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Abstract—While the Java runtime is installed on billions of
devices and servers worldwide, it remains a primary attack vector
for online criminals. As recent studies show, the majority of all
exploited Java vulnerabilities comprise incorrect or insufficient
implementations of access-control checks. This paper for the
first time studies the problem in depth. As we find, attacks are
enabled by shortcuts that short-circuit Java’s general principle of
stack-based access control. These shortcuts, originally introduced
for ease of use and to improve performance, cause Java to
elevate the privileges of code implicitly. As we show, this creates
many pitfalls for software maintenance, making it all too easy
for maintainers of the runtime to introduce blatant confused-
deputy vulnerabilities even by just applying normally semantics-
preserving refactorings.

How can this problem be solved? Can one implement Java’s
access control without shortcuts, and if so, does this implementa-
tion remain usable and efficient? To answer those questions, we
conducted a tool-assisted adaptation of the Java Class Library
(JCL), avoiding (most) shortcuts and therefore moving to a
fully explicit model of privilege elevation. As we show, the
proposed changes significantly harden the JCL against attacks:
they effectively hinder the introduction of new confused-deputy
vulnerabilities in future library versions, and successfully restrict
the capabilities of attackers when exploiting certain existing
vulnerabilities. We discuss usability considerations, and through
a set of large-scale experiments show that with current JVM
technology such a faithful implementation of stack-based access
control induces no observable performance loss.

I. INTRODUCTION

The Java platform is installed and running on literally

billions of devices and servers worldwide [1]. It is also one

of the first execution environments to feature an elaborate

security model [2]. The platform was designed with the

explicit requirement for the secure execution of code retrieved

from untrusted locations such as applets on a website that will

run in the client’s browser. Yet, according to Cisco’s Annual

Security Reports Java was the number one attack vector for

web exploits in 2013 with a share of 87% [3], and even 91%

in 2014, thus clearly outranking Flash and Adobe PDF [4].

A large variety of attacks was enabled due to incorrect

or insufficient implementations of access control checks. In

particular, Holzinger et al. recently showed in a large-scale

study on more than ten years of Java exploitation [5] that the

by far most prominent attack vectors exploit vulnerabilities

caused by an implicit assignment and elevation of privileges

within the Java Class Library (JCL). In this work, we inves-

tigate this prevalent problem in full depth and suggest and

evaluate a concrete mitigation strategy. The goal is not just

to significantly harden the Java platform but to also draw

important conclusions for the secure design of future runtimes.

At a first glance, the implicit assignment of privilige seems

to ease the life of JCL developers, as it allows them to

access security sensitive low-level operations without explicit

access-control checks. As our research shows, though, this

advantage is greatly outweighed by a severe drawback of

such an implicit privilege elevation: if developers do not—

at all times—properly protect the privileges they are assigned,

they might accidentally leak them to attackers, opening up the

runtime to so-called confused-deputy attacks [6]. But due to

the implicitness of the privilege elevation developers are most

often unaware of having obtained privileges in the first place,

and hence also unaware of their obligation to protect them.

On a lower level, the Java Security Model features isolated

zones where code can run with limited privileges such as

a restricted access to the file system. For any given Java

Virtual Machine (JVM), administrators can configure this

JVM’s security setting through a specialized policy language.

A set of standard policies, shipped with the Java runtime, pro-

vides default protection domains, for instance for applets and

applications using Java Web Start. During runtime, the JVM

uses stack-based access control [2] to check if a caller has the

permission to access any given security-sensitive functionality.

In theory, the JVM performs a stack walk, checking that each

and every frame on the current call stack is associated with

sufficient access permissions. In cases where one of those

frames belongs to an untrusted applet, for instance, this check

will fail, resulting in a SecurityException being thrown.

But as we find, this is only theory. In practice, it shows

that many security-sensitive methods in the Java Class Library

(JCL) implement what we call shortcuts: They execute stack

walks only under certain circumstances and use heuristics

(such as checking the immediate caller’s classloader) to vali-

date the secure execution in other cases. Methods with short-

cuts are generally caller-sensitive: Depending on the nature of

the shortcut, they grant privileges implicitly to certain groups

of callers, in many cases to all callers within the JCL.

As we find, shortcuts are highly problematic for two rea-

sons. First, they pose a significant risk to the security of

the overall Java Platform, due to the fragile nature of caller-

sensitive behavior. As demonstrated by previous exploits, at-

tackers can abuse insecure use of reflection to invoke shortcut-
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containing methods, which help them break out of Java’s

sandbox. As Holzinger et al. showed, caller sensitivity in

combination with confused deputies alone is abused by 36%

of all exploits they found in the wild [5].
Second, shortcuts severely impede the maintainability of

the Java runtime’s implementation. During our investigation

we found several places inside the runtime library, at which

developers could inadvertently break the entire platform’s

security through simple code transformations that would oth-

erwise be considered semantics-preserving refactorings. In

particular this is true for the introduction of wrapper methods.

Wrappers modify the call stack, which can inadvertently cause

the shortcuts to check properties of the wrong stack frames.

Incidentally, some of those places were even commented with

warnings to “NOT REFACTOR THIS CODE”. In addition to

cases, where a shortcut poses an immediate threat, there are

often cases in which it can lead to an exploitable vulnerability

later, due to simple code maintenance/evolution.
We conducted an experiment, transforming a JCL release

such that explicit doPrivileged-calls become the only
way in which the JCL elevates privileges. This has several

advantages. First, as we elaborate later, it eliminates certain

attack vectors that abuse insecure use of reflection to profit

from shortcuts. Second, it makes privilege elevation explicit,
which eliminates the potential to elevate privileges accidentally

through code restructuring/evolution. Third, explicit privilege

elevation allows both security experts and code analysis

tools [7], [8] to focus on doPrivileged-calls to ensure the

security of the access-control implementation.
One prevalent reason for introducing shortcuts in the first

place is that stack-based access control is expensive (after all,

the JVM needs to reify the call stack); shortcuts lead to a

faster implementation of access control [9]. In this work we

show through a set of large-scale experiments that no such

penalty is measurable on the DaCapo benchmark suite [10],

despite the fact that it makes heavy use of security-sensitive

APIs, and also state reasons for why this is the case.
A second reason for the presence of shortcuts is that the

implicit assignment of privilege is convenient, as it reduces the

need to elevate priviliges explicitly, e.g. through an appropriate

access-control policy. Another contribution of this paper is

thus a detailed assessment on the usability implications that

a move from implicit to purely explicit privilege elevation

entails. This assessment allows us to provide specific guidance

for an actual implementation of our hardening in Java’s

codebase. Last but not least we discuss lessons learned that

ought to guide design decisions in the security architecture of

future language runtimes.
To summarize, this work makes the following contributions:

• the first detailed analysis of the effects of implicit privi-

lege elevation and shortcuts for access-control checks in

Java, along with the security and maintainability prob-

lems they induce (Section III),

• a tool-assisted analysis and adaptation technique to avoid

the risk of (introducing) confused deputies in the JCL due

to shortcuts (Section IV),

• an adapted version of the JCL that implements access

control without shortcuts, a detailed explanation of why

this adapted version enhances security and maintainabil-

ity (Section IV-D),

• a set of large-scale experiments showing that this added

security and maintainability comes at a negligible runtime

cost (Section V), and

• guidance on the productive use of our proposed solution,

and an outline of open research questions (Section VI),

as well as general lessons learned from our in-depth

analysis (Section VII).

All artifacts needed to reproduce our results are publicly

available.1

II. BACKGROUND

The JCL restricts access to security-sensitive resources

by means of security-policy enforcement. Only code with

appropriate permissions may use, e.g., filesystem or network

functionality. To this end, every security-sensitive operation

is guarded by a call to the security manager. The security

manager applies a stack-based access-control algorithm to

decide whether attempted access shall be granted or denied.

Permission checks are performed by inspecting the current

call stack and computing the intersection of the permissions

that the declaring class of each method on the stack has been

assigned by the running virtual machine’s security policy. If

the required permission is contained in the intersection, access

is granted by returning from the check method, otherwise an

exception is thrown that prevents the attempted action.

There are two deviations from this basic model: (a) privi-

leged actions [2] and (b) what we call shortcuts.

