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Abstract—Malware sandboxes, widely used by antivirus
companies, mobile application marketplaces, threat detection
appliances, and security researchers, face the challenge of
environment-aware malware that alters its behavior once it de-
tects that it is being executed on an analysis environment. Recent
efforts attempt to deal with this problem mostly by ensuring that
well-known properties of analysis environments are replaced with
realistic values, and that any instrumentation artifacts remain
hidden. For sandboxes implemented using virtual machines, this
can be achieved by scrubbing vendor-specific drivers, processes,
BIOS versions, and other VM-revealing indicators, while more
sophisticated sandboxes move away from emulation-based and
virtualization-based systems towards bare-metal hosts.
We observe that as the fidelity and transparency of dynamic

malware analysis systems improves, malware authors can resort
to other system characteristics that are indicative of artificial
environments. We present a novel class of sandbox evasion
techniques that exploit the “wear and tear” that inevitably occurs
on real systems as a result of normal use. By moving beyond how
realistic a system looks like, to how realistic its past use looks like,
malware can effectively evade even sandboxes that do not expose
any instrumentation indicators, including bare-metal systems. We
investigate the feasibility of this evasion strategy by conducting
a large-scale study of wear-and-tear artifacts collected from real
user devices and publicly available malware analysis services. The
results of our evaluation are alarming: using simple decision trees
derived from the analyzed data, malware can determine that a
system is an artificial environment and not a real user device
with an accuracy of 92.86%. As a step towards defending against
wear-and-tear malware evasion, we develop statistical models that
capture a system’s age and degree of use, which can be used to
aid sandbox operators in creating system images that exhibit a
realistic wear-and-tear state.

I. INTRODUCTION

As the number and sophistication of the malware samples

and malicious web pages that must be analyzed every day

constantly increases, defenders rely on automated analysis

systems for detection and forensic purposes. Malware scanning

based on static code analysis faces significant challenges

due to the prevalent use of packing, polymorphism, and

other code obfuscation techniques. Consequently, malware

analysts largely rely on dynamic analysis approaches to scan

potentially malicious executables. Dynamic malicious code

analysis systems operate by loading each sample into a heavily

instrumented environment, known as a sandbox, and monitoring
its operations at varying levels of granularity (e.g., I/O activity,

system calls, machine instructions). Malware sandboxes are

typically built using API hooking mechanisms [1], CPU

emulators [2]–[5], virtual machines [6], [7], or even dedicated

bare-metal hosts [8]–[10].

Malware sandboxes are employed by a broad range of

systems and services. Besides their extensive use by antivirus

companies for analyzing malware samples gathered by deployed

antivirus software or by voluntary submissions from users,

sandboxes have also become critical in the mobile ecosystem,

for scrutinizing developers’ app submissions to online app

marketplaces [11], [12]. In addition, a wide variety of industry

security solutions, including intrusion detection systems, secure

gateways, and other perimeter security appliances, employ

sandboxes (also known as “detonation boxes”) for on-the-fly

or off-line analysis of unknown binary downloads and email

attachments [13]–[17].

As dynamic malware analysis systems become more widely

used, online miscreants constantly seek new methods to hinder

analysis and evade detection by altering the behavior of

malicious code when it runs on a sandbox [8], [9], [11], [18]–

[20]. For example, malicious software can simply crash or

refrain from performing any malicious actions, or even exhibit

benign behavior by masquerading as a legitimate application.

Similarly, exploit kits hosted on malicious (or infected) web

pages have started employing evasion and cloaking techniques

to refrain from launching exploits against analysis systems [21],

[22]. To effectively alter its behavior, a crucial capability for

malicious code is to be able to recognize whether it is being

run on a sandbox environment or on a real user system. Such

“environment-aware” malware has been evolving for years,

using sophisticated techniques against the increasing fidelity

of malware analysis systems.

In this paper, we argue that as the fidelity and non-

intrusiveness of dynamic malware analysis systems continues

to improve, an anticipated next step for attackers is to rely

on other environmental features and characteristics to distin-

guish between end-user systems and analysis environments.

Specifically, we present an alternative, more potent approach to

current VM-detection and evasion techniques that is effective

even if we assume that no instrumentation or introspection
artifacts of an analysis system can be identified by malware
at run time. This can be achieved by focusing instead on the

“wear and tear” and “aging” that inevitably occurs on real

systems as a result of normal use. Instead of trying to identify

artifacts characteristic to analysis environments, malware can

determine the plausibility of its host being a real system used

by an actual person based on system usage indicators.
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The key intuition behind the proposed strategy is that, in

contrast to real devices under active use, existing dynamic

analysis systems are typically implemented using operating

system images in almost pristine condition. Although some

further configuration is often performed to make the system

look more realistic, after each binary analysis, the system is

rolled back to its initial state [23]. This means that any possible

wear-and-tear side-effects are discarded, and the system is

always brought back to a pristine condition. As an indicative

example, in a real system, properties like the browsing history,

the event log, and the DNS resolver cache, are expected to

be populated as a result of days’ or weeks’ worth of activity.

In contrast, due to the rollback nature of existing dynamic

analysis systems, malicious code can easily identify that the

above aspects of a system may seem unrealistic for a device

that supposedly has been in active use by an actual person.

Even though researchers have already discussed the pos-

sibility of using specific indicators, such as the absence of

“Recently Open Files” [24] and the lack of a sufficient number

of processes [25] as ways of identifying sandbox environments,

we show that these individual techniques are part of a larger

problem, and systematically assess their threat to dynamic

analysis sandboxes. To assess the feasibility and effectiveness

of this evasion strategy, we have identified a multitude of wear-

and-tear artifacts that can potentially be used by malware as

indicators of the extent to which a system has been actually

used. We present a taxonomy of our findings, based on which

we then proceeded to implement a probe tool that relies on a

subset of those artifacts—ones that can be captured in a privacy-

preserving way—to determine a system’s level of wear and

tear. Using that tool, we gathered a large set of measurements

from 270 real user systems, and used it to determine the

discriminatory capacity of each artifact for evasion purposes.

We then proceed to test our hypothesis that wear and tear

can be a robust indicator for environment-aware malware, by

gauging the extent to which malware sandboxes are vulner-

able to evasion using this strategy. We submitted our probe

executable to publicly available malware scanning services,

receiving results from 16 vendors. Using half of the collected

sandbox data, we trained a decision tree model that picks a

few artifacts to reason whether a system is real or not, and

evaluated it using the other half. Our findings are alarming:

for all tested sandboxes, the employed model can determine

that the system is an artificial environment and not a real user

device with an accuracy of 92.86%.

We provide a detailed analysis of the robustness of this

evasion approach using different sets of artifacts, and show

that modifying existing sandboxes to withstand this type of

evasion is not as simple as artificially adjusting the probed

artifacts to plausible values. Besides the fact that malware can

easily switch to the use of another set of artifacts, we have

uncovered a deeper direct correlation of many of the evaluated

wear-and-tear artifacts and the reported age of the system,

which can allow malware to detect unrealistic configurations.

As a step towards defending against wear-and-tear malware

evasion, we have developed statistical models that capture the

age and degree of usage of a given system, which can be used

to fine-tune sandboxes so that they look realistic.

In summary, our work makes the following main contribu-

tions:

• We show that certain, seemingly independent, techniques

for identifying sandbox environments are in fact all

instances of a broader evasion strategy based on a system’s

wear-and-tear characteristics.

• We present an indicative set of diverse wear-and-tear

artifacts, and evaluate their discriminatory capacity by

conducting a large-scale measurement study based on data

collected from real user systems and malware sandboxes.

