEvent.html

[9] “Documentation of Accessibility’s
FLAG RETRIEVE INTERACTIVE WINDOWS flag.” [Online].
Available: https://developer.android.com/reference/android/
accessibilityservice/AccessibilityServiceInfo.html#FLAG RETRIEVE
INTERACTIVE WINDOWS

[10] Google, “Google Authenticator App,” https://play.google.com/store/
apps/details?id=com.google.android.apps.authenticator2&hl=en.

[11] A. P. Felt and D. Wagner, “Phishing on Mobile Devices,” in Proc. of
IEEE Workshop on Web 2.0 Security & Privacy (W2SP), 2011.

[12] M. Niemietz and J. Schwenk, “UI Redressing Attacks on Android
devices,” Black Hat Abu Dhabi, 2012.

[13] A. S. Team, “Android Security Bulletins,”
https://source.android.com/security/bulletin/, 2016.

[14] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven Access Control: Rethinking Permission
Granting in Modern Operating Systems,” in Proc. of the IEEE
Symposium on Security and Privacy, 2012.

[15] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh, “Framing Attacks
on Smart Phones and Dumb Routers: Tap-jacking and Geo-localization
Attacks,” in Proc. of the USENIX Conference on Offensive Technologies,
2010.

[16] W. Zhou, L. Song, J. Monrad, J. Zeng, and J. Su, “The Latest
Android Overlay Malware Spreading via SMS Phishing in Europe,”
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-
overlay-malware-spreading-in-europe.html, 2016.

[17] T. Seals, “Autorooting, Overlay Malware Are Rising Android Threats,”
http://www.infosecurity-magazine.com/news/autorooting-overlay-
malware-are/, 2016.

[18] T. Spring, “Scourge of android overlay malware on rise,” https:
//threatpost.com/scourge-of-android-overlay-malware-on-rise/117720/,
2016.

[19] M. Zhang, “Android ransomware variant uses clickjacking to become
device administrator,” http://www.symantec.com/connect/blogs/android-
ransomware-variant-uses-clickjacking-become-device-administrator,
2016.

[20] Y. Amit, “95.4 percent of all android devices are susceptible to
accessibility clickjacking exploits,” https://www.skycure.com/blog/95-4-
android-devices-susceptible-accessibility-clickjacking-exploits/, 2016.

[21] S. Lui, “Accessibility Service Helps Malware Bypass Android’s Beefed
Up Security,” http://www.lifehacker.com.au/2016/05/accessibility-
service-helps-malware-bypass-androids-beefed-up-security/, 2016.

[22] D. Venkatesan, “Malware may abuse androids ac-
cessibility service to bypass security enhancements,”
http://www.symantec.com/connect/blogs/malware-may-abuse-android-s-
accessibility-service-bypass-security- enhancements, 2016.

[23] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao, “On Malware
Leveraging the Android Accessibility Framework,” in International
Conference on Mobile and Ubiquitous Systems: Computing, Networking,
and Services, 2013.

[24] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, “A11y Attacks:
Exploiting Accessibility in Operating Systems,” in Proc. of the
Conference on Computer and Communications Security (CCS), 2014.

[25] L. Malisa, K. Kostiainen, and S. Capkun, “Detecting Mobile Application
Spoofing Attacks by Leveraging User Visual Similarity Perception,” in
Cryptology ePrint Archive, Report 2015/709, 2015.

[26] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M.
Mao, and A. Prakash, “Android UI Deception Revisited: Attacks and
Defenses,” in Proc. of Financial Cryptography and Data Security (FC),
2016.

[27] C. Ren, P. Liu, and S. Zhu, “WindowGuard: Systematic Protection
of GUI Security in Android,” in Proc. of the Annual Symposium on
Network and Distributed System Security (NDSS), 2017.

[28] T. Ringer, D. Grossman, and F. Roesner, “AUDACIOUS: User-Driven
Access Control with Unmodified Operating Systems,” in Proc. of the
Conference on Computer and Communications Security (CCS), 2016.

[29] F. Roesner and T. Kohno, “Securing Embedded User Interfaces: Android
and Beyond,” in Proc. of the USENIX Security Symposium, 2013.

[30] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “UIpicker:
User-Input Privacy Identification in Mobile Applications,” in Proc. of
the USENIX Security Symposium, 2015.

1056

APPENDIX

Attack Name Attack Primitives Design Shortcoming Requested Permission Malicious Functionality

1 Context-aware Clickjacking � � � � � � DRAW Clickjacking attacks aware of
users’ actions

2 Context Hiding � � � DRAW Hide real context a user is
interacting with

3 Keystroke Inference � � � DRAW Record all users’ keystrokes

4 Keyboard App Hijacking � � ACCESS Record all users’ keystrokes

5 Password Stealing � � � � � DRAW & ACCESS Steal users’ credentials

6 Security PIN Stealing � � ACCESS Steal users’ PIN

7 Phone Screen Unlocking � � ACCESS Unlock the device’s screen

8 Silent App Installation � � � � � DRAW & ACCESS Install apps silently

9 Enabling All Permissions � � � � � DRAW & ACCESS Enable apps’ permissions silently

10 2FA Token Stealing � � � ACCESS Steal all users’ tokens

11 Ad Hijacking � � � � DRAW & ACCESS Hijack other apps’ ads clicks

12 Exploring the Web � � � ACCESS Open the browser, browse
arbitrary pages, and perform
arbitrary operations

TABLE I: Systematization of the attacks. For each attack, we report the attack primitives they rely on, the design shortcoming

they exploit, the permissions they request, and a short summary of the malicious functionality they implement. Note that, for

conciseness, we indicate SYSTEM ALERT WINDOW with DRAW and BIND ACCESSIBILITY SERVICE with ACCESS.

1057