Privileged actions

Code with appropriate permissions can explicitly el-

evate privileges for specific operations by a call to

doPrivileged. This ensures that subsequent access-control

decisions ignore all callers on the call stack before the

doPrivileged-call. This concept enables trusted code to

act as a guarantor on whose behalf untrusted code may

perform a certain action. Trusted code on whose behalf the

action is performed has to ensure that all security-sensitive

actions performed in this context cannot cause harm even if

triggered by malicious code. Consider for illustration Listing 2,

where readProp uses doPrivileged to temporarily el-

evate the privileges of the executing thread such that the

call to checkPermission in openFile can succeed. In

the example, the “privileged” call to openFile is explicitly

entrusted not to misuse its privileges, in this case rightfully

so, as readProp uses the privilege carefully, reading only

the system-properties file it needs, exposing no file handle to

a potential attacker.

1https://github.com/stg-tud/jdeopt
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1 class FileAccess {
2 File openFile(String path) {
3 //if no trusted library class
4 Class c = Reflection.getCallerClass();
5 if(c!=null && ClassLoader.getClassLoader(c)!=null) {
6 SecurityManager s = System.getSecurityManager();
7 s.checkPermission(new FilePermission(path));
8 }
9 return newFileHandle(path);

10 }
11 }
12 class SystemProperties {
13 public String readProp(String name) {
14 File f = FileAccess.
15 openFile(JDK_PATH+"/system.properties");
16 ... //read property
17 }
18 }
19
20 // code below this point is added in a later release
21 class Util {
22 public File openFileFromRoot(String name) {
23 return FileAccess.openFile("/"+name);
24 }
25 }

Listing 1. Example shortcut for permission check

Shortcut checks

We say that a method contains a shortcut if it contains

a permission check, i.e., a call to a method of the form

SecurityManager.check*, that is carried out only if

certain constraints on the current call stack are satisfied. These

constraints are expressed through conditionals and typically

take the immediate caller and/or its classloader into account.

Class.getDeclaredMethods is an example for such a

method. It skips a permission check in case the immediate

caller was defined by the same classloader as the class whose

members shall be accessed by the call. The Secure Coding

Guidelines for Java [11] (JSCG) list a number of such “caller-

sensitive” methods [9] in sections 9.8 through 9.11. They

should be used with special care to avoid the introduction

of vulnerabilities. Only a subset of those methods use their

knowledge about the call stack to implement shortcuts.

For illustration, consider the simplified example in

Listing 1. Assume that classes FileAccess and

SystemProperties exist in some release of the JCL and

class Util has been introduced in a later release to the

(trusted) library, as a convenience. Method openFile opens

arbitrary files on the caller’s behalf. Since this is a security-

sensitive operation, the method checks for the appropriate

FilePermission. However, in doing so, it takes a

shortcut: It performs the permission check actually only for

such callers that are not associated with a null classloader

(see line 5). All classes in the JCL, including FileAccess
and SystemProperties here, are associated with the

classloader null, i.e., by taking the shortcut, the method

openFile implicitly trusts all calls from the JCL.

This is no problem with callers that actually deserve this

trust. For instance, the method readProp uses the privilege

carefully, reading only the system-properties file it needs and

otherwise exposing no file handle. However, it is fairly easy to

accidentally expose the elevated privilege to untrusted users.

For instance, to the developer of the new class Util, it

is not at all obvious that the introduction of such a simple

wrapper could have severe security implications. In the ex-

ample, the new method openFileFromRoot is an example

of a confused deputy: it exposes the complete behavior of

openFile to its callers, without any filtering, checking,

or sanitization of the passed arguments. In this way, clients

outside the trusted base can misuse Util to bypass all

permission checks within openFile, as Util is trusted, i.e.,

associated with a null classloader. In the past, accidentally

introduced confused deputies like Util have actually led to

severe vulnerabilities in the JCL that allowed attackers to

completely break out of the JVM’s sandbox (e.g., CVE-2012-

5088).

In this work we propose a systematic tool-assisted hardening

of the JCL that virtually avoids this class of security-breaking

programming mistakes. On a high level of abstraction, the

hardening causes the JCL to make privilege elevation explicit
in (almost) all cases. Our approach works in two steps. An

initial, very lightweight static analysis step assists in locating

shortcuts in permission checks like the one illustrated in

Listing 1, line 5. A subsequent adaptation step then transforms

the JCL such as to avoid the possibility to accidentally

introduce confused deputies like Util, while retaining back-

ward compatibility. The adaptation eliminates the shortcuts

by introducing proper permission checks in every instance

(with two interesting exceptions described later) via Java’s

doPrivileged-wrappers. By calling a doPrivileged-

wrapper, a piece of code can elevate a caller’s privileges

temporarily and explicitly, vouching for the correctness and

security of the actions performed on the caller’s behalf. Our

adapted JCL uses doPrivileged-wrappers to elevate privi-

leges explicitly where they were previously elevated implicitly

by shortcuts. This retains backward compatibility, meaning

that all applications that were designed and compiled for the

original JCL also run on the modified JCL.

For illustration Listing 2 shows the result of applying our

adaptation to the code in Listing 1. The adapted version

of FileAccess.openFile does not take a shortcut any-

more, causing a stack walk in every instance initiated by the

call to checkPermission. An unprivileged attacker call-

ing Util.openFileFromRoot will cause the permission

check to fail, because the triggered stack walk recognizes the

unprivileged attacker and throws a SecurityException,

thus eliminating the previous vulnerability. To make adapta-

tion backward compatible, the adapted readProp explicitly

elevates its privileges through a doPrivileged call (lines

11–13).

After applying the proposed technique to a JCL release,

doPrivileged-wrappers become the only way in which the

JCL elevates privileges. As we show later, this greatly reduces

the runtime’s attack surface.

III. PROBLEM STATEMENT

This section elaborates on the problems with shortcuts in

Java’s permission checks. Shortcuts implicitly elevate privi-
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1 class FileAccess {
2 File openFile(String path) {
3 SecurityManager s = System.getSecurityManager();
4 s.checkPermission(new FilePermission(path));
5 return newFileHandle(path);
6 }
7 }
8 class SystemProperties {
9 public String readProp(String name) {

10 // Java 8’s lambda syntax ...
11 File f = AccessController.doPrivileged(
12 (PrivilegedAction<File>) () -> FileAccess.
13 openFile(JDK_PATH+"/system.properties"));
14 ... //read property
15 }
16 }
17
18 // code below this point is added in a later release
19 class Util {
20 public File openFileFromRoot(String name) {
21 //will throw SecurityException
22 return FileAccess.openFile("/"+name);
23 }
24 }

Listing 2. Example of adapted code

leges to a certain subset of callers, with two severe effects.

On the one hand, shortcuts increase the number of po-

tential attack vectors. Attackers can abuse reflection to call

shortcut-containing methods on behalf of a trusted class.

Many of these methods will skip a permission check, be-

cause the immediate caller is trusted, and thus provide

functionality that was intended to be restricted. Two ex-

amples of such methods that are known to be of great

value to attackers are Class.getDeclaredFields and

Class.getDeclaredMethods, which skip permission

checks, if the immediate caller is defined by the same class-

loader as the class whose members shall be accessed by the

call. They can be used to access private members of a class

that were intended to be inaccessible by untrusted code. To

find examples of such kinds of attacks, we manually reviewed

a sample set of exploits that was provided by Security Ex-

plorations [12] consisting of 48 original exploits. We found

that at least four of those exploits depend on shortcuts.2 As a

recent study by Holzinger et al. shows, however, the problem

is even more prevalent: that caller sensitivity in combination

with confused deputies alone is abused by 36% of all exploits

they found in the wild [5].

On the other hand, the potential is high that developers, who

are either not aware of or unable to properly reason about the

implicitly elevated privileges, introduce security flaws when

extending the library by implementing new callers of methods

with shortcuts or evolve existing code. In the following, we

elaborate on the reasons.