• We demonstrate that using simple decision trees derived

from the analyzed data, malware can robustly evade all
tested sandboxes with an accuracy of 92.86%.

• We present statistical models that can predict the age of

a system based on its system usage indicators, which can

be used to “age” existing artificial-looking sandboxes to

the desired degree.

II. BACKGROUND AND RELATED WORK

A. Virtualization and Instrumentation Artifacts

Antivirus companies, search engines, mobile application

marketplaces, and the security research community in general

largely rely on dynamic code analysis systems that load

potentially malicious content in a controlled environment for

analysis purposes [1]–[6], [8]–[10], [21], [26]–[34]. Given that

virtual machines and system emulators are very convenient

platforms for building malware sandboxes, evasive malware

often relies on various artifacts of such systems to alter its

behavior [8], [9], [11], [18]–[20], [35]. Probably the simplest

approach is to use static heuristics that check for certain system

properties, such as VM-specific device drivers and hardware

configurations, fixed identifiers including MAC addresses,

IMEIs (for mobile malware analysis systems), user/host names,

VM-specific loaded modules and processes (e.g., VMware

Tools in case of VMware), and registry entries [20], [36].

Even when dynamic analysis systems are carefully config-

ured to avoid expected values and configurations, lower-level

properties of the execution environment can be used to identify

the presence of a virtual environment. These include emulator

intricacies that can be observed at runtime using small code

snippets, timing properties of certain virtualized instructions,

cache side effects, and many others [8], [20], [37]–[43].

B. Environmental and User Interaction Artifacts

The increasing sophistication of environment-aware malware

has prompted many research efforts that focus on either

detecting the “split personality” of malware by running each

sample on multiple and diverse analysis systems [18], [44],

[45], or increasing the fidelity of the analysis environment by

avoiding the use of emulation or virtualization altogether, and

opting for “bare-metal” systems [8]–[10], [46].

These recent developments, however, along with the pro-

liferation of virtual environments in production deployments

and end-user systems, have resulted in yet another change of
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tactics from the side of malware authors. Given that a VM host

may be equally “valuable” as a non-VM host, the number of

malicious samples that rely on VM detection tricks for evasion

has started to decrease [47].

At the same time, malware authors have started employing

other heuristics that focus mostly on how realistic the state

and configuration of a host is, rather than whether it is

a real or a virtual one. Such heuristics include checking

whether the mouse cursor remains motionless in the center

of the screen [48], observing the absence of “Recently Open

Files” [24] or an unusually low number of processes [25],

testing whether unrestricted internet connectivity is available,

and trying to resolve a known non-existent domain name. As

some malware analysis systems blindly serve all DNS requests,

a positive answer to a request for a non-existent domain is

an indication of a malware analysis environment and not a

real system [9]. Correspondingly, malware sandboxes have

started emulating user behavior (e.g., by generating realistic-

looking mouse movements and actions) and exposing a more

realistic network environment. Unfortunately, as we show in

this work, a neglected aspect of this effort towards making

malware sandboxes as realistic as possible, is the wear and

tear that is expected to occur as a result of normal use.

C. Sandbox Fingerprinting

A few research efforts have focused on deriving configuration

profiles from sandboxes used by malware scanning services

and security appliances [23], [49]. By fingerprinting the

sandboxes of different vendors, malware can then identify

the distinguishing characteristics of a given sandbox, and

alter its behavior accordingly. Maier et al. developed Sand-

Finger [49], a sandbox fingerprinting tool for Android-based

analysis systems. The extracted fingerprints capture properties

that are mostly specific to mobile devices, such as saved WiFi

networks, paired Bluetooth devices, or whether a device is

connected to a host via a cable. The authors show that the

derived fingerprints can be used by malicious apps to evade

Google’s Bouncer and other mobile app sandboxes.

Recently, Blackthorne et al. presented AVLeak, a tool that

can fingerprint emulators running inside commercial antivirus

(AV) software, which are used whenever AVs detect an

unknown executable [50]. The authors developed a method

that allows them to treat these emulators as black boxes and

use side channels as a means of extracting fingerprints from

each AV engine.

Yokoyama et al. developed SandPrint [23], a sandbox

fingerprinting tool tailored for Windows malware analysis

systems. The tool considers a set of 25 features that were

identified to exhibit characteristic, high-entropy values on

malware sandboxes used by different vendors. These include

hardware configuration parameters, which tend to have unusu-

ally low values to facilitate the parallel operation of multiple

sandbox images (e.g., by lowering the amount of RAM or disk

space), or features specific to the malware sample invocation

mechanism employed by each sandbox (e.g., Cuckoo Sandbox’s

agent.py launch script, or the fact that the file name of the

analyzed executable is changed according to its MD5 sum or

using some other naming scheme). The authors then performed

automated clustering to classify fingerprints collected after

the submission of the tool to 20 malware analysis services,

resulting in the observation of 76 unique sandboxes. They also

used some of the features to build a classifier that malware

can use to reliably evade the tested sandboxes.

As the authors of SandPrint note, “most of the selected
features are deterministic and their values discrete and reliable,”
and “a stealthy sandbox could try to diversify the feature values.”
Inspired by this observation, our aim in this paper is to explore

what the next step of attackers might be, once sandbox operators

begin to diversify the values of the above features, and to

configure their systems using more realistic settings, rendering

sandbox-fingerprinting ineffective. To that end, instead of

focusing on features characteristic to sandboxes, we take a

radically different view and focus on artifacts characteristic to

real, used machines. Previous works have shown that sandboxes
are configured differently than real systems, and can thus be

easily fingerprinted. The programs used to analyze malware are

designed to be as transparent as possible, to prevent malware

from detecting that it is being analyzed. In this work, we

show that even with completely transparent analysis programs,

the environment outside the analysis program is enough for

malware to determine that it is under analysis.

III. WEAR AND TEAR ARTIFACTS

To determine the extent to which a system has been actually

used, and consequently, the plausibility of it being a real user

system and not a malware sandbox, malicious code can rely

on a broad range of artifacts that are indicative of the wear

and tear of the system. In this section, we discuss an indicative

set of the main types of such artifacts that we have identified,

which can be easily probed by malware.

Our strategy for selecting these artifacts was based on

identifying what aspects of a system are affected as a result of

normal use, and not on system features that may be affected

by certain sandbox-specific implementation intricacies—a

realistically configured sandbox may not exhibit any such

features at all. We located these artifacts by using a method

similar to the snowball method for conducting literature surveys.

Specifically, upon identifying a potentially promising artifact,

we would search in that same location of the system for

more artifacts. Besides intuition, to identify additional sources

of artifacts, we also studied various Windows “cleaner” and

“optimizer” programs, as well as Windows forensics literature.

Our list of artifacts is clearly non-comprehensive and we are

certain that there are many more good sources of artifacts that

were not included in this study. At the same time, although it is

expected that one can find a multitude of wear-and-tear artifacts,

e.g., as a result of the customization, personalization, and use

of different applications on an actual user system, our selection

was constrained by an important additional requirement.
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A. Probing for Artifacts while Preserving User Privacy

We can distinguish between two main types of wear-and-tear

artifacts, depending on their source: artifacts that stem from

direct user actions, versus artifacts caused by indirect system
activity. For instance, a browser’s history contains the URLs

that a user has explicitly visited. Expecting to find a popular

search engine, a social networking service, and a news website

among the recently visited URLs could constitute a heuristic

that captures a user’s specific interests. In contrast, the number

of application events in the system event log is an indirect

artifact which, although it depends on user activity, it does not

capture any private user information.

Direct artifacts are qualitatively stronger indicators of a

system’s degree of use by a person. Conceivably, malware

could rely on a broad and diverse range of such artifacts to

decide whether a system has been under active use, e.g., by

inspecting whether document folders contain plausible numbers

of files with expected file extensions, checking for recently

opened documents in popular document viewing applications,

or looking for the most recently typed online search engine

queries, system-wide (“spotlight-like”) search queries, instant

messaging or email message contents, and so on.

For the purposes of our study, however, such artifacts are

out of question, as collecting them from real user systems

would constitute a severe privacy violation. Consequently, we

limit our study mainly to indirect, system-wide artifacts, which

do not reveal any private user information. To get a glimpse

on the evasion potential of direct artifacts, we do consider

a limited set of browser-specific artifacts, which though are

strictly limited to aggregate counts (e.g., number of cookies,

number of downloaded files and, number of visited URLs)

that can be collected without compromising user privacy and

anonymity.

B. Artifact Categories

Many aspects of a system are susceptible to wear and

tear, from the operating system itself, to the various file,

network, and other subsystems. Considering, for instance,

a typical Microsoft Windows host, a multitude of different

wear-and-tear artifacts are available for estimating the extent

to which the system has been used. In the following, we

provide a brief description of the main types of artifacts that

we have identified. The complete set of artifacts that we used

in our experiments is shown in Table I.

1) System: Generic system properties such as the number

of running processes or installed updates are directly related to

the “history” of a system, as more installed software typically

accumulates throughout the years.

The event log of Windows systems is another rich source

of information about the current state and past activity of the

system. Various types of events are recorded into the event

log, including application, security, setup, and system events

of different administrative ratings (critical, error, warning,

information, audit success or failure). Of particular interest are

events that denote abnormal conditions, such as warnings about

missing files, inaccessible network links, unexpected service

terminations, and access permission errors. The more a system

has been used, the higher the number of records that will have

been accumulated in the event log. Besides the simple count of

system events, we also consider additional aspects indicative of

past use, such as the number of events from user applications,

the number of different event sources, and the time difference

between the first and last event.

The event log will be (almost) empty only if the operating

system is freshly installed, or if the user deleted the recorded

entries. The vast majority of users, however, are not even

aware of the existence of this log, so it is unlikely that its

contents will be affected (e.g., deleted) by explicit user actions.

2) Disk: User activity results in file system changes,

exhibited in various forms, including the generation of

temporary files, deleted files, actual user content, cached

data, and so on. Given the sensitive nature of accessing

user-generated content, even in terms of just counting files,

we limit the collection of disk artifacts directly related to user

activity only to the number of files on the desktop and in

the recycle bin. The rest of the disk artifacts capture counts

of files related to non-user-generated temporary or cached

data (e.g., generated file-content thumbnails, or process crash

“minidump” files).

3) Network: The network activity of a system, especially

from a historical perspective, is a strong indicator of actual

use. Every time a host is about to send a packet to a remote

destination, it consults the system’s address resolution protocol

(ARP) cache to find the physical (MAC) address of the

gateway, or the address of another host in the local network.

Similarly, every time a domain name is resolved to an IP

address, the operating system’s DNS stub resolver includes

it in a cache of the most recent resolutions. The use of

public key encryption also results in artifacts related to the

certificates that have been encountered. For instance, once a

certificate revocation list (CRL) is downloaded, it is cached

locally. The list of the URLs of previously downloaded CRLs

is kept as part of the cached information, so the number of

entries in that list is directly related to past network activity

(not only due to browsing activity, but also due to applications

that perform automatic updates over the network). We also

consider the number of cached wireless network SSIDs, which

is a good indicator of past use for mobile devices, and the

number of active TCP connections.

4) Registry: The Windows registry contains a vast amount of

information about many aspects of a system, including many

that would fit in the aforementioned categories. We chose,

however, to consider the Registry separately both because it

is privy to information that does not exist elsewhere, as well

as because, in Section V, we investigate whether sandbox-

detection is possible if an attacker has to constrain himself to

a single type of wear-and-tear artifacts.
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TABLE I: Complete list of wear-and-tear artifacts.

Category Name Description User Sandbox Baseline

System

totalProcesses # of processes 94.4 35 41

winupdt # installed Windows updates 794 19 2

sysevt # system of system events 27K 8K 334

appevt # of application events 18K 2.4K 184

syssrc # sources of system events 78 49 48

appsrc # sources of application events 40 26 23

sysdiffdays Elapsed time since the first system event (days) 370 1.7K 0

appdiffdays Elapsed time since the first application event (days) 298 943 0

Disk

recycleBinSize Total size of the recycle bin (bytes) 2.5G 50M 0

recycleBinCount # files in the recycle bin 109 3 0

tempFilesSize Total size of temporary system files (bytes) 302 24 8.2

tempFilesCount # temporary system files 411 60 10

miniDumpSize Total size of process crash minidump files (bytes) 3M 409K 0

miniDumpCount # of process crash minidump files 9 4 0

thumbsFolderSize Total size of the system’s thumbnails folder (bytes) 63M 8M 2.6M

desktopFileCount # files on the desktop 34 6 3

Network

ARPCacheEntries # entries in the ARP cache 19 4.5 5

dnscacheEntries # entries in the DNS resolver cache 151 4 3

certUtilEntries # URLs of previously downloaded CRLs 1.7K 210 6

wirelessnetCount # of cached wireless SSIDs 8 0 0

tcpConnections # of active TCP connections 77 27 16

Registry

regSize Size of the registry (in bytes) 144.8M 53M 35M

uninstallCount # registered software uninstallers 177 58 18

autoRunCount # programs that automatically run at system startup 9 3 1

totalSharedDlls Legacy DLL reference count 242 176 26

totalAppPaths # registered application paths 54 35 23

totalActiveSetup # Active Setup application entries 24 32 25

orphanedCount # leftover registry entries 11 10 9

totalMissingDlls # registered DLLs that do not exist on disk 21 23 13

usrassistCount # of entries in the UserAssist cache (frequently opened applications) 222 98 11

shimCacheCount # entries in the Application Compatibility Infrastructure (Shim) cache 191K 98K 38K

MUICacheEntries # Multi User Interface (MUI) cache entries 66 83 163

FireruleCount # of rules in the Windows Firewall 511 332 358

deviceClsCount # previously connected USB devices (DeviceInstance IDs) 81 29 60

USBStorCount # previously connected USB storage devices 1.7 0 0

Browser

browserNum # installed browsers (Internet Explorer, Firefox, Chrome) 2.9 1.4 1

uniqueURLs # unique visited URLs 28K 13.8 1.64

totalTypedURLs # URLs typed in the browser’s navigation bar 1.6K 4 1

totalCookies # of HTTP cookies 3K 135 2

uniqueCookieDomains # unique HTTP cookie domains 1003 23 1

totalBookmarks # bookmarks 274 20 1

totalDownloadedFiles # downloaded files 340 3 0

urlDiffDays Time elapsed between the oldest and newest visited URL (days) 225 370 0

cookieDiffDays Time elapsed between the oldest and newest HTTP cookie (days) 303 256 0

Every time an application or driver is installed on a

Windows system, it typically stores many key-value pairs in

the registry. This effect is so extensive that Windows is known

from suffering from “registry bloat,” since programs often add

keys during installation, but neglect to remove them when

uninstalled. This is exemplified by the multitude of “registry

cleaning” tools which aim to clean the registry from stale

entries [51], [52]. Many of the registry artifacts we consider

are thus related to the footprints of the applications that

have been installed on the system (e.g., number of installed

applications, uninstall entries, shared DLLs, applications set to

automatically run upon boot), as well those that have not been

fully uninstalled (e.g., “orphaned” entries left from removed

programs and listed DLLs that do not exist on disk).