First, information about shortcuts is rarely part of the

method’s documentation. Hence, developers of any caller

methods will not be aware that calling certain meth-

ods imposes requirements on their implementation to not

expose critical functionality to untrusted code. Consider

again Class.getDeclaredMethods and the scenario,

2Issues 32 (using CVE-2012-5088), 35, 36, 37

where a maintainer of the JCL introduces a wrapper,

MethodFilters whose privateMethodsOf(Class)
calls Class.getDeclaredMethods and filters out the

non-private methods from the set returned by it. This seem-

ingly harmless new functionality allows attackers to access

all private methods of all classes within the JCL. The short-

cut within Class.getDeclaredMethods only considers

MethodFilters’s classloader, which does coincide with

that of Class, but let go unchecked the potentially attacker-

controlled caller of MethodFilters.

In the best case, the developer of a caller method knows

about the shortcut in the callee, e.g., through the Java Secure

Coding Guidelines (JSCG), which provides explanations and a

list of methods that implement shortcuts. He may consciously

make the decision to take the risk and the responsibility

to prevent harm. When he does so, this decision is not

documented in the code. In future code revisions, maintainers

unaware of the special requirements imposed by the shortcut

may inadvertently invalidate the security precautions taken by

the original author.

Second, hardcoded shortcuts are hard to analyze. There is

no dedicated Java language construct or API support to express

and document assumptions about the call stack. As a result, the

effect and the scope of the implicit privilege elevation can only

be reasoned about by careful examination of the shortcut’s

implementation and in addition requires deep knowledge of

JCL classes and their properties. This reasoning is a very

tedious and error-prone task. Thus, even when the developers

know the list of methods that implement shortcuts by heart,

using them implies constant awareness and a lot of effort by

developers to prevent the introduction of new confused-deputy

vulnerabilities.

Third, it is hard to maintain the security of shortcut-

containing code in the face of code evolution. Security-

sensitive methods that implement shortcuts often assume a

specific order of callers on the call stack. Changes to the

code that affect the order of callers may cause the sensitive

method to misbehave, if assumptions are not properly adjusted.

It is hard to judge whether a local change in the code base

violates the assumptions of some hardcoded shortcut. Thus,

every change has to be properly analyzed to rule out potentially

negative side effects on policy enforcement. Since, as already

mentioned, such an analysis is manual and very involved, the

risk is high that code evolution will introduce vulnerabilities.

Fourth, hardcoded shortcuts are inflexible. Changes in the

deployment environment for Java applications may affect risk

considerations and security requirements. Adjusting policies

accordingly is a matter of configuration, whereas changing

hardcoded shortcuts is impractical.

Shortcuts violate several well-accepted secure design prin-

ciples. Yee proposed [13] a set of ten fundamental principles

that should be followed when designing a secure system.

While those principles were originally developed to reason

about the usability of entire software systems from an end-

user’s perspective (e.g., the user interface of a password

prompt), Türpe showed in [14] that the same principles can
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void checkMemberAccess(Class clazz, int w) {
if (w != Member.PUBLIC) {

Class stack[] = getClassContext();
/* stack depth of 4 should be the caller

* of one of the methods in java.lang.Class

* that invoke checkMember access.

* The stack should look like:

* someCaller [3]

* java.lang.Class.someReflectionAPI [2]

* java.lang.Class.checkMemberAccess [1]

* SecurityManager.checkMemberAccess [0] */
if ((stack.length<4) ||

(stack[3].getClassLoader() !=
clazz.getClassLoader())) {

checkPermission(CHECK_MEMBER_ACCESS);
}

}
}

Listing 3. Shortcut permission check with inline comments document-
ing assumptions about callers in java.lang.SecurityManager (Java
1.7.0u25)

also be applied for purposes of API usability evaluation. The

deficiencies discussed above violate five of the ten principles:

(a) “Path of Least Resistance”, because developers need extra

effort to prevent the introduction of confused-deputies; (b)

“Explicit Authority”, due to the implicit nature of shortcuts;

(c) “Visibility”, since shortcut-containing methods appear as

“regular” methods; (d) “Revocability”, because developers

cannot refrain from privilege elevation through shortcuts; and

finally (e) “Clarity”, because the effects on policy enforcement

are unclear when using a method that contains a shortcut.

To illustrate an extraordinary case of shortcuts, Listing 3

shows actual code that was released as part of Java 1.7.0

update 25. The method in this example was used, for instance,

by java.lang.Class, to restrict reflective access from one

class to members of another class. A shortcut will bypass a call

to checkPermission, thus preventing stack inspection and

granting the privilege implicitly if certain constraints on the

call stack are unsatisfied. This is an interesting case because

checkMemberAccess makes extensive assumptions about

the call stack, involving the size of the stack and the order of

callers. It may easily happen that code will be introduced that

violates these assumptions, which is also why one finds the

following warning in java.lang.Class: “Don’t refactor;

otherwise break the stack depth [...] as specified.”. Already

in 2009, Li Gong underpinned that counting stack frames is

highly fragile and highlighted stack inspection as a key feature

of Java 1.2 that would finally allow for more reliable access-

control checks [15].

To recap the discussion, we conclude that shortcuts signif-

icantly complicate the task of writing secure code in the first

place and even more so the task of maintaining security in the

face of evolution. This claim is supported by various confused-

deputy vulnerabilities in past versions of Java, which demon-

strated how attackers can profit from inadvertently exposed

functionality. The most prominent of these vulnerabilities are

listed in the NVD [16] under CVE-2012-4681, CVE-2012-

5088, CVE-2013-0422, and CVE-2013-2460.

Privileged actions versus shortcuts

Since our approach to address the discussed problems with

shortcuts is to replace them by privileged actions, we conclude

this section by briefly considering privileged actions and

shortcuts side-by-side.

Privileged actions are in many ways similar to shortcuts.

They terminate stack walks early, thus potentially allowing

untrusted code to perform security-sensitive actions on behalf

of trusted code. In this sense, all callers of methods that

implement shortcuts are in the same intermediary role as

code executing within doPrivileged. In both situations,

developers have to ensure that security-sensitive functionality

is not exposed in a way that is profitable to attackers. However,

besides the above similarities, there are significant differences

between privileged actions and shortcuts. Using a privileged

action involves a developer who actively declares to make

the conscious decision to take and control a risk, and who

can therefore be assumed to know that security precautions

are required. Calling doPrivileged makes this decision

explicit. The fact that privileged actions are explicitly marked

as such and restricted by a lexical scope makes them easy to

reason about. Unlike implicit shortcuts, the use of privileged

actions is supported by a dedicated, well-specified API, and

well-defined algorithms, e.g., the access-control algorithm as

documented in [2]. Automatic program analysis, as well as

manual reviewers benefit from this dedicated support.

IV. PROPOSED SOLUTION

Our proposed solution comprises three steps. First, one

has to locate all shortcuts. Note that there is no complete

documentation on shortcuts available. The JSCG is helpful

because it provides a list of officially supported caller-sensitive

methods. However, it does not state which of these methods

implement an access-control shortcut, and the list is not

guaranteed to be complete today nor in the future. The second

step is to remove the shortcuts found. Finally, for backward

compatibility, one has to wrap the calls in the JCL to those

methods that formerly implemented shortcuts into privileged

actions.

We implemented our proposed solution on the basis of

OpenJDK 8 b132-03 mar 2014, such that we can evaluate

its feasibility and performance impact. We applied a semi-

automated approach to locate and remove shortcuts in the JCL.

The following three sections provide details on each step of

the transformation process. We expose all artifacts required to

reproduce our results with this paper.3

A. Locating shortcuts

The identification of JCL methods that contain shortcuts is

complicated by four related factors. First, there is no dedicated

language support to express constraints on the call stack, which

is why they cannot be trivially recognized. Second, security-

sensitive methods do not necessarily implement shortcuts and

calls to the security manager by themselves, but may use

3https://github.com/stg-tud/jdeopt
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helper methods instead. Third, security-sensitive methods are

scattered all over the code base, so the identification process

has to take into account all parts of the JCL. Fourth, the JCL

comprises a rather large code base, which renders infeasible

all purely manual approaches.

There is, however, one common property shared by

all methods that implement shortcuts. They all make

use of functionality to retrieve information about the

current call stack, which is required to be able to

check constraints on specific callers on the stack. The

task of retrieving this information is typically not

delegated to helper methods. By manually reviewing

shortcuts we already knew, we found that they either use

sun.reflect.Reflection.getCallerClass or

java.lang.SecurityManager.getClassContext.