We also consider various other system-wide properties,

including: the size of the registry (in bytes); the number of

firewall rules, as new applications often install additional rules;

the number of previously connected USB removable storage

devices (a unique instance ID key is generated for each device

and stored in a cache); the number of entries in the UserAssist

cache, which contains information about the most frequently

opened applications and paths; the number of entries in the
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Application Compatibility Infrastructure (Shim) cache, which

contains metadata of previously run executables that used this

facility; and the number of entries in the MUICache, which

are related to previously run executables and are generated by

the Multi User Interface that provides support for different

languages.

5) Browser: For many users, an operating system does

little more than housing their web browser and a few other

applications. Web browsers have become an all-inclusive tool

for accessing office suites, games, e-shopping, e-banking, and

social networking services. Due to the indispensable use of a

browser, it would be really uncommon to find a browser in a

pristine, out-of-the-box condition on a real user system.

In fact, the older a system is, the longer the accumulated

“history” of its main browser will likely be. This history

is captured in various artifacts related to past user activity,

including previously visited URLs, stored HTTP cookies, saved

bookmarks, and downloaded files. As noted earlier, we consider

only aggregate counts of such artifacts, instead of more detailed

data, to respect users’ privacy. Given that a person may use

more than one browser, or a different one than the operating

system’s default browser, the browser artifacts that we consider

correspond to combined values across all browsers found on the

system (our tool currently supports Internet Explorer, Firefox,

and Chrome). For example, the number of HTTP cookies

corresponds to the total number of cookies extracted from all

installed browsers. The number of installed browsers is also

considered as a standalone artifact.

IV. DATA COLLECTION

A. Probe Tool Implementation

To gather a large and representative dataset of the identified

wear-and-tear artifacts from real user systems and malware

sandboxes, we implemented a probe tool that collects artifact

information and transmits it to a server. The probe tool was

implemented in C++ and consists of a single Windows 32-bit

PE file that does not require any installation, and which does

not have any dependencies besides already available system

APIs. Although many artifacts are easy to collect by simply

accessing the appropriate log files and directories, probably the

most challenging aspect of our implementation was to maximize

compatibility with as many Windows versions as possible, from

Windows XP to Windows 10. Besides differences in the paths

of various system files and directories across major versions,

in many cases we also had to use different system APIs for

Windows XP compared to more recent Windows versions

for various system-related artifacts (e.g., event log statistics).

Browser artifacts are collected separately for each of the three

supported browsers (IE, Firefox, Chrome) that are found on a

given system, and are synthesized into compound artifacts at

the server side.

The collected information is transmitted to our server through

HTTPS. The tool uses both GET and POST requests, in case

either of the two is blocked by a sandbox. Besides the collected

data, additional metadata for each submission include the IP

address of the host, OS version and installation date, and BIOS

vendor. The latter is used as a simple VM-detection heuristic,

to prevent poisoning of our real-user dataset with any results

from virtual machines (we explicitly asked users to run the

tool only on their real systems).

Each executable submitted to a public sandbox is generated

with a unique embedded ID, which allows us to identify

multiple submissions by the same vendor. Since a given unique

instance of the tool may run on more than one sandboxes

(e.g., due to the use of multiple different sandboxes by the

same vendor, or due to sample sharing among vendors), we

additionally distinguish between different systems based on

the combination of the following keys: reported IP address,

OS installation date, Windows version, BIOS vendor, number

of installed user applications, and elapsed time since the first

system event.

B. IRB Approval and User Involvement

Our experiments for the collection of artifact values from

real user systems involved human subjects, and thus we had

to obtain institutional review board (IRB) approval prior to

conducting any such activity. Our IRB application included

a detailed description of the information to be collected, the

process a participant would follow, and all the measures that

were taken to protect the participants’ privacy and anonymity.

Our activities did not expose users to any risk. The collected

data does not include any form of personally identifiable

information (PII), nor any such information can be derived

from it. Due to the nature of our experiment (collecting simple

system statistics), our probe tool is small and simple enough

so that we can be confident about the absence of any flaws

or bugs that would cause damage or mere inconvenience to

a user’s system and data. The tool does not get installed on

the system, and thus users can simply delete the downloaded

executable to remove all traces of the experiment. The collected

data merely reflects the wear and tear of a user’s system as a

result of normal use, rather than some personal trait that could

be considered PII. Even when considering the full information

that is recorded in the transmitted data, no personal information

about the user of the system can be inferred.

Based on the above, the IRB committee of our institution

approved the research activity on April 11, 2016.

All participants (colleagues, friends, and Amazon’s Mechan-

ical Turk workers) were directed to a web page that includes

an overview of the experiment, a detailed description of the

collected information (including a full sample report from one

of the authors’ laptop), and instructions for downloading and

executing our probe tool (as well as deleting it afterwards). The

page was hosted using our institution’s second-level domain

and TLS certificate, and included information about the IRB

approval, as well as the authors’ full contact details.

Given that our email requests to friends and colleagues for

downloading and executing a binary from a web page could

be considered as spear phishing attempts, we pointed to proof

for the legitimacy of the message, which was hosted under the

authors’ institutional home pages.
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TABLE II: Distribution of BIOS vendors of users’ machines.

BIOS vendor Frequency

American Megatrends Inc. 25.77%

Dell Inc. 18.08%

Insyde 15.38%

Lenovo 15.38%

Hewlett-Packard 6.92%

Award Software International Inc. 3.85%

Phoenix Technologies Ltd. 3.85%

Acer 1.92%

AMI 1.92%

Intel Corp. 1.92%

Alienware 1.54%

Toshiba 1.54%

Other 1.93%

C. Data Collection

To quantify the difference of wear-and-tear artifacts be-

tween real users and sandbox environments, we use the

aforementioned probing tool to compile three datasets. The

first dataset contains wear-and-tear artifacts collected from 270

real user machines (Dreal). The majority of these observations

(89.4%) originate from Amazon Mechanical Turk workers, who

downloaded and executed our artifact-probing tool, and the

remaining from systems operated by friends and colleagues.

The users who participated in this study come from 35 different

countries, with the top countries being: US (44%), India (18%),

GB (10%), CA (8%), NL (1%), PK (1%), RU (1%) and 28 other

countries with lower than 1% frequency. Therefore, we argue

that our dataset is representative of users from both developed

and developing countries, whose machines may have different

wear-and-tear characteristics. The BIOS vendor distribution of

the user systems is shown in Table II. As the table shows, the

users’ personal systems include different brands, such as Dell,

HP, Lenovo, Toshiba, and Acer, as well as game series systems

such as Alienware.

As mentioned earlier, our tool does not collect any PII and

does not affect the user’s machine in any way, i.e., it does not

modify or leave any data. After running the tool, the user can

simply delete the executable.

While analyzing the collected data from Mechanical Turk to

filter out those users who, despite our instructions, executed our

tool inside a virtual machine (identified through the collected

BIOS information), we observed that our server had collected

artifacts that could not be traced back to Mechanical Turk

workers. By analyzing the artifacts and the logs of our server,

we realized that, because the public Human Intelligence Task

(HIT) web page for our task on Amazon’s website was

pointing to our tool download page through a link, the crawlers

of a popular search engine followed that link, downloaded

our probing tool, and executed it. Based on the IP address

space of the clients who reported these artifacts, as well

as custom identifiers found in the reported BIOS versions,

we are confident that these were sandbox environments that

are associated with a popular search engine that downloads

and executes binaries as a way of proactively discovering

malware. After removing duplicate entries, we marked the

rest as belonging to “crawlers” and incorporated them in our

sandbox artifact dataset (described in the next paragraph).

The second dataset (Dsand) consists of artifacts extracted

by sandboxes belonging to various malware analysis services.

We identified these sandboxes through prior work on sandbox

evasion [23], as well as by querying popular search engines for

keywords associated with malware analysis. Most sandboxes

are not available for download, but do allow users to submit

suspicious binaries which they then analyze and report on the

activity of the analyzed binary, in varying levels of detail. Even

though we were able to find 23 sandboxes that provide users

the ability to upload suspicious files, our artifact-gathering

server was able to collect artifacts from 15 different sandbox

environments (not counting the aforementioned search-engine

sandbox). We reason that the remaining analysis environments

are either non-operational, rely on static analysis to scan

executables, or completely block any network activity of each

analyzed binary.

Table III lists the names of sandboxes from which our server

received the results of our probing tools. We uploaded our

probing tool multiple times in a period of a month and we

also witnessed that some sandboxes executed our probing

tool multiple times on different underlying environments (e.g.,

multiple versions of Microsoft Windows). As mentioned in

Section IV-A, each uploaded executable had a unique ID

embedded in its code which was sent to our artifact-gathering

server, so as to perform accurate attribution.

The third and final dataset (Dbase) is our baseline dataset

which consists of artifacts extracted from fresh installations of

multiple versions of Microsoft Windows. Next to setting up

local VMs and installing Microsoft Windows XP, Windows

Vista, Windows 7, and Windows 8, we also make use of all

the Windows server images available in two large public cloud

providers, Azure and AWS. Overall,Dbase contains the artifacts

extracted from 22 baseline environments.

D. Dataset Statistics

Table IV shows the number of different Microsoft Windows

versions in our three collected datasets. There we see that

the vast majority of users are utilizing Windows 7, 8 and

10, with only 4.1% of users still utilizing Windows XP and

Windows Vista. Contrastingly, we see almost no sandboxes

utilizing Windows 10, and the majority of them (83.7%)

utilizing Windows 7. Note that because we extract the version

of Windows programmatically, the same version number can

correspond to more than one Windows versions, such as,

Windows Server 2012 R2 and Windows Server 2016 having the

same version with Windows 8.1 and Windows 10. Even though

it is not the central focus of our paper, we find it troublesome

that sandboxes do not attempt to follow the distribution of

operating systems from real user environments.

Figure 1 shows boxplots that reveal the distribution of the

values of each wear-and-tear artifact across all three datasets
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Fig. 1: Distribution of artifacts across user machines, sandboxes, and baselines (normalized values).

TABLE III: Sandboxes from which artifacts were successfully
collected.

ID Name #Instances

1 Anubis 2

2 Avira 2

3 Drweb 3

4 Fortiguard 3

5 Fsecure 2

6 Kaspersky 15

7 McAfee 7

8 Microsoft 1

9 HybridAnalysis 1

10 Pctools 1

11 Crawlers 50

12 Malwr 2

13 Sophos 4

14 ThreatTrack 3

15 Bitdefender 1

16 Minotaur 1

TABLE IV: Distribution of operating systems in each dataset.

v5.1 v6.0 v6.1 v6.2 v6.3 Total

Users (Dreal) 8 3 105 7 147 270

Sandboxes (Dsand) 14 - 82 - 2 98

Baseline (Dbase) 1 1 2 1 17 22

v5.1: Windows XP

v6.0: Windows Vista / Win Server 2008

v6.1: Win7, Win Server 2008 R2

v6.2: Win8 / Win Server 2012

v6.3: Win 8.1/Win 10/ Win Server 2012 R2/ Win Server 2016

(Dreal, Dsand and, Dbase). There we can observe multiple

patterns that will be of use later on in this paper. For example,

we see that the vast majority of artifacts have larger values in

real user systems, than they have in sandboxes and baselines.

This observation, by itself, indicates that these artifacts can be

used to differentiate between real machines and sandboxes and

can thus be used for malware evasion purposes. Similarly, we

also observe that the distributions of artifact values is wider

for real systems than it is for systems that are not used by

real users. This could indicate that these artifacts could also

be used to predict the age of any given machine.

At the same time, we do see certain cases where the

opposite behavior manifests. For instance, the appdiffdays and

sysdiffdays artifacts are clearly more diverse in sandboxes than

they are in real user systems. We argue that the explanation for

this behavior is two-fold. As Table IV suggests, on average,

sandboxes are “older” compared to real-user systems. As such,

it is entirely within reason that the events in Windows’ event

log are further apart than those in real user systems. Moreover,

assuming that the Windows log will only store events up to

a maximum number, systems with more real-user activity are

more likely to need to delete older events and hence reduce

the time span observable in the Windows event log.

To verify, from a statistical point of view, the difference

that we can visually identify between the distributions of

artifacts, we need to use a metric that will allow us to

differentiate between different distributions. Even though a

normal distribution is usually assumed, by conducting a

Shapiro-Wilk test we find that none of our extracted artifacts

matches a normal distribution. For that reason, we use the

Mann-Whitney U test to compare distributions, which is a

non-parametric alternative of a t-test and does not assume that

the data is normally distributed. We handle missing values by

replacing them with dummy-coded values because the fact that

an artifact cannot be extracted can be useful information for

differentiating between systems.

Figure 2 shows the effect size of the differences between

the distribution of Dreal and Dsand as reported by the Mann-
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Whitney U test. Using standard interpretations of effect sizes,

an effect between 0.3 and 0.5 is considered to be characteristic

of a “medium” effect while one higher than 0.5 is considered to

be a “strong” effect. This confirms that the vast majority of our

identified wear-and-tear artifacts have different distributions in

sandbox and real-user environments.

V. EVADING MALWARE SANDBOXES

In the previous sections, we described the type of OS artifacts

that we hypothesized would be indicative of wear and tear, and

collected these artifacts from real user machines, sandboxes,

and fresh installations of operating systems in virtualized

environments. As our results showed, most artifacts have

sufficiently different distributions, allowing them to be used to

predict whether a given system is an artificial environment or

a real user system, and evade the former while executing on

the latter. In this section, we take advantage of these artifacts

and treat them as features in a supervised machine-learning

setting, allowing the implementation of simple decision trees

that can be employed by malware for evasion purposes.

A. Setup and Classifier

When we were considering which classifier to use, we

came to the conclusion that explainability of the results is

a desirable property for our setup. It is important for the

security community to understand how these seemingly benign

features are different between real user systems and sandbox

environments. Moreover, attackers can also benefit from a

classifier with explainable results since they can, in real time,

reason whether the result of their classifier makes intuitive

sense given the execution environment. As such, even if an

SVM-based classifier may perform slightly better than most

explainable supervised learning algorithms, attackers have no

way of evaluating the truthfulness of the result, especially

in environments that are constantly evolving to bypass their

evasion techniques.

For these reasons, we decided to use decision trees as our

algorithm of choice. Next to their explainable results, a decision-

tree model is also straightforward to implement as a series of

if-else statements, which can be beneficial for attackers who

wish to keep the overall footprint of their malware small. Before

training our classifier, we inspected the correlation of pairs

of features by calculating the Pearson correlation coefficient

(r) for each possible pair. The results showed that four pairs

of features have a strong correlation (r > 0.7). We decided,

however, to include all features in our classifier, since from

the point of view of defenders, they would have to address all

correlated features in order to stop malware from successfully

evading their analysis systems.