We thus implemented a simple static analysis using the Soot

framework [17] to find all methods that contain call sites

for these two methods. We only used the Soot framework

to locate the specific bytecode instructions conveniently. The

analysis does not need a call graph nor does it consider data

flows. One could as well have used a text-based matching

tool such as grep, but using Soot helps avoiding mistakes

in the process. Our analysis yielded 86 candidate methods

in total, which we reviewed manually to find the subset of

methods that actually implement a shortcut. These are the

results:

• Out of the 86 candidates, 35 methods do indeed im-

plement a shortcut. They check constraints on the call

stack and skip a permission check if these constraints are

satisfied.

• Further 6 methods do not implement shortcuts in the strict

sense, because they do not call a check* method on the

SecurityManager to trigger stack inspection under

any circumstances. Because of this, we consider them to

be out of scope. They are noteworthy, however, because

they deny access to functionality if the immediate caller’s

classloader is unable to load a specific class involved

in the desired action. Such code implements a kind of

undocumented poor man’s approach to access control.

• One method does also not implement a shortcut in

the strict sense, but it checks if the immediate caller’s

classloader is the bootstrap classloader, and throws a

SecurityException otherwise.

• The remaining 44 methods are caller-sensitive, but use

stack inspection for purposes other than shortcuts.

We matched our findings with the relevant sections in the

JSCG, 9.8, 9.9, 9.10, which provide a list of 75 caller-sensitive

methods that have to be used with special care. The methods

listed in JSCG constitute a subset of the 86 candidate methods

we found by static analysis. The additional 11 methods that

we found, which are not covered by the relevant sections in

the JSCG, include 9 methods that do not perform permission

checking, 1 deprecated method, and 1 method which is part

of sun.misc.Unsafe, and thus not officially supported.

From this, we conclude that the JSCG sufficiently covers the

current set of methods that implement shortcuts. For 41 out

of the total 75 methods included in the JSCG, we found

no indication for shortcuts. In most cases, these methods

implement dynamic access checks in the context of reflection,

or provide dynamic loading capabilities involving the imme-

diate caller’s classloader. Both is caller-sensitive behavior that

requires special attention from developers, and might even

bring along a potential for vulnerabilities, which is also the

reason why they are discussed in the JSCG. We leave these

methods out of the scope of this paper, since our focus is

on shortcuts, but may be worth investigating further in future

work.

B. Removing shortcuts

Out of the 35 methods that we identified to implement a

shortcut to bypass proper permission checking, we manually

modified 32 of these methods to remove any conditionals

that involved properties of the call stack, which may have

prevented a permission check from being performed. We found

that most shortcuts use getCallerClass to retrieve the

immediate caller, and check if its defining classloader matches

a specific instance, or is null, i.e., the bootstrap classloader.

By removing shortcuts, we transformed 28 out of these 32

methods from caller-sensitive to caller-insensitive methods,

guarding their functionality by a well-defined permission

check. We left the remaining 4 methods caller-sensitive after

modification because —apart from their original shortcuts—

they implement additional functionality, such as visibility

checks in the context of reflective access. It is important

to stress that caller-sensitivity and the notion of shortcuts,

as we defined it, are two separate concepts: Our notion of

shortcuts always implies caller-sensitivity but the inverse does

not always hold.

As stated above, we removed shortcuts from only 32 out of

35 methods that we found. One of the three remaining meth-

ods (SecurityManager.checkMemberAccess) we de-

cided to remove entirely from the code base, because it is

deprecated and not used by any other method in the JCL.

The other two remaining methods, Class.-
getDeclaredField and Class.newInstance,

could not be modified, due to circular dependencies. After an

initial attempt to modify them, we encountered errors during

VM initialization, because using either of the two methods

causes a permission check, within which the method itself is

called again, which in turn triggers another permission check,

and so on. In the original code, the shortcuts in the two

methods prevented this call sequence, because, eventually,

newInstance and getDeclaredField would simply

skip the permission check and succeed. We did not further

investigate whether the use of reflection in the call sequence

initiated by a permission check is inevitable. At the same

time, we could not come up with a clean solution that would

allow the shortcuts to be removed, without making substantial

changes to the JCL. We thus decided to keep these two

shortcuts and leave all calls to getDeclaredField and

newInstance unmodified.
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C. Adapting all callers

The last step of our proposed solution is to adapt all

immediate calls to modified methods. In the original code,

many of the JCL’s callers are able to access functionality

guarded by a shortcut, even when there is untrusted code on the

call stack, because the shortcut bypasses the permission check.

After modification, however, the same call sequence would

fail because the permission check now executes, taking into

account the full call stack. To retain backward compatibility

whenever possible, all immediate calls to modified methods

have to be wrapped into a privileged action. As we will

explain, the calls to modified methods have to be adapted

differently, depending on whether the modified method is still

caller-sensitive after modification, or not.

Modifying calls to the 28 methods that lost their caller-

sensitivity through modification works as follows. First, we use

static analysis to find all immediate calls to any of the modified

methods. For this, we adapted and reapplied the approach used

to locate shortcuts as described above. As a result, we found

1,399 calls in the JCL that required a modification. For 1 out

of the 28 modified methods, we were not able to find even

a single caller within the JCL itself, which means that our

transformation regarding this method is already complete at

this point.

We then used Javassist [18] to implement a bytecode

modification tool that automatically adapts all calls. It adds

one or more private helper methods to each calling class, each

of which instantiates a privileged action that wraps the original

target method call and then calls doPrivileged. Next, the

modification redirects all calls targeting a modified method to

one of the newly added helper methods. Note that each helper

method wraps a call to one specific modified method only,

which is why multiple helper methods are added to calling

classes that target more than one modified method. Privileged

actions have to be implemented in separate classes (in source

code one would normally use an anonymous inner class),

but instead of adding one individual implementation for each

generated helper method, we added a small set of commonly

accessible privileged actions to java.lang.Class, shared

among all helper methods. By this, we avoid having to add

hundreds of additional classes, which would bloat the code

base.

We decided to use bytecode modification instead of source-

code modification, because at the time we did our experiments,

we were not aware of any publicly available source-code

modification libraries that would have allowed us to perform

the required modifications in an automated fashion.

The calls to one of the 4 methods that remained

caller-sensitive after the removal of shortcuts had to

be modified differently. This is because those methods

vary their behavior depending on the immediate caller,

which (as can be seen in ”case 2” in Listing 4) would

be the run method of a privileged action if apply-

ing the modification we applied before. In the JCL

only AtomicReferenceFieldUpdater.newUpdater

// case 1: without modification
CallerClass.method // immediate caller
AtomicReferenceFieldUpdater.newUpdater

// case 2: with "regular" bytecode modification
CallerClass.method

CallerClass.x_newUpdater
AccessController.doPrivileged

PrivilegedActionImpl.run // immediate caller
AtomicReferenceFieldUpdater.newUpdater

// case 3: alternative modification strategy
CallerClass.method

CallerClass.x_newUpdater
AccessController.doPrivileged

PrivilegedActionImpl.run
CallerClass.x_getUpdater // immediate caller

AtomicReferenceFieldUpdater.newUpdater

Listing 4. Illustrating the effects the different modification strategies have on
the call stack

out of the 4 methods is actually called and this single method

has only 3 callers, i.e., we only have to modify 3 callers. It

seemed reasonable to modify these 3 callers manually.

We applied a modification implementing a form

of double dispatch, see ”case 3” in Listing 4. First,

we manually added two private helper methods,

x_newUpdater and x_getUpdater, to each calling class

of AtomicReferenceFieldUpdater.newUpdater.

x_newUpdater instantiates a privileged action, whose run
method calls x_getUpdater. x_getUpdater, in turn,

calls AtomicReferenceFieldUpdater.newUpdater.

Finally, we replaced all original calls to newUpdater by

calls to x_newUpdater. The effects of this alternative

modification strategy on the call stack can be seen in

”case 3” in Listing 4. By routing the call sequence

through x_getUpdater, instead of immediately calling

newUpdater in the privileged action, we ensure that the

immediate caller of newUpdater is the original calling

class, not the privileged action. As newUpdater is caller-

sensitive to the calling class and not the specific calling

method it behaves appropriately, i.e., as before.

D. Effects on security and maintainability

The technique presented above removes shortcuts within

methods of the JCL. The benefits of these changes are twofold.