The training set of the classifier is composed as follows.

For positive examples, we randomly sample 50% of our

sandbox observations (49 instances) and add to them 100%

(22 instances) of our fresh OS installations. We consider it

important to augment the sandbox dataset (Dsand) with our

baseline dataset (Dbase) to cover a wider range of possible

sandbox environments, starting from the most basic virtualiza-

tion environments, to state-of-the-art sandboxes belonging to

the security industry. To balance this data, we randomly sample

71 instances from real-user environments collected through

Amazon Mechanical Turk (Dreal). Therefore, our training set
consists of 142 observations, balanced between the two classes.

Similarly, our testing dataset comprises the remaining 50%

of sandbox observations (49 instances) and a random sample

of 49 real user machines which were not part of our training

set. We handle missing feature values by setting them equal

to zero.

To improve the accuracy of our classifier, we utilize two

orthogonal techniques. First, we use a 10-trial adaptive boosting

where the algorithm creates multiple trees, with each tree

focusing on improving the detection of the previous tree [53].

Specifically, while constructing treei, the algorithm assigns

larger weights to the observations misclassified by treei−1,

aiming to improve the detection rate for these observations.

Through the construction of multiple sequential trees, the

adaptive boosting decision tree algorithm can learn boundaries

that a single decision tree could not. Note that this choice does

not really complicate the implementation of this algorithm by

malware, as it can still be implemented as multiple sets of if-

else rules, and use a weighted sum of all predictions according

to the weights specified by the trained model.

In addition to adaptive boosting, we specify our own cost

matrix where false negatives are ten times more expensive

than false positives. The rationale for this decision is that we

assume it is preferable for malware, from the point of view

of the malware author, to miss an infection of a real user’s

machine (false positive), rather than to execute in a sandbox

environment where its detection would mean the creation of

signatures that would jeopardize its ability to infect systems

protected with antivirus software.

B. Evaluation

Using the aforementioned training dataset and parameters,

we trained an adaptive boosting decision tree and evaluated it

on the testing set. Figure 3 shows three of the ten trees that our

classifier generated, as well as the fraction of misclassification

of each final decision which, as described earlier, drives the

construction of the next tree.

Note that the testing set was not provided to our algorithm

during training, in an attempt to quantify how well our model

generalizes to previously unseen data. Our model achieved an

accuracy of 92.86% on the testing set, with a false-negative

rate (FNR) of 4.08% and a false positive rate (FPR) of 10.20%.

The ten constructed trees had an average tree size of 4.6 splits,

with the shortest tree having 3 splits and the longest one 5

splits. Table V shows the features that were the most useful

to the algorithm, and the percentage of trees using any given

feature.

To assess the robustness of our algorithm against incremental

changes in sandbox environments, we repeated our aforemen-

tioned experiment 30 times, each time removing an additional

feature from the original datasets, compiling new, randomly
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Fig. 2: The difference of the distributions of a given artifact’s values between real user systems and sandboxes, based on the
Mann-Whitney U test. An effect size above 0.3 (highlighted with light yellow) can be interpreted as a medium difference, while
an effect size above 0.5 (highlighted with red) corresponds to a high difference between the two distributions.
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Fig. 3: Trees 1, 3, and 5, calculated by the C5.0 decision tree algorithm with adaptive boosting and a custom cost matrix that
favors false positives over false negatives.

sampled, training and testing datasets using the splits described

earlier, and training and testing the new classifier. Specifically,

we remove the feature that was the most used by the previous

model, i.e., the most important one. For example, the first

feature that we removed was the number of entries in a system’s

DNS cache, as it was the most commonly used feature of our

first classifier according to Table V. Through this process we

aim to quantify an attacker’s ability of distinguishing sandboxes

from real users, in the face of dedicated sandbox operators

who can try to mimic a real user system by populating our

identified wear-and-tear artifacts with realistic values.

We argue that this setup captures the worst-case scenario

for an attacker, because not only are there fewer and fewer

features to train on, but also because the remaining features are

of lower discriminatory power than the removed ones. Figure 4

shows how the accuracy, false positive rate, and false negative

rate vary, as we keep on removing features from our dataset.

As one can notice, the overall accuracy of the classifier remains

high (greater than 90%) even if we remove as many as 20

discriminatory features.

Similarly, we see that, guided by our custom cost matrix, the

classifier constantly prefers to err on the side of false positives

instead of false negatives. We even observe that for the first

eight features, the accuracy increases and the FPR/FNR rates

decrease. This shows that some pattern that was learned by the

training data concerning the removed features did not appear in

the testing data, and thus removing these features, in fact, made

the classifier more accurate. The average accuracy of the first

30 classifiers (removing from 0 to 29 features) is 91.5% with a

FPR of 9.05% and a FNR of 7.96%. When the 30th feature is

removed (out of 33 in total), the decision tree algorithm fails

to train a model with accuracy greater than random chance,

and quits.

To better understand how each type of artifact affects the

accuracy of our classifier, we retrained our model using only

one type of artifacts at a time. Table VI shows the number of

artifacts per category and the performance of each classifier on
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Fig. 4: Variance of accuracy, false negative rate, and false
positive rate of our boosted classifier as we keep removing
the topmost features. Even after removing tens of the features
with the highest discriminatory capacity, the accuracy of the
classifier drops only slightly.

the unseen testing dataset. We can observe that, even though

the classifier based on registry artifacts had the most features

available to it, it performed worse than the Network-based

and Disk-based classifiers. This indicates that certain classes

of artifacts have higher discriminatory power than the rest.

At the same time, all classifiers achieve fairly high accuracy

(some even have a 0% FNR), which suggests that malware

authors can choose which category of artifacts they can focus

on, without compromising the evasion capabilities of their

malware. As such, malware authors who, for example, know

that their samples will be analyzed by a sandbox that considers

registry-related activity suspicious, can use the other types

of wear-and-tear artifacts for both detecting the sandbox and

avoiding raising suspicion.

Our results demonstrate that, not only is it possible to

differentiate between real systems and sandboxes based on

non-intrusive, sandbox-agnostic wear-and-tear artifacts, but that

incremental patching approaches where one or two artifacts

are made to look similar to those in real systems will not be

sufficient to prevent sandbox evasion.

VI. ESTIMATING ACTUAL SYSTEM AGE

In the previous section, we showed that wear-and-tear

artifacts can be used to accurately differentiate between

machines belonging to real users and sandbox environments.

The underlying intuition is that sandbox environments do not

“age” either at all, or clearly not in the same way as user

environments. Based on this observation, in this section, we

explore the possibility of predicting the age of a system based

on the values of its wear-and-tear artifacts. This possibility

would allow malware to assess whether a machine exhibits a

realistic wear and tear that matches its reported age. At the

same time, it would also enable researchers to artificially age

malware sandboxes to match a desired age.

TABLE V: Features that the adaptive boosting decision trees
rely on, and the percentage of trees utilizing them.

Category Feature % of trees

Network dnscacheEntries 100.00%

System sysevt 100.00%

System syssrc 100.00%

Registry deviceClsCount 100.00%

Registry autoRunCount 100.00%

Browser uniqueURLs 100.00%

Disk totalProcesses 66.90%

Browser cookieDiffDays 59.86%

Registry usrassistCount 54.93%

Network certUtilEntries 54.23%

System appevt 54.23%

Browser uniqueCookieDomains 52.82%

Network tcpConnections 50.00%

System winupdt 16.90%

Registry MUICacheEntries 11.27%

Network ARPCacheEntries 4.93%

TABLE VI: Classifier performance when trained only on a
single type of artifacts (FNR = False Negative Rate, FPR =
False Positive Rate).

Artifact Type #Artifacts Accuracy FNR FPR

Network 4 95.92% 2.04% 6.12%

Disk 5 95.92% 0.00% 8.16%

System 5 92.86% 0.00% 14.29%

Registry 11 93.88% 4.08% 8.16%

Browser 7 92.86% 2.04% 12.24%

A. Correlation Between Age and Artifacts

We begin this process by first investigating the self-reported

age of sandboxes and real user machines. Figure 5 shows the

cumulative distribution function of the age of user systems and

malware sandboxes. We can clearly see that, on average, user

systems are much “newer” than sandboxes. Half of the users

have systems less than a year old, yet 50% of sandboxes are

less than two years old. This makes intuitive sense since most

users update their hardware on a regular basis, while many

sandboxes were setup once and are just reused over and over

for a long period of time. At the same time, we see that the

two distributions meet at the top, meaning that there some

users have systems that are as old (or even older) than the

oldest available sandboxes.

Having established their age, we can now investigate the

extent to which each individual wear-and-tear artifact can

potentially be used to predict an environment’s age. Figure 6

shows the Pearson correlation between the reported age and

each wear-and-tear artifact for real user systems. We argue that

changing the age reported by the OS is not only something

that everyday users cannot do, but that they do not have any

interest of doing. As such, we assume that the reported ages

collected from real user systems are accurate.
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We see that many artifacts that were very successful in

differentiating real machines from sandboxes do not, in fact,

correlate with a machine’s age. By focusing on the artifacts that

appear towards the middle of Figure 6 (having a correlation

coefficient close to zero), one can notice that these artifacts may

be characteristic of user activity but they are also under a user’s

control. Users can delete their cookies, visit more or fewer

URLs than other users, delete downloaded files, and, in general,

affect the values of these artifacts in unpredictable ways that

prevent them from being indicative of system’s age. Similarly,

there are other artifacts, such as the number of cached wireless

networks, TCP connections, and firewall rules, which are not

under the direct control of users, clearly do not correlate with

age, yet vary sufficiently between sandboxes and real machines

to be of use for differentiation.

Towards the right end of Figure 6 we see the artifacts that

appear to positively correlate with system age, such as the

number of previously connected USBs, the number of install

applications, and the elapsed time since the first user event.

These artifacts are either “proxies” of age (e.g., the longer

a machine is used, the more applications are installed on it),

or are direct sources of age information which, unlike HTTP

cookies, are buried deeper in an OS’s internals, and are thus

unlikely to be modified or deleted by users.

B. Regression

Having established that some artifacts positively correlate

with age, we now attempt to identify the appropriate way of

combining their raw values to estimate a system’s actual age.

To that end, we first process our dataset to remove artifacts

with missing values in many of our observations. For artifacts

with a high rate of missing values (more than 80% of their

values are missing) we remove them from our dataset and do

not attempt to utilize them any further. For the remaining 37

artifacts, we used the rest of the dataset to predict what would

have been the most appropriate value, had we been able to

extract it. We use a random-forest-based imputation technique,

which is a standard way of handling missing values, without

the need to remove entire observations and without relying on

overly generic statistics, like a feature’s mean or mode, which

could bias our results.

TABLE VII: Significant coefficients of linear regression for
predicting the age of a system based on wear-and-tear artifacts.

Feature Coeficient p-Value

diskartifacts:tempFilesCount 0 2.92 0.0041 **

diskartifacts:totalProcesses -2.12 0.0364 *

evtartifacts:appevt 02.39 0.0186 *

evtartifacts:sysevt 1.71 0.0901 .

evtartifacts:syssrc -3.09 0.0025 **

evtartifacts:appsrc 2.57 0.0114 *

regartifacts:regSize 2.70 0.0080 **

regartifacts:uninstallCount -2.07 0.0411 *

regartifacts:deviceClsCount 1.85 0.0664 .

regartifacts:InstalledApps 5.13 1.2e-06 ***

regartifacts:totalApps 1.99 0.0490 *

totalDownloadedFiles 2.11 0.0368 *

browser:num -2.56 0.0117 *

Significance Codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Multiple R-Squared: 0.68, Adjusted R-Squared: 0.583

1) Linear Regression: We first attempt to use linear regres-

sion, since this is a common regression method that works

well in many contexts. In essence, we start with the formula

Y = β0 + β1X1 + β2X2 + ... + ε where Xi is the value of

any given artifact, and try to calculate the weights βi that
would allow us to sum the artifacts in a way that will provide

a prediction of machine’s age (Y ).

To train a linear regression model based on the real users’

dataset, we first split the user dataset into two sets, one

for training (60%) and one for testing (40%). We keep the

test dataset aside to use it later to test how well our model

generalizes on previously unseen data. Our linear regression

model is trained on the training set, and we use a 10-fold

cross validation to evaluate it, which results in a mean square

error (MSE) of 1.23. The coefficients of the model and their

p-values are reported in Table VII. We see that 13 wear-and-

tear artifacts correlate with a machine’s age in a statistically

significant way. Even though our model is not perfect, it can

still explain up to 68% of the variability in a system’s age.

Since the training error does not necessarily guarantee the

performance of our model when dealing with new data, we

evaluate the accuracy of the linear regression model against

the previously unseen test dataset. We first apply our model to

the unseen test dataset of systems belonging to real users to

make sure that it can predict their age with sufficient accuracy,

and then proceed to use it to predict the age of sandboxes and

compare it with their claimed age. The MSE of the predicted

ages for the regular systems is 1.88, while sandboxes have

a very high MSE of 6.25. Our results indicate that a model

trained on real user data can not only predict the age of other

unseen systems based on the values of their wear-and-tear

artifacts, but it can also identify that a system’s artifacts are

unrealistically high (or low) for its claimed age.

Figure 7 shows the CDF of the values of residuals when

applying our linear regression model on systems from Dreal
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Fig. 6: Correlation between the reported age of user systems and each of the artifacts.

TABLE VIII: Lasso regression coefficients of the features
selected as good predictors of system age by the model.

Feature Coeficient

netartifacts:dnscacheEntries 0.1383

diskartifacts:tempFilesCount 0.0883

evtartifacts:appevt 0.1345

evtartifacts:sysevt 0.1097

regartifacts:regSize 0.1160

regartifacts:InstalledApps 0.6432

regartifacts:totalApps 0.0559

browser:num -0.0138

and Dsand. We see that although the majority of real user

systems have a residual error approximately equal to zero

(meaning that the predicted age closely matches the system’s

actual age), the residuals when attempting to predict the age

of sandboxes are much higher, i.e., the predicted age is much

lower than the reported age, thereby shifting the distribution

towards the right part of the graph.

2) Lasso Regression: To explore whether a more involved

regression model would result in better prediction accuracy,

we also report the results of Lasso regression. Lasso regression

penalizes the absolute size of the regression coefficients, and

sets the coefficients of unnecessary features to zero, reducing

in this way the size of our artifacts set. One of the benefits

of Lasso regression is that it typically utilizes less predicting

variables than linear regression, which reduces the complexity

of the overall model. In the case of malware, a smaller feature

set means fewer API calls to the underlying OS, and thereby

less chances of triggering suspicious activity monitors.

For our experiments, we split the datasets to three parts:

training, evaluation, and testing. We first train a Lasso model

on the training set and make use of cross validation to find the

optimum λ value. We use the discovered value (λ = 0.145),
as this minimizes the MSE of the model, and train our final

model. Table VIII shows the eight features that the Lasso

model selected as good predictors of system age and their

corresponding coefficients. The only artifact that has a small

negative coefficient is the number of browsers installed on

a system. One reasonable explanation for this is that owners

of older systems may hesitate to install additional browsers,

which has an effect on our trained model.