First, the resulting JCL code is easier to maintain, and in

consequence it will be harder to introduce new confused-

deputy vulnerabilities in future versions of Java. Second, some

of the existing attack vectors that depend on shortcuts will

become infeasible.

Enabling security-preserving code evolution

The benefit w.r.t. facilitating security-preserving evolution

of the JCL were already highlighted in the background section

by discussing the code in Listing 1 and the result of the

adaptation by our approach in Listing 2. The desired positive

effect of our conversion is that now, if an unprivileged attacker

calls openFileFromRoot, the permission check will fail,

because Util, having been added later, was not subject to

our modification. This prevents the previous vulnerability.
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By trading implicit elevation of privileges with shortcuts for

explicit privilege elevation with doPrivileged as described

above, we retain backward compatibility to a large extent. This

has, however, a downside: It will retain confused-deputy vul-

nerabilities that already existed in the code base at the time of

its modification. Consider again the example code in Listing 1.

If the vulnerability caused by Util is already part of the code

base at the time we apply our program transformation, the

call to openFile in openFileFromRoot will be wrapped

in a privileged action, just like the call in readProp. As

a result, the openFileFromRoot method will continue to

expose critical functionality to attackers even after program

transformation.

It is not easy to decide which method calls under privileged

regime are legitimate, and which ones represent a vulnerability.

With the current proof-of-concept implementation of our

approach, we reduce the possibilities of potentially illegitimate

privilege elevation to explicit ones only, but still leave the

identification of insecure uses of critical functions out of the

scope. In the future, we plan to extend our proposal by a

security review of all callers and a decision on a case-by-case

basis whether the introduced explicit privilege elevation with

doPrivileged is appropriate or not. By mapping implicit

elevations to explicit ones, the transformation presented in

this paper does facilitate such an analysis - as we already

argued, the explicit privilege elevations are easier to identify

and reason about.

Rendering existing attack vectors infeasible

The good news is that even in its current state of the devel-

opment, our transformation effectively renders existing attack

vectors infeasible. This is, because a large number of attacks

that exploited previously shortcut-containing methods did not

call these methods directly (like Util), but rather by abusing

an insecure use of reflection or invokedynamic [19]. The

proposed transformation does not modify such kinds of calls,

as doPrivileged-wrappers are only placed around direct

method calls. After the shortcuts are removed, any such attack

will therefore be successfully thwarted: The permission check

in the reflectively called method, from which the shortcut was

removed, will now trigger a stack walk, preventing the action

if the call sequence was initiated by untrusted code.

As already mentioned, we found four examples of such

kinds of attacks in a sample set provided by Security Ex-

plorations [12]. They leverage vulnerabilities involving the

insecure use of reflection to call shortcut-containing methods

through a trusted system class. We verified through debugging

that performing permission checks instead of taking the short-

cuts will result in access-control exceptions, thus effectively

preventing these attacks. Interestingly, after Security Explo-

rations reported three of those vulnerabilities to the vendor,

a fix was released that did not reliably prevent the attacks.

In fact, it was flawed in many ways, but most importantly,

because it still allowed an attacker to make use of shortcuts

and other caller-sensitive methods [20]. Consequently, Security

Explorations was able to still run three of the four exploits

successfully by only changing them slightly.
In conclusion, these findings (a) demonstrate that our pro-

posed solution does increase the security of the Java platform,

and (b) also support our claim that shortcut-containing code

is very hard to maintain.

V. PERFORMANCE EVALUATION

While our proposed adaptations make the Java platform less

vulnerable, will make it easier to maintain and will reduce

the chance for security-relevant mistakes while maintaining

and extending the platform, the question raises, as what these

changes cost in terms of runtime overhead. After all, the

shortcuts we remove were originally introduced for the sake

of reducing the runtime cost of permission checks [9]. Our

evaluation thus addresses the following research question:

Which runtime overhead does the code adaptation introduce?

A. Evaluation setup
To answer the research question, we transformed Open-

JDK 8 b132-03 mar 2014 as described in Section IV and

performed several experiments. As baseline we used the same

version of the OpenJDK without modifications. To ensure

maximum comparability, we built both the modified and the

unmodified version ourselves based on the official source

release [21].
We compared both variants in two different settings. In the

first setting, we run the DaCapo benchmark suite [10] version

9.12-bach on both variants of the Java platform. The goal is

to measure the relative overhead that the transformations may

induce in the execution of real-world applications. We chose

DaCapo because it consists of complex, real-world applica-

tions from diverse application domains that cover a broad

range of possible program behaviors [10]. Using DaCapo’s

built-in functionality, we implemented a custom callback class

that performs 250 timed runs for each benchmark in each

setting, preceded by 750 warm-up runs. We chose such a high

number of iterations to minimize the effects of outliers that can

be caused by just-in-time compilation or other reasons. By

this, we maximize reproducibility of our results and ensure

that comparing runtime values is actually meaningful. The

following command was used to execute the tests:

java -Xcomp -XX:CompileThreshold=1
↪→ -server -Xmx2g -Xms2g -Xbatch
↪→ -cp ".;./mathlib.jar;./dacapo.jar"
↪→ Harness -t 1 -c callback benchmarkname

Due to a known bug in DaCapo [22], we had to mea-

sure jython runtimes without Xcomp-flag. We were fur-

ther required to entirely skip the two benchmarks batik
and eclipse because their execution resulted in errors on

both the original and modified OpenJDK. eclipse failed

during its checksum validation, indicating that the bench-

mark produced an unexpected output. We were able to re-

produce this problem with multiple original Java execution
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environments on different machines. We have reported this

problem to the benchmark’s authors. batik fails with a

ClassNotFoundException, apparently because it ac-

cesses a class that is available in Oracle’s Java runtime but

not in the OpenJDK.

In addition to runtime measurements, we also counted the

number of method calls to any of the 32 modified methods

that are performed while executing the DaCapo benchmarks.

This allows us to reason about the coverage of the DaCapo

suite with respect to the proposed changes.

In the second setting, we ran both variants of the OpenJDK

on micro benchmarks. These micro benchmarks are artificial

test scenarios that we created for all transformed code loca-

tions. The goal is to assess the transformed code locations

without measuring influences by unaffected code. We do this

by calling the first publicly accessible method that transitively

calls a modified method. The micro-benchmarking scenario

gives an insight into how much the removal of shortcuts costs

in the worst case, by calling modified methods frequently.

To measure the runtime we used JUnitBenchmarks version

0.72 [23]. We created a dedicated JUnit test case for each

modified method, each of which contains minimal setup code,

code to prevent dead code elimination [24], and a loop that

performs 10,000,000 calls to the method whose runtime is

to be measured. This high number of iterations is required

because a single invocation is too fast to be measured accu-

rately. JUnitBenchmarks computes the average and standard

deviation of the runtime of 10 rounds, and the 10 rounds are

preceded by 5 warmup rounds not included in measurements.

(A total run for a single test case thus triggers 150,000,000

calls.) The standard deviation is used to gauge the accuracy

of the results.

Lastly, we perform both experiments using two different

setups. In the first setup we perform the experiments without

the presence of a security manager. This setup acts as our

baseline. In the second setup, we execute the experiments

with a security manager set programmatically, in case of micro

benchmarks, and by command line argument, in case of Da-

Capo (using VM arguments -Djava.security.manager
-Djava.security.policy). We use the security man-

ager with a policy file granting all permissions to all the

code. We manually verified that enabling the security manager

actually triggers permission checks performing stack walks at

runtime, despite the fact that the code has effectively the same

permissions as if no security manager were present.

All experiments were performed on a machine with an

Intel Core i5-2400, 3.1Ghz processor, with 4 GB of memory,

running a 64-bit Windows 7 Enterprise SP 1.

B. Results on DaCapo

Table I shows the results of the DaCapo benchmark suite.

Each benchmark is represented by one row in the table.

Column 1 shows the benchmark’s name. Columns 2 and 3

show the execution time in seconds without security manager

in place, along with the standard deviation for each value.

Column 4 shows the runtime difference as a factor to highlight

the cost of our proposed solution. Columns 5, 6, and 7 show

the same values measured with the security manager in place.

Comparing the runtimes of the original code and the mod-

ified code, in almost all cases the difference lies below 1%.

In three cases, measurement results indicate that the modified

code is faster by 2%. In one exceptional case, the modified

code appears to be 3% faster. Taking all results into account,

the modified code is at most 1% slower than the original

code. We attribute these small runtime differences mostly to

instabilities of the JVM [24] rather than to code changes, and

can confirm the observation of Gil et al. that even testing

identical code may lead to slightly different results in terms of

runtime. Furthermore, execution speed is influenced by sec-

ondary factors induced by the underlying software/hardware

stack, as previously studied by Gu et al. [25]

In addition to runtime measurements, we also collected call

statistics4 to ensure that the modified methods are actually

involved in benchmark execution. Our results clearly show that

this is the case. Table II shows a summary of the results we

measured for the original OpenJDK without a security man-

ager. Each of the twelve DaCapo benchmarks is represented

in one row. Column 1 shows the benchmark’s name, column 2

shows the total number of method calls to any of the modified

methods, column 3 shows the number of modified methods the

benchmark uses. Finally, column 4 shows the modified method

that was most frequently used by the respective benchmark.

As can be seen, the DaCapo benchmark suite extensively uses

most of the 32 methods under investigation. Running any of

the benchmarks requires at least 11 out of 32 methods, and 22

at most. Only eight out of 32 modified methods are not used

at all by DaCapo. Further, executing just a single run of one

of the benchmarks involves between 147 and 668,000 calls to

modified methods. A single run of the entire benchmark suite

requires more than 900,000 calls to the modified methods.

Summarizing the results, we conclude that the proposed

code changes have virtually no performance impact on the

tested real-world applications, even though the modified meth-

ods are heavily used. At a first glance, this result seemed

surprising even to us, which is why we sought to confirm

it through micro-benchmarks. . .

C. Results on micro benchmarks

We implemented 32 tests using JUnitBenchmarks, which

equals the total number of shortcut methods found

(35), excluding newInstance, getDeclaredField, and

checkMemberAccess. The former two methods we could

not modify, the latter we removed during program transfor-

mation (see Section IV). Each test performs 10,000,000 calls

to the method under investigation, in two exceptional cases,

due to long runtimes, we performed only 200,000 calls and

interpolated the results.

Table III shows a summary of the results of the micro

benchmarks. To avoid misunderstandings in the following

discussion, all results are shown in microseconds per single

4Complete call statistics are provided with the artifacts.
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TABLE I
RUNTIMES OF DACAPO IN SECONDS

Without SecurityManager With SecurityManager
Project Original Modified Overhead Original Modified Overhead

abs. rel. abs. rel.

avrora 3.08 ±[0.15] 3.11 ±[0.10] 0.03 1% 3.02 ±[0.06] 3.06 ±[0.02] 0.04 1%
fop 0.31 ±[0.01] 0.31 ±[0.01] 0.00 1% 0.32 ±[0.01] 0.32 ±[0.01] 0.00 1%
h2 3.70 ±[0.01] 3.70 ±[0.01] 0.00 0% 3.67 ±[0.01] 3.70 ±[0.01] 0.00 1%
jython 1.48 ±[0.02] 1.47 ±[0.02] -0.01 -1% 1.50 ±[0.02] 1.47 ±[0.03] -0.03 -2%
luindex 1.02 ±[0.12] 0.99 ±[0.05] -0.03 -2% 1.20 ±[0.07] 1.21 ±[0.08] 0.01 1%
lusearch 4.95 ±[0.02] 4.95 ±[0.02] 0.00 0% 4.99 ±[0.01] 4.86 ±[0.02] -0.13 -3%
pmd 2.50 ±[0.02] 2.48 ±[0.02] -0.02 -1% 3.06 ±[0.03] 3.05 ±[0.04] -0.01 0%
sunflow 8.36 ±[0.03] 8.31 ±[0.02] -0.05 -1% 8.36 ±[0.04] 8.34 ±[0.03] -0.02 0%
tomcat 48.54 ±[0.28] 48.56 ±[0.31] 0.02 0% 52.54 ±[0.81] 52.35 ±[0.35] -0.19 0%
tradebeans 8.71 ±[0.02] 8.83 ±[0.03] 0.12 1% 10.01 ±[0.05] 10.02 ±[0.02] 0.01 0%
tradesoap 17.94 ±[1.27] 17.67 ±[0.89] -0.27 -2% 23.22 ±[1.44] 23.54 ±[2.02] 0.32 1%
xalan 6.54 ±[0.04] 6.60 ±[0.04] 0.06 1% 6.76 ±[0.03] 6.79 ±[0.02] 0.03 1%

∅ -0.25% ∅ 0.08%

TABLE II
CALL STATISTICS FOR DACAPO

Project Calls Methods Most freq. used

avrora 147 11 getClassLoader
fop 6,329 11 getContext-

ClassLoader
h2 210 11 getClassLoader
jython 1,483 19 getMethod
luindex 208 11 getClassLoader
lusearch 159 11 getClassLoader
pmd 1,885 12 getClassLoader
sunflow 249 12 getClassLoader
tomcat 32,069 17 getDeclared-

Methods
tradebeans 219,792 22 getContext-

ClassLoader
tradesoap 668,000 22 getFields
xalan 36,696 11 getParent

∅ 80,602 ∅ 14
Σ 967,227 ∪ 24

TABLE III
SUMMARY OF RUNTIMES OF MICRO BENCHMARKS IN MICROSECONDS

(μS) PER SINGLE INVOCATION

Without SM With SM
Orig. Mod. Ovh. Orig. Mod. Ovh.

Min. <0.01 <0.01 -0.27 0.03 0.58 0.22
Max. 31.70 49.25 17.55 79.15 99.65 20.50
Avrg. 1.94 2.94 1.00 3.80 6.18 2.38
Med. 0.29 0.16 0.00 0.45 2.05 1.17

invocation, instead of seconds per 10,000,000 calls. The first

column shows the minimum, maximum, average, and median

runtimes of the original OpenJDK without a security manager

in place. The second column shows the respective results for

the modified OpenJDK. Column 3 shows minimum, maxi-

mum, average, and median values of the absolute runtime

differences between the original and modified code. Columns

4, 5, and 6 show the respective results for the tests we

performed with a security manager in place.

Our first observation is that all methods under investigation

execute extremely fast, and that is before and after modifica-

tion. As can be seen in columns 1 and 2, without a security

manager in place, a single call to the fastest method completes

in <0.01 μs, both on the original and modified OpenJDK. The

slowest method requires 31.70 μs on the original code, and

49.25 μs on the modified code, which equals an overhead of

17.55 μs.

For the tests without the security manager, this is the highest

absolute impact that we encountered. The result set contains

one more outlier with an overhead of 12.7 μs, while the

remaining 30 methods show differences in runtime between

-0.27 μs and 1.82 μs. In fact, in this setting only 13 out of

32 methods show a performance penalty at all. Based on the

call statistics we collected for DaCapo, we can say that one

of the two outliers is not used at all, while the other one is

used more than 16,000 times in the entire suite.

On average, without the security manager, the original

OpenJDK executes the methods under investigation in 1.94 μs

per single call. The modified OpenJDK takes 2.94 μs, which

is an average overhead of 1 μs per method call induced by our

proposed transformations. It is important to note, however, that

the two outlier methods mentioned before influence average

values to a greater extent than all the other methods. The

median execution time for a single method call without secu-

rity manager on the original OpenJDK is 0.29 μs, compared

to 0.16 μs on the modified OpenJDK, demonstrating that

several methods even became faster. Overall, the runtimes we

measured without the security manager in place show that, if at

all, there are only insignificant performance penalties induced

by our proposed code changes.

The performance measurement results for tests performed

with the security manager in place are not much different

to the results without the security manager. As can be seen

in columns 4 and 5, the minimum execution time increased

from 0.03 μs per single method call to 0.58 μs. The method

that originally completed in 0.03 μs shows the largest relative

overhead induced by our code transformations. It needs 2 μs

after modification and is thus not the fastest method in the
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modified OpenJDK anymore. It is one of four outliers with a

relative overhead of >1000%: getParent, getContext-
ClassLoader, getClassLoader, getSystemClass-
Loader. In all these cases, however, the original execution

time was significantly <0.1 μs per single method call, and

<2.1 μs after modification, which we still consider extremely

fast. As can be seen in Table II, three out of those four outliers

are the most frequently used modified method by at least one

of the benchmarks. We can thus say that DaCapo provides

good coverage in that respect.