By applying the model on the unseen dataset that consists

of artifacts from real user systems (Dreal), the MSE is 0.749,

which is better than that of linear regression. The MSE on

the testing sandbox dataset is 4.45, which again shows how

the wear and tear of sandboxes does not match their claimed

age. Figure 7 shows the residual errors of the trained Lasso

regression model, and how these compare to the errors of

the linear regression model. We observe that although both

models can predict the age of real user systems (residual

errors approximately equal zero), the Lasso model can better

differentiate some sandboxes based on fewer artifacts compared

to the linear regression model.

Overall, we see that wear-and-tear artifacts can predict,

with sufficient accuracy, the real age of a system and thus

reveal the age mismatch present in current sandboxes. As we

mentioned earlier in this section, other than just improving our

understanding of the relationship between artifacts and system

age, our trained models can be of use to sandbox developers to

help them create environments with wear and tear that matches

their stated age.

VII. DISCUSSION

A. Ethical Considerations and Coordinated Disclosure

Our research sheds light to the problem of next-generation

environment-aware malware based on wear and tear arti-

facts. By demonstrating the effectiveness of this new evasion

technique, we will hopefully bring more attention to this

issue, and encourage further research on developing effective

countermeasures. To that end, our preliminary investigation

on predicting a systems’ age based on the evaluated artifact

values can help sandbox operators to fine-tune the wear-and-tear

characteristics of their systems so that they look realistic. There

have been very recent indications that malware authors have

already started taking into consideration usage-related artifacts
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estimated age for sandboxes and real systems, using the linear
and Lasso regression models.

(e.g., whether any documents appear under the recently opened

documents menu [54]). Consequently, developing effective

countermeasures before malware authors start taking advantage

of wear and tear for evasion purposes more broadly, is of

utmost importance.

Although our results regarding the analyzed sandboxes

used by public malware analysis services showcase their

vulnerability to evasion based on wear and tear, adversaries may

have already come to the same conclusion even before us, given

that our probing technique was reasonably straightforward, and

that similar techniques have also been used as part of previous

research on public sandbox fingerprinting [23]. Hopefully, by

publishing our findings and coordinating with the affected

vendors, our research will eventually result in more robust

malware analysis systems.

To that end, we contacted all vendors from which our probe

tool managed to collect wear-and-tear artifact information,

notifying them about our findings several months before the

publication of this paper. Some of these vendors acknowledged

the issue and requested additional information, as well as the

code of our artifact-probing tool so that they can more easily

detect future artifact exfiltration attempts.

B. Probing Stealthiness

Depending on the type of artifact, the actual operations

that some malware needs to perform in order to retrieve

the necessary information range from simple memory or file

system read operations, to more complex parsing and querying

operations that may involve system APIs and services. Instead

of making sandboxes look realistic from a wear-and-tear

perspective, an alternative (at least short-term) defense strategy

may thus focus on detecting the probing activity itself. At

the same time, many environmental aspects can be probed or

inferred through non-suspicious system operations commonly

exhibited during the startup or installation of benign software

(e.g., retrieving or storing state information from the registry

or configuration files, or checking for updates), while malware

can always switch to a different set of artifacts that are not

monitored for suspicious activity.

Another aspect that must be considered is that as the principle

of least privilege is better enforced in user accounts and system

services, a malicious program may not have the necessary

permissions to access all system resources and APIs. We did

not encounter any such issues with our probe tool on the

tested operating systems, but based on our findings, there is

plenty of artifacts that can be probed even by under-privileged

programs. This issue may become more important in other

environments, such as, in malicious mobile apps, which are

much more constrained in terms of the environmental features

they can access.

C. OS Dependability

We have focused on the Windows environment, given that it

is one of the most severely plagued by malware, and that most

malware analysis services employ Windows sandboxes. As a

result, many of the identified artifacts are Windows-specific

(e.g., the registry-related ones), and clearly not applicable for

malware that target other operating systems (e.g., Linux, Mac,

Android). Even so, artifacts related to browser usage, the file

system, and the various network caches, are likely to be present

regardless of the exact operating system.

Based on the dependability of an artifact on a given OS,

sandbox operators may choose different defensive strategies.

For instance, operators of sandboxes tailored to the detection

of cross-platform malware (e.g., written in Java) may start

addressing OS-independent artifacts first, before focusing on

OS-dependent ones. Finally, since end-user systems are the

most popular targets of malware authors, our study is focused

solely on them. We leave the analysis of wear-and-tear artifacts

on other platforms, such as embedded devices, for future work.

D. Defenses

We have demonstrated that removing system instrumentation

and introspection artifacts from malware sandboxes is not

enough to prevent malware evasion. Since the lack of wear

and tear can allow attackers to differentiate between dynamic

analysis systems and real user systems, introducing wear

and tear artifacts to analysis systems becomes an additional

necessary step. We outline two different potential strategies to

achieve this.

First, a real user system can be cloned and used as a basis for

a malware sandbox. In this scenario, the system will already

have organic wear and tear which can be used to confuse

attackers. Potential difficulties of adopting this approach are: i)

privacy issues (how does one scrub all private information

before or after cloning, but leaves wear-and-tear artifacts

intact?), and ii) eventual outdating of the artifacts (if the cloned

system is used over a long period of time, an attacker can use

our proposed statistical models to detect that the claimed age

does not match the level of wear and tear).

An alternative approach is to start with a freshly installed

image of an operating system and artificially age it by

automatically simulating user actions. This would include

installing and uninstalling different software while changing

the system time to the past, browsing popular and less popular
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webpages, and, in general, taking actions which will affect

the wear-and-tear artifacts on which an attacker could rely for

detecting dynamic analysis systems. While this approach does

not introduce any privacy concerns and can be repeated as

often as desired, it is unclear to what extent this artificial aging

will produce realistic artifacts that are similar enough to those

of real systems.

We leave the implementation and comparison of these two

approaches for future work.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have systematically assessed the threat of

a malware sandbox evasion strategy that leverages artifacts

indicative of the wear and tear of a system to identify

artificial environments, and demonstrated its effectiveness

against existing sandboxes used by malware analysis services.

As long as this aspect is not taken into consideration when

implementing malware sandboxes, malicious code will continue

to be able to effectively alter its behavior when being analyzed.

Even approaches that move from emulated and virtualized

environments to bare-metal systems [8]–[10] will be helpless

if evasion tactics shift from how realistic a system looks

like, to how realistic its past use looks like. The same also

holds for existing techniques that identify split personalities

in malware by comparing malware behavior on an emulated

analysis environment and on an unmodified reference host [44]

or multiple sandboxes [18]. As long as all involved systems do

not look realistic from the perspective of a real user’s activity,

they will be easily detectable and, therefore, evadable.

As a step towards mitigating this threat, we have presented

statistical models that capture a system’s age and degree of use,

which can aid sandbox operators in fine-tuning their systems

so that they exhibit more realistic wear-and-tear characteristics.

Although addressing each and every identified artifact may be

a viable short-term solution, more generic automated “aging”

techniques will probably be needed to provide a more robust

defense, as many more artifacts may be available.

As part of our future work, we plan to explore such

approaches based on simulation-based generation, as well as

privacy-preserving transformation of system images extracted

from real user devices. We also plan to evaluate the effec-

tiveness of sandbox evasion based on wear and tear in other

environments, such as, different desktop operating systems as

well as mobile devices.
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