In terms of absolute overhead, the result set includes two

outliers with an overhead >10 μs per single call, while the

remaining 30 methods show overheads between 0.2 μs and

4 μs. Those two outliers are the same methods that showed

the largest absolute overhead without the security manager.

One of those two outliers is the longest running method before

and after transformation. As can be seen in the second row in

columns 4 and 5, it has a runtime of 79.15 μs per single call in

the original OpenJDK, and 99.65 μs in the modified OpenJDK.

These two outliers, as discussed before, greatly influence the

average runtimes. With the security manager in place, the

average runtime increases from 3.80 μs per single method

call to 6.18 μs, which is an average overhead of 2.38 μs.

The median runtime increases from 0.45 μs to 2.05 μs per

single method call, and the median overhead is 1.17 μs. None

of the methods under investigation became faster through our

modifications, if the security manager is in place.

In summary, one can see that when measuring modi-

fied methods in isolation there is a measurable performance

penalty. However, these penalties are very small in absolute

terms, which is why they do not influence the runtimes of

real-world applications such as the DaCapo benchmarks.

D. Reason for lack of performance effects

The positive performance results might appear surprising at

first, however, there is a simple explanation for why a shortcut-

free implementation does not suffer from performance penal-

ties. The reason is that the calls to doPrivileged that the

proposed hardening introduces have, in terms of performance,

a similar effect to shortcuts: At runtime, they cause the stack

walk to terminate early. The JVM checks only the permissions

of code that executes within the doPrivileged-wrapper

but not the calling code’s permissions. This greatly reduces

the number of stack frames that permission checks must

traverse and avoids a performance penalty with current JVM

technology.

VI. PRODUCTIVE USE AND FURTHER RESEARCH

Our proposed solution is functional and comprehensive,

because it allows for the execution of legacy applications and

it avoids the dangers of implicit privilege elevation. Our proof

of concept code shows that such a change is possible without

significantly impacting the runtimes of a set of real-world

applications. However, implementing our proposed solution

for productive use requires reconsideration of two aspects: (a)

policies for legacy applications may have to be adjusted when

switching from a shortcut-containing platform to a shortcut-

free platform, and (b) standard permissions of the Java plat-

form cannot equivalently represent some of the privileges

originally gained through shortcuts in terms of their semantics.

In the following, we will elaborate on these issues and discuss

the solution space to spark further research and to aid an actual

application of the proposed hardening into Java’s code base.

We have reported our findings to the security team at Oracle

Inc. who is, based on our discussions here, considering an

application of this hardening for a future version of Java.

Adjusting security policies

An application’s privileges are usually defined by a set of

permissions granted explicitly in a security policy. This is

not the case for privileges gained through shortcuts, because

they are hard-wired into the JCL. Removing shortcuts will

cause permission checks to be executed that would have

been skipped otherwise, which will require permissions that

were not needed before the change. Some legacy applications

will thus require adjustments to their security policy when

upgrading to a runtime environment that is shortcut-free. This

task can either be done manually by determining the required

permissions through code reviews and dynamic testing, or

automatically by means of a static analysis that computes the

set of required permissions for any given application class.

Appropriate approaches have been proposed earlier [26].

Not all legacy applications are affected by this issue. No

changes of the security policy are required for applications

that do not immediately call shortcut-containing methods, call

them in a way that does not trigger a shortcut, have already

been granted all required permissions anyway, or run without

a security manager.

Reworking Java’s standard permissions

Java’s standard permissions cannot equivalently

express all privileges gained through shortcuts in

terms of their semantics. As an example, a shortcut in

Class.getDeclaredFields skips a permission check

if callers attempt to access fields of classes that were

loaded with the same classloader. After removing this

shortcut, the permission check will always be executed

and all callers will be required to have permission

RuntimePermission ’accessDeclaredMembers’. As explained

before, the security policies of legacy applications can

be updated to grant this permission when upgrading to a

shortcut-free runtime environment with little to no effort.

However, the problem is that granting this permission

provides applications more privileges than the original

shortcut implementation, as it will allow callers to access

fields of arbitrary classes, including private members

of system classes. Note that the security implications

of this are very limited because RuntimePermission
’accessDeclaredMembers’ only allows for member access,

i.e., retrieving instances of java.lang.reflect.Field
or java.lang.reflect.Method, and not for reading or

writing any private field values, or calling private methods.
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This is nevertheless an issue, and it is caused by the fact that

some standard permissions are too coarse-grained to be used

in a meaningful manner. Permissions that are supposed to

restrict the use of reflection only allow for on/off decisions,

thus either alowing reflective access to all available classes,

or none at all.

The consequence of coarse-grained standard permissions

is that, when upgrading to a shortcut-free platform, applica-

tions may have to be granted permissions that provide more

privileges than originally granted through shortcuts. This is

inherently risky, as it violates the principle of least privilege.

Even when letting the consequences of our proposed changes

aside, we consider permissions like the reflection permissions

as too coarse to be really useful in a security-sensitive setting.

This circumstance is not caused by technical issues, but is

simply a design flaw. Consider Java’s standard file permission,

which, in contrast to the reflection permissions, provides

great flexibility for fine-grained access decisions. It allows

for specifying the file path to which the permission applies,

as well as the specific actions that shall be granted, such as

’read’ or ’write’. Similar expressiveness is desired for securely

restricting the use of reflection of untrusted applications, and

for adequately compensating for the removal of shortcuts.

We thus argue that a thorough redesign of Java’s standard

permissions is both possible and required. This is a complex

task in itself that needs to take into account technical aspects,

as well as various organizational and human factors. One

of the major challenges is to allow for fine-grained access-

control decisions that support the principle of least privilege,

without being hard to use or performance-wasting. Further,

the permission model should be designed to better support

automatic policy generation for existing applications. We hope

that future research will take on the challenge of developing a

permission model that is both flexible, and usable within the

settings that it is designed for.

VII. LESSONS LEARNED

The work presented here specifically focuses on access

control as it is implemented in Java. Due to the widespread

use of this platform, our results are of high relevance to

the security of a large number of servers and workstations.

Furthermore, the Java security model is an interesting research

subject, as it is one of the most sophisticated models of its kind

found in modern software. The rigorous analysis presented

here sheds light on how such a complex model is weakened

in practice. Besides the impact our results may have on further

developments of the Java platform, we can also view this work

as a case study and derive a set of general recommendations

for the development of secure software. In the following, we

will highlight general lessons learned, that hopefully serve as

guidance for the design and implementation of other complex

security models.

Explicit privilege elevation aids the protection of privileges.

Our research clearly shows that by elevating privileges ex-

plicitly through constructs such as doPrivileged, one can

avoid the accidental reexposure of those privileges to attackers.

One reason is that doPrivileged elevates privileges tem-

porarily and only within a given lexical scope. Any code refac-

torings performed will move the explicit doPrivileged-

call along with the other code, causing privileges to be raised

only where required. A second reason, though, is the pure

presence of the doPrivileged-call. To JCL maintainers it

not only serves as a security construct but can serve also as a

warning flag: privileges are elevated at this point and need to

be properly protected from being leaked to the outside.

Stick to the security model.

Security models of complex systems are planned and de-

signed prior to implementation. Inconsistencies between de-

sign and implementation can be risky as they hamper proper

evaluation and maintenance. In the concrete case we studied

here, shortcuts are used instead of proper stack-based access

control, which is a deviation from the Java security model that

increases the attack surface. A common practice in software

engineering is to readjust a project plan if it drifts apart from

reality. It should be just as normal to readjust and revaluate a

security model if strictly implementing it as prescribed is not

possible, e.g., due to performance constraints. In the specific

case of Java, had our evaluation been performed earlier, one

would probably have had the chance to design a more fine

grained policy system in the first place, which then in turn

would have allowed all current use cases without having to

opt for implicit privilege elevation.

Properly document tradeoffs between security and perfor-
mance.

Design and implementation of software is shaped by func-

tional and non-functional requirements. Tradeoffs are often

necessary due to conflicting requirements, and security-related

functionality not always has the highest priority. While in

many cases at least functional requirements are documented,

it seems less common to properly document how tradeoffs

shaped the design and implementation of a complex software.

In the specific case of shortcuts in Java’s access control

mechanisms, we were required to perform manual reviews,

functional tests, and also doublecheck with representatives

from Oracle to verify our assumption that one reason for

which shortcuts were introduced was for performance reasons.

In result, performance-related tradeoffs in long-living systems

should be thoroughly documented, as performance constraints

definitely change over time and many optimizations become

obsolete eventually.

Revaluate performance tradeoffs in regular intervals.

The very nature of a tradeoff is to balance out a negative

impact with a positive impact of similar or higher value. If

the hoped-for positive impact is improved performance and

ease of use, and the negative impacts are, e.g., an increased

attack surface and decreased maintainability, then this tradeoff

changes as performance gains decrease with optimizations of
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the runtime. We thus argue that a revaluation of performance-

related tradeoffs in regular intervals should be part of the

maintenance process of any long-living system.

VIII. RELATED WORK

Aside from Li Gong’s extensive work [2], [15], [27] for the

Java security model, several researchers took up the challenge

to analyze, extend or break the model. We present work that is

concerned with optimizing the access-control process as well

as work that goes beyond this and seeks out for alternatives

to stack-based access control.

Fournet and Gordon [28] provide a complete theoretic

model for stack-based access control. Using this model they

are also able to point out the limitations of stack inspection.

Shortcuts, on the other hand, are not part of the model and

may invalidate the guarantees achieved with it.

Herzog et al. [29] analyzed the performance of the

SecurityManager in Java and provide guidance on how

to use it efficiently. However, they do not provide any details

on shortcuts.

Several approaches have been developed to optimize Java

stack inspection in order to reduce performance overheads.

Bartoletti et al. [7] present two control-flow analyses that

safely approximate the set of permissions granted or denied

to methods and therefore speed up runtime checks. Koved et

al. [26] extend the precision and applicability of the analysis.

Chang [30] built on their work to make the analyses more

precise using a backward static analysis to compute more

precise information on the performed checks. Likewise, Pistoia

et al. [8] analyze Java bytecode to find unnecessary (and

therefore excessive) and redundant (and therefore inefficient)

privileges while ensuring that there are no tainted variables in

the privileged code. This is not only interesting for optimiza-

tion but also helpful in the detection of vulnerabilities.

Other work is more concerned with the maintainance issue

of access control in Java. Cifuentes et al. [9] provide a

definition for caller sensitivity and describe means to detect

unguarded caller sensitive method calls. Toledo et al. [31]

observed that access-control checks are scattered throughout

the JCL making them non-modular and therefore hard to

maintain. They propose two solutions based on aspect-oriented

programming to fully modularize access control in Java. In

their work they not only cover permission checking, but also

privileged execution and permission contexts.

Moreover, there are alternatives to stack-based access con-

trol. Abadi et al. [32] suggest to base access control on

execution history rather than on the current call stack. This

will not only capture the nesting of methods, but also any

method that has completed prior to the method that is checked.

Methods that already completed are not on the call stack

anymore and would thus be ignored by regular stack-based

access control. Nevertheless, such methods may change the

global state of the application to a state in which subsequently

called sensitive methods should not be allowed to execute.

Martinelli et al. [33] integrated history-based access control

into Java using IBM’s Jikes VM. However, this approach

causes a significant slowdown as its checks are more costly.

Wallach et al. [34] discuss an alternative they call security-
passing style. They represent security contexts as pushdown

automata, where calling a method is represented by a push

operation and returning is represented by a pop operation.

To weave these automata with the program they rewrite a

program’s bytecode so that it no longer needs any security

functionality from the JVM.

Building on the work on stack-based and history-based

access control, Pistoia et al. [35] introduce information-based

access control. They argue that history-based access control

may prevent authorized code from executing because of less

authorized code executed previously, although it may not have

influenced the security of the operation that is about to be

executed. In information-based access control every access-

control policy implies an information-flow policy. It augments

stack inspections with the tracking of information flow to

sensitive operations. An extensive review on the relation

of access control and secure information flow is given by

Banerjee and Naumann [36].

IX. CONCLUSION

A key contribution of this paper is the thorough analysis

of the security threat imposed by current shortcuts in the Java

Class Library (JCL), which omit stack-based access-control

in certain situations and cause implicit privilege elevation.

The presence of shortcuts is responsible for the single largest

group of vulnerabilities known to have been exploited for the

Java runtime. We showed that shortcuts directly enable attack

vectors and complicate the security-preserving maintenance

and evolution of the code base; as they elevate privileges

to certain callers implicitly, their callers are in many cases

either unaware of the elevations or unable to reason about

their effects and scope.

Through a tool-assisted adaptation we have created a new

variant of the JCL that works almost without shortcuts,

allowing privileges to be elevated only explicitly through

the use of privileged wrappers. The adapted code allows

maintainers, security experts and tools to easily identify points

of privilege escalation. Moreover, some previous exploits that

abuse insecure use of reflection are effectively mitigated by

our approach.

One reason for which shortcuts were originally introduced

was to lower the execution overhead of access control. Surpris-

ingly at first, however, a set of large-scale experiments with

the DaCapo benchmark suite shows virtually no measurable

runtime overhead caused by our removal of shortcuts. Micro-

benchmarks explain this result by showing that, in the worst

case, the absolute overheads introduced are all in the order

of microseconds. As we discussed, the reason for this pos-

itive performance is due to early stack-walk terminations at

doPriviliged-calls.

A second reason for the presence of shortcuts is that the

implicit assignment of privilege is convenient, as it reduces
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the need to elevate priviliges explicitly, e.g. through an appro-

priate access-control policy. We thus assessed in detail the

usability implications that a move from implicit to purely

explicit privilege elevation entails. The tradeoffs discussed

will ultimately determine whether the proposed hardening is

worthwhile adopting at this point in time.

Another major point of consideration for adopting the

proposed hardening is the large one-time cost involved in im-

plementing it: ideally, security-trained JCL developers should

review every single doPrivileged-call our adaptation in-

troduces, to see that it is not unduly leaking privilege. We

have reported our findings to the security team at Oracle Inc.

and are discussing those tradeoffs with them. In future work,

we plan to work towards tool support for proving privilege

containment at least for some recurring situations.

REFERENCES

[1] “About Java,” https://www.java.com/en/about/.
[2] L. Gong and G. Ellison, Inside Java(TM) 2 Platform Security: Archi-

tecture, API Design, and Implementation, 2nd ed. Pearson Education,
2003.

[3] “2013 cisco annual security report,” http://www.cisco.com/web/offer/
gist ty2 asset/Cisco 2013 ASR.pdf, 2013.

[4] “2014 cisco annual security report,” http://www.cisco.com/web/offers/
lp/2014-annual-security-report/index.html, Jan. 2014.

[5] P. Holzinger, S. Triller, A. Bartel, and E. Bodden, “An in-depth study
of more than ten years of java exploitation,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 779–790.

[6] N. Hardy, “The confused deputy:(or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp.
36–38, 1988.

[7] M. Bartoletti, P. Degano, and G. Ferrari, “Static analysis for stack
inspection,” Electronic Notes in Theoretical Computer Science, vol. 54,
no. 0, pp. 69 – 80, 2001, conCoord: International Workshop on
Concurrency and Coordination (Workshop associated to the 13th
Lipari School). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1571066104002361

[8] M. Pistoia, R. Flynn, L. Koved, and V. Sreedhar, “Interprocedural
analysis for privileged code placement and tainted variable detection,”
in ECOOP 2005 - Object-Oriented Programming, ser. Lecture
Notes in Computer Science, A. Black, Ed. Springer Berlin
Heidelberg, 2005, vol. 3586, pp. 362–386. [Online]. Available:
http://dx.doi.org/10.1007/11531142 16

[9] C. Cifuentes, A. Gross, and N. Keynes, “Understanding caller-sensitive
method vulnerabilities: A class of access control vulnerabilities in the
java platform,” in Proceedings of the 4th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, ser. SOAP 2015.
New York, NY, USA: ACM, 2015, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2771284.2771286

[10] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
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